A?

Differential and Integral Calculus 1

Orlich/Ardiyansyah
Problem Sheet 4, 2020

Note ${ }^{1}$
The due date is published on the course pages. Homework can be submitted only digitally. Instructions on labeling the "papers" can be found on the course pages.

1 Introductory Problems (Home Exam)

Intro 1 Evaluate the integral

$$
\int x \cos x d x
$$

Intro 2 Evaluate the integral

$$
\int(x+3) e^{2 x} d x
$$

Intro 3 Obtain a reduction formula for $I_{n}=\int(\ln x)^{n} d x$, and use it to evaluate I_{4}.

Intro 4 Evaluate the integral

$$
\int \frac{1}{x^{2}-9} d x
$$

[^0]
2 Introductory Problems

Intro 5 Find the area below $y=e^{-x}$ and above $y=0$ from $x=0$ to $x=\pi$.

Intro 6 If f is differentiable on $[a, b]$ and $f(a)=f(b)=0$, show that

$$
\int_{a}^{b}(x-a)(b-x) f^{\prime \prime}(x) d x=-2 \int_{a}^{b} f(x) d x .
$$

Intro 7 Solve

$$
\frac{d y}{d x}=\frac{y}{2 x}
$$

Intro 8 Solve

$$
\frac{d y}{d x}-\frac{2 y}{x}=x^{2}
$$

3 Homework Problems

ExERCISE 1 Find the area of finite plane region bounded by the curve $y=\ln x$, the line $y=1$, and the tangent line to $y=\ln x$ at $\mathrm{x}=1$.

ExERCISE 2 If f and g are two functions having continuous second derivatives on the interval $[a, b]$, and if $f(a)=g(a)=f(b)=g(b)=0$, show that

$$
\int_{a}^{b} f(x) g^{\prime \prime}(x) d x=\int_{a}^{b} f^{\prime \prime}(x) g(x) d x
$$

What other assumptions about the values of f and g at a and b would give the same result?

ExERCISE 3 Solve

$$
\frac{d y}{d x}=\frac{3 y-1}{x} .
$$

ExERCISE 4 Solve

$$
\frac{d y}{d x}-y=e^{x}
$$

[^0]: ${ }^{1}$ Published on 2020-10-02 08:27:40+03:00.

