Differential and Integral Calculus 1
MS-A0111
Hakula
P
Ardiyansyah/Orlich
Problem Sheet 5, 2020

NOTE ${ }^{1}$
The due date is published on the course pages. Homework can be submitted only digitally. Instructions on labeling the "papers" can be found on the course pages.

1 Introductory Problems

Intro 1 Use Euler's method with step sizes (a) $h=0.2$, (b) $h=0.1$, and (c) $h=0.05$ to approximate $y(2)$ given that $y^{\prime}=x+y$ and $y(1)=0$. (Write a programme, do not try to compute manually.)

Intro 2 Find the general solution.

$$
y^{\prime \prime}+y^{\prime}+y=0 \text {. }
$$

Intro 3 Find the complete solution.

$$
\left\{\begin{aligned}
y^{\prime \prime}+100 y & =0 \\
y(0) & =0 \\
y^{\prime}(0) & =3
\end{aligned}\right.
$$

Intro 4 Find the complete solution.

$$
\left\{\begin{aligned}
y^{\prime \prime}+2 y^{\prime}+5 y & =0, \\
y(3) & =2, \\
y^{\prime}(3) & =0 .
\end{aligned}\right.
$$

[^0]
2 Homework Problems

ExERCISE 1 Use Euler's method with step sizes (a) $h=0.2$ and (b) $h=0.1$ to approximate $y(2)$ given that $y^{\prime}=x e^{-y}$ and $y(0)=0$.

EXERCISE 2 Find the complete solution.

$$
\left\{\begin{aligned}
y^{\prime \prime}+4 y & =0, \\
y(0) & =2, \\
y^{\prime}(0) & =-5 .
\end{aligned}\right.
$$

Exercise 3 Find the complete solution.

$$
\left\{\begin{array}{r}
y^{\prime \prime}+4 y^{\prime}+3 y=0 \\
y(3)=1 \\
y^{\prime}(3)=0
\end{array}\right.
$$

ExERCISE 4 By using the change of dependent variable

$$
u(x)=c-k^{2} y(x),
$$

solve the initial-value problem

$$
\left\{\begin{aligned}
y^{\prime \prime}(x) & =c-k^{2} y(x), \\
y(0) & =a \\
y^{\prime}(0) & =b
\end{aligned}\right.
$$

[^0]: ${ }^{1}$ Published on $13 / 10 / 2020$.

