Statistical Mechanics
FO415

Fall 2020, lecture 3
Correlations & Dissipation



2.t

Let us turn this into an exercise in gambling. You play heads and tails (toss a coin, and

T k h 2 guess the outcome: win or lose the coin). Three questions: you start with 10 coins. Give
a e O m e an argument how the distribution of times it takes for you to lose all your coins looks like.
What happens if you play till you have zero, or until you won all the 10 coins of your
friend? Let us now consider the case where the coin is not fair: the fractional Brownian

motion, where the subsequent outcomes are correlated (positively or negatively). How does
that influence qualitatively those outcomes?

2"d: Starting from 10 coins, it will take at least 10 tosses to get to zero. It is
also impossible to hit zero with an odd number of tosses”

"With an unbiased coin, we have a simple random walk going either down or
up one step. To lose all coins means traveling a distance of 10 units to the
negative direction. The Root-mean-squared (RMS) of the distance traveled is
equal to the square root of the number of steps taken N . For our 10 coins
this means that on average, we will be broke after 100 moves. Still, that
average doesn’t tell us much since we could take much less (limits at 10) or
many more (1000s+) of moves to first achieve that state of losing all coins.”

31, "The effect of correlated is that the wins or losses are skewed towards
theother player. One still can’t win in less than 10 rounds, but the probability
of the gameending becomes greater at lower numbers of rounds”



Comments:

The first question is actually a so-called First Passage problem. For an
unbounded domain (your friend is immensely rich so you can win ad
infinitum) the average time is... infinite. That Is b/c the first passage
time (to reach zero) t scales with an exponent of -3/2 (is a power-law).
You may note that this is related to the Gaussian distribution of -1/2
exponent, and the FP time is its derivative. “Diffusive flux”.

Second: good comments.
Third: the same.



Correlation functions

“Fields” s(x,y): how to find
regularities?

Fig. 10.2 Surface annealing. An
STM image of a surfxe, created by
bombarding a close-packed gold sur-

Fig. 10.1 Phase separastion in
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face with noble-gas atoms, and then
allowing the irregular surface to ther-
mally rddax (Tatjuna Curcic and Bar-

down-spins, which grow and merge,
coarsening to larger blob sizes (Sec-
tiom 11.4.1).
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Experimental measures

X-rays, neutrons scatter (from what? Electrons,

Nuclear spins...) and produce... the Fourier Transform of the equal-time

Correlation function. How?
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Fig. 10.8 X-ray scattering. A beam
of wavevector kp scatters off a density
variation p(x) with wavevector k to a
final wavevector kp + k; the intensity
of the scattered beam is proportional
to |@(k)|? [9, chapter 6]




|deal gases: equal time correlations

Easiest, illustrative case (with no Fiden (o), T) = ()T [oB(p()A) — 1
correlations). We need to compute Hemholtz Fe

: ot *F . o
from the FE free energy and and its derivative a= S| =kaT/m=Po/p}
density the fluctuations, and then

consider what happens if we break Fo) = Lo . i

. \P} = galp—pfo), F{p(x)} oce 7/ I%F )
the system into many sub-volumes -

(un-correlated). Distributions of free energy and
T density fluctuations in equilibrium
p—po) ) == -
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Dirac’ delta-function: no correlations. C (r,0) = —4d&(r).
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Enter Onsager...



Lars Onsager

Lars Onsager (November 27, 1903
— October 5, 1976): Norvegian
physicist/chemist.

Known for: electrolytes... phase
transitions... Onsager relations....

Nobel prize (in Chemistry) in 1968.




Enter Onsager...

How to treat deviations from the |
equilibrium (read: correlations)?

equilibrium decays according to the same laws as one that F]g 1[| T Noisy decay of a fluctu-
has been produced artificially. ation. An unusual fluctuation at ¢ =0
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Susceptibility and linear response

The idea: define a measure for the
response to a perturbation.

We assume that this can be Fi(t) = — / dx f(x, t)s(x,1).
measured “based on the past” via a
response function . Note how and

why this is linear (in f). s(x.) = [dxe /’ dt' x(x — Xt — ) f (. 1)
Then FT everything, and call ¢ as the | ST

AC susceptibility (language of
magnets).

] o Flk,w) = ¥(k,w)fk,w),
(Electricity: polarizability,

Magnetism: susceptibility again)



Dissipation

v splits into real and
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The zero-frequency limit

(electrical analogue) relates

the conductivity to limit of o= lim w2i(w)
the polarizability. =0



Static susceptibility

Define via perturbed equilibrium
(no time-dependence).

Fluctuation-dissipation relation:
susceptibility vs. correlation
function in the zero frequency
limit.

Relation of these to fluctuations in
equilibrium and their (non-
extensive) scaling.
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Fluctuation-dissipation theorem

Susceptibility y relates to the
correlations, thus the field and its
fluctuations.

In frequency domain, the
imaginary part does the same.

Thus also dissipated power:
fluctuations are related to
dissipation.

[FYI: there is a large universe of attempts to
use this in out of equilibrium systems:

measure y and C, in order to define an
effective temperature Pg.]




Role of causality

The FT (frequency-dependent) susceptibility
has real and imaginary parts: two functions
instead of one (y(t)). > ‘s

Fig. 10.12 Kramers—Kronig con-
tour. A contour O, in the complex w'
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from —oo to oo with a tiny semicircu-
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2.3 Generating random walks (Sethna 2.6 p. 28) HOMEWORK (5 points)

Plesss note that this exercize is computstional, so in order to get help with possible prob-

O I I I e W O r lems, take a laptop to the exercise session or alternatively send your code and problem
in advance to the TA. The preferred programming tool to use (from the point of view of
debugging and getting TA help) is Python, but also others are acceptable.

fa) Write a roufine fo generdfe an N-siep rondom walk in d dimensons, wiih cach sep
urdformly distribufed in the range (—1,/2,1/2) in coch dimension.  (Generaie the sicps
first as an [N x d| army, then do a cumulafive sum.) Plof 1, versus [ for a few 10
ik step random walks. Plof © versuz y for a few fwo dimensional mandom walks, with
N = 10, 1000, 100000, Ty fo keep the aspect rofio of the XY plof cqual to ome. ) Docs
muliiplying the number of deps by one hundred roughly incorease the nef disance by ten®

Esch random walk = different and unpredicteble, but the ensemble of random walks has
elegant, predictable properties.

(b} Write o roufine fo coleulsie the endpoints of W rondom walks with N sfeps cach in d
dimengons. o a scaffer plof of the endpoinds of 10000 random walks with N = 1 and
10, superimposcd on the same plof Nofice thof the longer random walks are disfribufed
in o areularly symmetric pofforn, cven though the single sfep random walk N = 1 kos g
square probabilify disfribufion fanizing from the single Sep range, see Fig 210 from Sefhna
p- 28}

This is an emergent symmetry; even though the welker steps longer distances along the
diagonals of a square, & random walk several steps long hes nearly perfect rotstional
symmetry. The most useful property of random walks 1s the central limit thecrem. The
endpoints of an ensemble of N step one-dimensional random walks with root-mean-square
[RMS) step-sxe a has a Gaussian or normal probability distribution as & — oo,

1 2
plx) = ﬁm[—fﬁﬂ J: (L

with o = /Na.

() Caleulate the RMS sicp-size a for one-dimensional steps wniformly distribded in (—1/2, 1/2).
Write o routine that plots o hidogram of the endpoinds of W one-dimendonal random walks
with N steps and 50 bins, along with the predicfion of above equafion for r in (-3, 37). Do

o histogram with W = 10000 and N = 1,2, 3, 5. How guickly docs the Gausgan disinbuion
become o good apprecimafion fo the random walk?



Take home

e This lecture looks at the classical measures of correlations and their decay. We
shall EEt back to these topics later on, but you should read through the chapter
and think of conditional probabilities. Read first the Chapter and check then the
lecture slides again.

The take home consists of answering to the following three questions:

Give an example of X and Y that are correlated but there is no causal relation (X
because of Y or X because of Y happened before) between them.

Take a (time) series of the binary kind 0110110011000111.... (or subtract-1/2 from
all th(le valju?es so that the average might become zero). When would this be
correlated:

Take instead a series like this: ...00001111111(...)111000.... This is clearly not a
random one. Now start tossing a coin (0/1) and replace according to each toss one
of the values with the new one. Does this correspond to the Onsager hypothesis
and why? If the coin is biased, does the process relate to linear response?



