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Ising model, 2nd order phase transitions



This lecture : he classical measures of oc stions r
ret back to these topics later on, but you should resd through the chapter and think of
conditional probabilities. Read first the Chapter and check then the lecture slides again

Give & ¥ no cansal relation
| a e O m e 3 of ¥ or X because of ¥ happened before) between them.

ime) series of the binary kind 0110110011000111.... [or subtract -1/2 from all the
values so that the sverage might becoms zero). When would this be correlated?

I'ake instead & series like this: . 000Q0LLDLIL1L{.30101000.... This is clearly not a random
e, Now start tossing a coin (0/1) and replace according to each toss one of the valuss
with the new one. Does this correspond to the Onsager hypothesis and why? If the coin
is biased, does the process relate to linear response?

As a finsl remark, try playing the game found at https://www . expunctis. com/2019/03/
07/Not-so-random.html. How random were you able to be?

Gilve an example of X and Y that are correlated but there is no causal
relation:

"X: Many people are wearing a jacket in Finland. Y: The leaves are falling off
the trees in Finland.”

"A classic example to this would be the correlation between the number of
pirates and the global warming.”

Take a (time) series of the binary kind...:

"For a random binary series Xn, Corr(Xn,Xn+k)=E[XnXn+k]-E[Xn]E[Xn+k]. So
if Xn and Xn+k are independent, Corr(Xn,Xn+k)=0"

“-- would be correlated if for some index i in the following indices i+k would
have on average over 50% chance of being the same value as i."



Take...

Take instead a series like this...:

"The Onsager hypothesis states that a spontaneous deviation from the equilibrium

decays according to the same laws as one that has been produced artificially. | think a coin
toss and its effect on a non-random series corresponds to the Onsager hypothesis, since
the coin toss is a spontaneous deviation. It could be argued that the deviation decays in a
similar fashion than if the series was just randomized artificially. With a biased coin, the
process relates to linear response, since the series experiences a kick into a direction or
another depending on the coin bias. The series responds by shifting towards one direction.

"As the number of coin flips goes to infinity, the system becomes random and the
correlation becomes zero. As the process goes on, the size of the ‘islands’ decays.
According to the Onsager hypothesis the decay process of the islands would be the same
as the decay in correlation (or vise-versa). If the coin toss is biased, the system can be
thought as if having a force acting in one direction, analogously to linear system.”

As a final remark, try playing the game..:



ABC of phase transitions

Today’s main topics:

* The paradigmatic statistical mechanics model: the Ising model

* How to solve statistical mechanics on the computer — yet another
connection to stochastics (of/or Markov chains)

e Coarse-grain the Ising: simplest Ginzburg-Landau theory, the phase
transition in GL.

Material: Sethna, Chaikin-Lubensky, Principles of Condensed Matter
Physics, Ch 4 (start) and Ch 10 (early part).



Meet the Ising model

e Lattice model, with Hamiltonian

H=-> Jss;—HY s
(i) i
* These details dictate the physics: J
(coupling), H (external field), sum over (NN)
Interactions, geometry.

e Sign of J: (anti)ferromagnetic. Trees, 1D
(solvable), 2D (barely solvable), 3D (not
solvable).

* Add disorder (RF [H], RB (J), SG (J)), make J
long-ranged, AF in a triangular lattice
(frustration)....




Ising model: (some) uses

Magnetism (parameters from
microscopic detail!).

Binary alloys: understand the
energy from the atomistic
configuration (NN, NNN...).

Liquid-gas transition: what
happens in the phase diagram
close to the critical point (liquid-

gas).
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Fig. 8.4 P-T phase diagram for
a typical material. The solid-liguid
phase boundary corresponds to a
change in symmetry, and cannot end.
The liquid-gas phase boundary typi-
cally does end; one can go continuously
from the liquid phase to the gas pl
by increasing the pressure above P, in-
creasing the temperature above T, and
then lowering the pressure again.

Fig. 8.3 The Ising model as a bi-
nary alloy. Atoms in crystals natu-
rally sit on a lattice. The atoms in al-
loys are made up of different elements
(here, types A and B) which can ar-
range in many configurations on the
lattice.
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Fig. 8.5 H-T phase diagram for

the Ising model.
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temperature T\, there is an an up-spin
and a down-spin ‘phase’ separated by
a jump in magnetization at H = 0.
Above T, the behavior is smooth as a
function of H.



How to solve the Ising model?

Emulate the thermal evolution on
a computer: Heat Bath algorithm.

Pick a spin (at random).

Compute the cost in energy for
having it up/down AE

up/down*

Pick the direction at random using
the right Boltzmann weights.

(This means we do a Markov
Chain over the spin states).

Advanced numerical methods:
Cluster algorithmes...
Parallel tempering...

Ground-state methods for
disordered systems (low
temperatures: unigue ground
state for each system)...

Special computers (!).



Markov chains/fields (in general)

Properties of (memoryless)
processes for the evolution of the
occupation probabilities, p(n),.

¢ Time evolution. The probability vector at step n + 1 1s

pain+1)= Z Faap,(n), pin+1)=FP-p(n). (8.6)
n

¢ Positivity. The matrix elements are probabilities, so

Require a steady-state, and 0Pt
conse rvation Of prOba bility, » Conservation of probability. The state o must go somewhere,
Ergodic (finite convergence time) 2 Fra =1

chains have a single steady-state + Not symmetric! Typically P # Fu.
(Frobenius-Perron theorem).

Detailed balance: convergence Po3p% = Paupt
assured.



Example #1 of cluster algorithms

* Swendsen and
Wang 1989 [PRL
56 (87), 86]:
update clusters
not single spins.

* Does this give the
correct
thermodynamics?

Beginning with an arbitary configuration s;, one SW cluster update cycle
Is:

1. Inspect all nn-states s;, s;. If s; = s;, create a bond between sites
1, 7 with probability p = 1 — exp(—2/3) (otherwise no bond).

2. Construct clusters = sets of points connected by bonds.

3. Set each cluster to a random value +1.
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Check it out

Showing that the SW
algorithm exhibits
detailed balance
(between A and B)
follows essentially
from the fact that the
intermediate "C” after
the flip is arbitary and
compatible with both.

Is this a valid update? It satisfies

a) ergodicity (obvious)

P(A+— B)

b) detailed balance: —————— = exp —3(Ep — E4)7

P(B+— A)

Proof: consider A — C — B, where C is some bond configuration
compatible with both A and B. Since the clusters in C are indepen-
dent, P(C — A) = P(C — B) = 1/2N-.
Now,

P(A— C) p{’ (1 — p]"‘r-"

P(B—C) pb(l—p)is
where d4 p are the numbers of similar nn-states which are not con-
nected by a bond. The last step comes from E4 = dimxV —2(b+dy).
Thus A — C — B and B — C — A satisfy detailed balance for arbi-
trary C, and the total transition probabilities A — B, B — A must do
it also.

= {.‘Xl}[—r)’(EB - E—l)]




Wolff cluster algorithm (pRL 62 (89), 361)

Principle: do the cluster decomposition as in S-W, but invert (‘flip’) only
one randomly chosen cluster! In practice:

1.
2.

4.

Choose random site 1.

Study neighbouring sites j. If 5; = s;, join site j to cluster with

probability p = 1 — exp(—273).

. Repeat step 2 for site j, if it was joined to the cluster. Keep on doing

this as long as the cluster grows.
When the cluster is finished, invert the spins which belong to it.

e Usually slightly more effective than S-W (the average size of the clus-
ters is larger. Why?).

e The minimum cluster size = 1, maximum = volume.

e Nicely recursive.

o Satisfies detailed balance.
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Order parameters & Ginzburg-Landau

Inside a phase, an OP varies slowly but
how do we detect the phase changes?
(Example: magnetization for the Ising
model in the FM phase).

GL: coarse-grain the system into patches | |
of “large” size though smaller than the m(x) = % D i Si —a

correlation length. Look, at what the FE

looks like (and find the right Ll

normalization or partition function to

get the FE right). L]




What is GL theory?

Z sum over all configurations m,
thus a path integral.

Conditions on the FE: locality (in
m), symmetries (rotation,
translation: original lattice), Z,-
symmetry (spin flips, we do now
the Ising model), analyticity

Result (H breaks the parity
symmetry, “-Hm”) reads then:

See Chaikin and Lubensky

Flm(x)]

1
/ dx [5(1 2

. S L, )
(T)ym= + l("u‘(T)f'n”l + 57 (T)(Vm)~ + ...



Conseqguences:

Mean-field solution (m constant):
a 2" order phase transition
(continuous) related a, and the
critical temperature. m(T,H) (B in
the figure).

Similar arguments are used
(applying the GL-theory) to
superconductivity and to liquid
crystals (nematic-isotropic
transition, where different
symmetry gives an extra a, term).

ao(T) ~ (T'—1T.)

ay(T) ~ =T




Application of GL: domain wall

In the ordered phase

go from one “domain” (s.;ifx) — cm(x) + () — 1 TPm(x)

to another: Domain | |

Wa” GL 8iV€S the e OF __ 2. o o3
5 =0 = AV m=asm+ agm

energy and shape. m(x)

Applications: disorder, S g

roughening... Lower e

critical dimension for X ,

order t to present! o ”( w ) "o




What did we learn?

GL model: some “critical exponent” describing the
behavior of quantities close to the critical temperature.

On general grounds, these are all not independent.
Rescaling of time, space (correlation time, length),
response to an external field is why.

How does one now compute the exponents?
“Renormalization group” is the answer (K. Wilson, Nobel).



Homework

3.2 Damped oscillator (Sethna 10.3 p. 235) HOMEWORK (5 points)

Let us explore the fuctuating mess-on-a-spring. The coupling of the macroscopic motion
to the internal degrees of freedom eventually damps sny initial macroscopic oscillation;
the remaining motions are microscopic thermal fluctuations. These fluctuations can be
important, however, for nanomechanical and biological systems In addition, the damped
hermonic oscillator 15 & classic model for many atomic-scale physical processes, such as
dieleciric loss in insulators. Consider a damped, simple harmonic cecillator, forced with

an external force [, obeving the equation of motion

424 . AR f(t)
T R L T (7

(o) Susceplitilify. Find the AC suscepfibilify y(w) for the oscillafor. Plof y'w) and x"(w)
forwy=m=1and vy =022 5 (Hint: Fourier transform the equation of motion, and
solve for & in terms of [

(1) Cousality and cntical demping. Check, for posifive damping v, that yow y{w) 15 cousal
ity =10 for & = 0), by cramining the sngulerifics in the compler w plane (Seclion 109
in Seikno ) Al whal value of v do the poles begin do st on the imaginary aris? The system
is overdemped, and the oscillations disappesr, when the poles are on the imaginary axis.

(o) Dhsspafion and suscepiibilily. Given a forcing f{f) = Acos{wt), solve the cpualion and
calealafe 8(t). Caleulade the average power dissipafed by infegrafing yowr resulfing formula
Sor fdftfdi. Do your answers for the power and ¥ agree with the general formula for power
dissipation, eqn 10.57 in Sethna (p(w) = Sy )7

{4} Correlations and thermal equilibrivm. Use the fludualion-dissipafion theorem fo calou-
late the correlafion fundion C(w) from ¥"w) "(w) = %C’{w}__ see oqn 1065 in Selhna

p 229), where
C(t — ') = (B1)0(E))- (®)

Find the equal-time cormrelation function C{0) = (#*), and show that it salisfies the equipar-
Gfon fheorem.  (Hints: Our oscilletor is in a potential well V(f) = %TMJSI'F Write
(wf — w®)? + Cfu? = (uf — o® + iCw)(wd — w® — iCw) and do contour integration if
you really, really like it. Or you can trust that the integral gives

= 1 _kx w
j:m e :x”[u}c — ﬁl el

as ¢ —+ (. Caleulating these kinds of contour integrals is out of the scope of this course )



Take home

Take home (Sethna Chapter 10 plus additional material Ginzburg-Landau theory: Chaikin-Lubensky, Principles of
Condensed Matter Physics, Ch. 4.1-4.4 and Ch. 10.1 and 10.2.).

Read the chapter, and the parts of Ginzburg-Landau theory. Check also the cluster Monte Carlo algorithms (the web is full
of lecture notes, and Wikipedia has a good article on the S-W algorithm): do you think you understand why they work?

Here we introduce the Isin%model as the paradigm of statistical ph?Isics and phase transitions. The book discusses the
model and how to study it by computational means. The CL-part tells how a "coarse-grained" theory is formed for the
Ising model (and its variants and other systems; "phase-field model" is a key concept).

The random field Ising model (RFIM) comes when you introduce the random fields to each site. The RFIM has a phase
diagram like the normal Ising except that random fields can destroy ferromagnetic order at any temperature if they are
strong enough.

How would the random field affect a) a GL-theory (what is the free energy like?) and b) the physics of a domain wall?

Then check the following application of the model: https://link.springer.com/article/10.1140/epjb/e2005-00307-0

Read through the paper. How would you simulate the model - how do the random fields enter the picture? Put the model
on a 2D lattice, with a fixed set of neighbors for each "opinion" for that purpose.
What kind of transitions would you expect in this system?

(For those interested please see https://www.cfm.fr/work-with-us/#0ur%20internships for summer jobs)



https://link.springer.com/article/10.1140/epjb/e2005-00307-0
https://www.cfm.fr/work-with-us/#Our%20internships

