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Finding optimal separating

hyperplanes



Recall: Perceptron algorithm on linearly separable data

Recall the upper bound ( 2R
γ )2 of iterations of perceptron algorithm on

linearly separable data

• γ: The largest achievable

geometric margin in the

training set, yiw
T xi
‖w‖ ≥ γ for all

i = 1 . . . ,m

• R = maxi ‖xi‖: The smallest

radius of the d-dimensional

ball that encloses the training

data
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Finding optimal separating hyperplanes

• The hyperplane output by the

perceptron algorithm is guaranteed to

be consistent

• All training data are on the correct

side of the hyperplane

• However, typically there are several

hyperplanes that are consistent

• Which one is the best?
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Maximum margin hyperplane

One good solution is to choose the hyperplane wTx = 0 that lies furthest

away from the training data (maximizing the minimum margin of the

training examples):

Maximize γ

w .r .t. variables w ∈ Rd

Subject to
yiwTxi
‖w‖

≥ γ, for all i = 1, . . . ,m,

The maximum margin hyperplane has good properties:

• Robustness: small change in the training data will not change the

classifications too much

• Theoretically a large margin is tied to a low generalization error

• It can be found efficiently through incremental optimization

Support vector machines (SVM) are based on this principle
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How to Maximize the Margin?

• However, the optimization problem

Maximize γ

w .r .t. variables w ∈ Rd

Subject to
yiwTxi
‖w‖

≥ γ, for all i = 1, . . . ,m

does not give us a unique optimal weight vector w∗

• This is because if w∗ is a solution, then so is any vector cw∗, c > 0

since
yi (cw)Txi
‖cw‖

=
cyiwTxi√
c2wTw

=
cyiwTxi
c ‖w‖

=
yiwTxi
‖w‖

• We can make the functional margin yiwTxi arbitrarily high just by

scaling the norm of w
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How to Maximize the Margin?

• We could add a constraint ‖w‖ = 1 to the optimization problem to

get an unique answer.

• However, optimization would become more difficult to solve

• Instead, let us multiply the constraint on the geometric margin

yiwTxi
‖w‖

≥ γ

by ‖w‖ to obtain a an equivalent constraint on the functional margin

yiw
Txi ≥ γ ‖w‖

• Now fix the functional margin to 1: γ ‖w‖ = 1 which gives γ = 1
‖w‖

• To maximize γ, we should minimize ‖w‖ with the constraint of

having functional margin of at least 1
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Support vector machine (SVM)

The so called hard margin support-vector machine (SVM, Cortes &

Vapnik, 1995) solves the margin maximization as follows:

Minimize
1

2
‖w‖2

w .r .t. variables w ∈ Rd

Subject to yiw
Txi ≥ 1, for all i = 1, . . . ,m

• We are minimizing the half of the squared norm of the weight

vector, which gives the same answer as minimizing the norm, but

easier to optimize

• This is equivalent of finding the maximal geometric margin over the

same data
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Geometrical interpretation

The maximum margin hyperplane separates the positive and negative

examples with a minimum functional margin of 1

• The points that have exactly margin

ywTx = 1 are called the support

vectors

• The position of the hyperplane only

depends on the support vectors, its

position does not change if points

with ywTx > 0 are added or removed
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Generalization capability of the maximum margin hyperplane

• The maximum margin hyperplane has significant theoretical backup

(Mohri, 2012)

• Consider the hypothesis class

H = {h(x) = sgn
(
wTx

)
|

m
min
i=1

yiw
Txi = 1, ‖w‖ ≤ B, ‖xi‖ ≤ R}

• The VC dimension satisfies VCdim(H) ≤ B2R2

• Rademacher complexity satisfies: R(H) ≤ RB√
m

• Thus a small norm (≤ B) translates to low complexity of the

hypothesis class

• A better generalization error is thus likely if we can find a consistent

hyperplane with a small norm (or, equivalently, a large margin)
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Non-separable data

The so called hard margin support-vector machine assumes linearly

separable data

Minimize
1

2
‖w‖2

w .r .t. variables w ∈ Rd

Subject to yiw
Txi ≥ 1, for all i = 1, . . . ,m

• In the non-separable case, for any hyperplane, there will be an

example with a negative margin yiwTxi < 0 which violates the

constraint yiwTxi ≥ 1

• Our optimization problem has no feasible solution

• We need to extend our model to allow misclassified training points
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Non-separable data

• To allow non-separable data, we allow

the functional margin of some data

points to be smaller than 1 by a slack

variable ξi ≥ 0

• The relaxed margin constraint will be

expressed as

yiw
Txi ≥ 1− ξi , ξi ≥ 0

• ξi = 0 corresponds to having large

enough margin > 1

• ξi > 1 corresponds to negative

margin, misclassified point

• The set of support vectors includes all

xi that have non-zero slack ξi
(functional margin ≤ 1)

AGAG

AG

AG

AG
AG AG

AG

AG

AG AG

AG

GC content after 'AG'

G
C 

co
nt

en
t b

ef
or

e 
'A

G
'

ξ

10



Soft-Margin SVM (Cortes & Vapnik, 1995)

The soft-margin SVM allows non-separable data by using the relaxed the

margin constraints

Minimize
1

2
||w||2 +

C

m

m∑
i=1

ξi

w .r .t variables w, ξ

Subject to yiw
Txi ≥ 1− ξi

for all i = 1, . . . ,m.

ξi ≥ 0, for all i = 1, . . . ,m.
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• The sum (or average) of slack variables appear as a penalty in the

objective

• The coefficient C > 0 controls the balance between model

complexity (low C ) and empirical error (high C )
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The loss function in SVM

• We can interpret the soft-margin SVM in terms of minimization of a

loss function

• Observe the relaxed margin constraint:

yiw
Txi ≥ 1− ξi , ξi ≥ 0

• By rearranging, the same can be expressed as

ξi ≥ 1− yiw
Txi , ξi ≥ 0

and further

ξi ≥ max(1− yiw
Txi , 0)

• The right-hand side is so called Hinge loss:

LHinge(y ,wTx) = max(1− ywTx, 0)
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Loss functions: Hinge loss

Hinge loss can be written for f (x) = wTx as

LHinge(y , f (x)) = max(1− yf (x), 0)

• Hinge loss is a convex upper bound of

zero-one loss

• Hinge loss is zero if margin yi f (x) ≥ 1

• For a misclassified example, margin is

negative and Hinge loss is

LHinge(f (x), yi )) > 1

• The loss grows linearly in the margin

violation 1− yf (x), for margins < 1
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Soft-margin SVM as a regularised learning problem

• We can rewrite the soft-margin SVM problem

Minimize 1
2 ||w||

2 + C
m

∑m
i=1 ξi

Subject to ξi ≥ max(1− yiwTxi , 0)

for all i = 1, . . . ,N.

ξi ≥ 0

equivalently in terms of Hinge loss as

min
w

1

m

m∑
i=1

LHinge(wTxi , yi ) +
λ

2
||w||2

• This is a so called regularized learning problem

• First term minimizes a loss function on training data

• Second term, called the regularizer, controls the complexity of the

model

• The parameter λ = 1
C

controls the balance between the two terms
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Optimization



Quadratic programming

The soft-margin SVM corresponds to a Quadratic program (QP)

Minimize
1

2
‖w‖2 +

C

m

m∑
i=1

ξi

w .r .t variables w, ξ

Subject to yiw
Txi ≥ 1− ξi

for all i = 1, . . . ,m.

ξi ≥ 0, for all i = 1, . . . ,m.

• A QP is a convex optimization problem (with a unique optimum)

• The QP objective is a quadratic function of the variables

• The QP constraints are linear functions of the variables

• When data is small, QP solvers in optimization libraries can be used

to solve the soft-margin SVM problem
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Optimization on big data

On big data, a stochastic gradient descent procedure is a good option

Rewrite the regularized learning problem as an average:

J(w) =
1

m

m∑
i=1

Ji (w) =
1

m

m∑
i=1

(
LHinge(wTxi , yi ) +

λ

2
||w||2

)
where Ji (w) = LHinge(wTxi , yi ) + λ

2 ||w||
2

However, Hinge loss is not differentiable at

1 (because of the ’Hinge’ at 0), so cannot

simply compute the gradient ∇Ji (w)
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Gradients of the Hinge loss

• We can differentiate the linear pieces of the loss separately

LHinge(wTxi , yi ) =

{
1− yiwTxi , if yiwTxi < 1

0, if yiwTxi ≥ 1

• We get

∇LHinge(wTxi , yi ) =

{
−yixi if yiwTxi < 1

0 if yiwTxi > 1

• At wTxi = 1, the function is not differentiable but we can we choose

0 as the value, since the Hinge loss is zero so no update is needed to

decrease loss

• (Formally 0 is one of the subgradients of the Hinge loss at 1, so can

be justified from optimization theory)
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Stochastic gradient descent algorithm for SVM

To find the update direction we express Ji (w) as a piecewise

differentiable function

Ji (w) = LHinge(wTxi , yi )+
λ

2
||w||2 =

{
1− yiwTxi + λ

2 ||w||
2, if yiwTxi < 1

0 + λ
2 ||w||

2 if yiwTxi ≥ 1

Computing the derivatives piecewise gives the gradient:

∇Ji (w) =

{
−yixi + λw if yiwTxi < 1

0 + λw if yiwTxi ≥ 1

Update direction is the negative gradient −∇Ji (w)
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Stochastic gradient descent algorithm for soft-margin SVM

Initialize w = 0

repeat

Draw a training example (xi , yi ) uniformly at random

Compute the update direction corresponding to the training example:

∇Ji (w)) =

{
−yixi + λw if yiwTxi < 1

λw if yiwTxi ≥ 1

Determine a stepsize η

Update w = w − η∇Ji (w)

until stopping criterion satisfied

Output w

• For the stepsize, diminishing stepsize of η = 1/λt, has been

suggested in the literature

• As the stopping criterion, one can use, e.g. the relative improvement

of the objective between two successive iterations – stop iterations

once it goes below given threshold
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Interpreting the update

w = w − η

(
λw +

{
−yixi if yiwTxi < 1

0 otherwise

)

• Each update shrinks the weight vector by ηλ =⇒ increases the

geometric margin and adds regularization

• If the example has positive Hinge loss (functional margin < 1), we

add ηyixi to the weight vector

• This has an effect of decreasing the Hinge loss on that example,

similarly to the perceptron update
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Interpreting the update

w = w − η

(
λw +

{
−yixi if yiwTxi < 1

0 otherwise

)

• Compare to the perceptron update:

w = w +

{
yixi if yi 6= sgn

(
wTxi

)
0 otherwise

• Both share the idea of adding to w the training example multiplied

by the label yixi , SVM does this to all examples that have too small

margin, not only misclassified ones

• SVM shrinks the weight vector by fraction of λ on all examples, to

regularize
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Interpreting the update

• Consider the evolution of the weight vector w(t) by the stochastic

gradient optimization

• Assume λ = 0 and that (x(t), y (t)) is the t’th training example

drawn by the algorithm that has positive Hinge loss, and η(t) is the

learning rate

• Then we have

w(1) = η(1)y (1)x(1)

w(2) = η(1)y (1)x(1) + η(2)y (2)x(2)

w(3) = η(1)y (1)x(1) + η(2)y (2)x(2) + η(3)y (3)x(3)

w(t) =
t∑

j=1

η(j)y (j)x(j)

• Thus the weight vector is a linear combination of the training

examples that have been updated on so far
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Dual soft-margin SVM



Dual representation of the optimal hyperplane

It can be shown theoretically that the optimal hyperplane of the

soft-margin SVM has a dual representation as the linear combination of

the training data

w =
m∑
i=1

αiyixi

• The coefficients, also called the dual

variables are non-negative αi ≥ 0

• The positive coefficients αi > 0

appear if and only if xi is a support

vector, for other training points we

have αi = 0
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Dual representation of the optimal hyperplane

• Consequently, the functional margin ywTx also can be expressed

using the support vectors:

ywTx = y
m∑
i=1

αiyix
T
i x

• The norm of the weight vector can be expressed as

wTw =
m∑
i=1

αiyix
T
i

m∑
j=1

αjyjxj =
m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj

• Note that the training data appears in pairwise inner products: xTi xj
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Dual representations

• We can replace the explicit inner products with a kernel function

κ(xi , xj) = xTi xj

which computes an inner product in the space of the arguments,

here Rd

• Plug in:

• Margin:

ywTx = y
m∑
i=1

αiyiκ(xi , x)

• Squared norm:

‖w‖2 =
m∑
i=1

m∑
j=1

αiαjyiyjκ(xi , xj)
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Dual Soft-Margin SVM

A dual optimization problem for the soft-margin SVM with kernels is

given by

Maximize OBJ(α) =
∑m

i=1 αi − 1
2

∑m
i=1

∑m
j=1 αiαjyiyjκ(xi , xj)

w .r .t variables α ∈ Rm

Subject to 0 ≤ αi ≤ C/m

for all i = 1, . . . ,m

• It is a QP with variables αi , again with a unique optimum

• At optimum, will have implicitly computed the optimal hyperplane

w =
∑m

i=1 αiyixi

• The data only appears through the kernel function κ(xi , xj) = xTi xj

• Full derivation requires techniques of optimization theory, which we

will skip here
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Kernel trick

• We can consider transformations of the input with some basis

functions φ : Rd 7→ Rk

• The optimal hyperplane w ∈ Rk will satisfy: w =
∑m

i=1 αiφ(xi )

• Assume κφ computes an inner product in the space

κφ(xi , xj) = φ(xi )Tφ(xj)

• Then can compute the discriminant in the transformed space

wTφ(x) =
m∑
i=1

αiyiκφ(xi , xj)

and the squared norm of the weight vector

‖w‖2 = wTw =
∑m

i=1

∑m
j=1 αiαjyiyjκφ(xi , xj)

• We do not need to explicitly refer to the transformed data φ(x) or

the weight vector w, both of which could be high-dimensional

• This is sometimes called the kernel trick
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Stochastic Dual Coordinate

Ascent



Stochastic Dual Coordinate Ascent for dual SVM

• Consider an algorithm updating one randomly selected dual variable

(i.e. coordinate, hence the name of the method) αi at a time , while

keeping the other dual variables fixed

• We take the direction of the positive gradient of the dual SVM

objective OBJ(α)

∆αi =
∂

∂αi
OBJ(α) =

∂

∂αi

 m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjκ(xi , xj)


= 1− yi

m∑
j=1

αjyjκ(xi , xj) = 1− yi f (xi )

where we used the dual representation

f (x) = wTx =
∑m

j=1 αjyjκ(xj , x)
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Stochastic Dual Coordinate Ascent for dual SVM

• The update direction thus depends on the margin:

∆αi =


< 0 if yi f (xi ) > 1

0 if yi f (xi ) = 1

> 0 if yi f (xi ) < 1

• If the margin is too small (Hinge loss is positive), αi is increased, if

there is more than the required margin, αi is decreased

• Note the analogy to updating w = w + ηyixi , when xi has too small

margin – η and αi have similar roles

29



Stepsize

• We can easily find the optimal update direction and step-size by

setting
∂

∂αi
OBJ(α) = 0,

it will give:

αi =
1− yi

∑
j 6=i αjyjκ(xi , xj)

κ(xi , xi )

• Finally, the bounds 0 ≤ αi ≤ C/m need to be adhered

αi = min(C/m,max(αi , 0))
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Stochastic Dual Coordinate Ascent for SVM

Initialize α = 0

repeat

Select a random training example (xi , yi )

Update the dual variable: αi =
1−yi

∑
j 6=i αjyjκ(xi ,xj )

κ(xi ,xi )

Clip to satisfy the constraints: αi = min(C/m,max(0, αi ))

until stopping criterion is satisfied

return α

31



Summary

• Support vector machines are classification methods based on the

principle of margin maximization

• SVMs can be efficiently optimized using Stochastic gradient

techniques specially developed for piecewise differentiable functions,

such as the higge loss

• Dual representation of SVM allows the use of kernel functions (more

on kernels next lecture)
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