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 Buckling of a straight column 
 

Equilibrium states 
 

 
 

In stability analyses, we make studies about the equilibrium state and 
its nature. 

 
 

(a) Equilibrium is stable: When a body is deviated from its equilibrium 
position, it will return back to its original position. 

 
(b)  Equilibrium is unstable: When a body is deviated from its 

equilibrium position, it will move farer out of its original position. 
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(c) Equilibrium is not well-defined – indifferent: When a body is 
deviated from its equilibrium position, the deviated position is in 
equilibrium as well. 

 
 
 
 

Visualization 
 
 
 
 
 
 
 
 
 
 
 

In a stable configuration, the potential 
energy takes a minimum value, in 
unstable configuration maximum value, 
and in indifferent configuration constant 
non-zero value. 

 
 
   

 
 

 

 

    

(a)  (b)  (c)  
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Moment equilibrium about the bottom hinge A: 
 

A ( )M P Fl P k l P klδ δ δ δ= − = − = − . 
 

 
 

•  if  A  0P kl M< ⇒ < ,   the structure is in stable equilibrium state 

A  

F kδ=  
k  

δ  
 

P  

l  

A  

P  
δ  

l  

 A rigid beam supported by 
an elastic spring (linear 
analysis) 
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•  if   0AP kl M> ⇒ > ,   the structure is in unstable equilibrium state 
•  if   0AP kl M= ⇒ = ,   the equilibrium state is not well-defined 

 
 

⇒     The critical value for the load P with respect to felling down is krP kl= . 
 
 

Buckling of a straight elastic pin-ended column 
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It is worth mentioning, that the 
equilibrium consideration will be 
performed in the deformed 
configuration of the column – the 
problem will be geometrically 
nonlinear. 
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Now, we can write up the equilibrium equation 
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X  :  ( ) ( ) 0  ( ) ( )M x Pv x M x Pv x− + = ⇒ =  
    
 
 
 
 
 

By taking into account that bending moment is M EIv′′= −  or 
 

Mv
EI

′′ = −  

 
an ordinary differential equation of second order is obtained 

 
 

2 0v k v′′⇒ + = , 
 

where the notation  Pk
EI

=  is adopted. 
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The solution of this equation is determined by a inserting the solution exp( )v rx=  

into the differential equation. This yields the characteristic equation of the problem 
 

2 2 0 ( 1)r k r ik i+ = ⇒ = ± = − ⇒     ( ) cos sinv x A kx B kx= +  

 
 
 
 
  The boundary conditions:  
 

(0) 0
  sin 0

( ) cos sin 0
v A

B kl
v l A kl B kl

≡ = 
⇒ == + = 

 

 
This condition is fulfilled if 0B = , which corresponds to the straight configuration 
and is not of interest. But, the boundary conditions are satisfied also if sin 0kl = , 

independently of constant B yielding a condition 
 

,    0,1,2,...kl n nπ= =  
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 ⇒     Taking into account the notation for k we get  
 

2 2

2 ,    1,2,...n
n EIP n

l
π

= =  

 
 

The buckling mode is thus:      ( ) sinn
n xv x B

l
π

= . 
 
 
 

The critical load is the lowest value for P with 1n =  
 

2

1 2kr
EIP P

l
π

= =  

 
When the compressive load P reaches this value, the structure is in equilibrium  
in the original configuration. If the value of loading is still increased, the column  
will buckle immediately.  



 

 276 

• phenomenon: buckling  
• mathematical model: Euler’s theory and equations  
 
 
 
 
 
If the buckling mode corresponds to  
load 1P  is restricted to take place, the  
next buckling load is 2P .    
 

2 2

2 32 24 ,    9 ,EI EIP P
l l

π π
= =  

 
The buckling modes corresponding to  
various values of buckling loads 1P , 2P   
and 3P : 
 
 
 

1 krP P=  

1v  

2P  

2v  

3P  

3v  
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Buckling length: 
 
 

 

The buckling length or effective length of a column is the distance between 
the zero-moment points  ( ) 0M x =  ( the second derivative of the deflection 
function ( ) 0v x′′ =  will disappear) and it is different with various boundary 

                      restrictions.  Mathematically it is called an inflection point. 
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The effective length of beams with various supports nl : 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

krP  (e)  krP  

nl l=  2nl l=  

nl l=  

 

(a)  

 

  
 

 

krP  
(d)  

 

 
   

(b)  

 

2n
ll =  

krP  

    
  

0,70nl l=  

 

(c)  

  
 

 

krP  
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The critical load can be expressed for beams with various support conditions  
according to so called Eulerian equations for beam buckling as: 
 

2

kr 2
n

EIP
l

π
=   or  

2

2kr
EIP

l
πµ=  

 
where 

2( )
n

l
l

µ =  
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is the effective–length factor of a beam. 
 

The effective length and effective–length factor with different end conditions 
 

Support (a) (b) (c) (d) (d) 
nl  l  / 2l  0,70l  l  2l  
µ  1 4 2,046 1 1/ 4 

 
 
 
 
 

Buckling takes always place in the weakest direction of the cross-section, or 
 

min 2II I= =  
 

Buckling stress can be expressed with an equation: 
 

2 2 2 2
kr min min

kr 2 2 ,
n

P Ei Ei
A l l

π πσ µ= = =  
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where      min
min

Ii
A

=  

 
This can further be given as   

2

kr 2

Eπσ
λ

=  

 
where λ  is the slenderness ratio of a beam 

 

min min

.nl l
i i

λ
µ

= =
⋅

 

 
 

Graphically the same can shown as 
 
 
 
 
 
 
 
  
 
 
 

krσ  

mσ  

Elastic  

Plastic 
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A column under an eccentric compressive load  
 
A real rod or column never is absolutely straight or the loading absolutely centric. 
  
• Denote by e the eccentrity of the load  
 
 

,y v  
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Bending moment is thus: 
 

( ) [ ( ) ]M x P v x e= + . 
 
 
 
 
 
 
 
 
The differential equation for the deflection takes now the form 
 

Mv
EI

′′ = −  ⇒  2 2v k v k e′′ + = −  

 
The equation is no more homogenious, and the solution will include the  
part for the inhomogeneous term in addition 
 



 

 284 

cos sinv A kx B kx e= + −  
 
The boundary conditions are the same, yielding for the constants the values 
 

(0) 0
( ) cos sin 0

v A e
v l A kl B kl e

≡ − =
 ≡ + − =

 ⇒  1 cos tan
sin 2

A e
kl klB e e

kl

=


−
= =

 

 
Finally, the solution is fully defined 
  

(tan sin cos 1)
2
klv e kx kx= + −  

 
 
The maximum value of the deflection is achieved at mid-span 
 

max
1( ) ( 1) (sec 1) [sec( ) 1] 

2 2 2cos
2

l kl P lv v e e ekl EI
= = − = − = − ⇒  
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max [sec( ) 1].
2 kr

Pv e
P

π
= −  

where   sec 1/ cosx x=   
 
the maximum value for the bending moment is 
 

max max
kr

( ) sec sec( ) sec( )
2 2 2
kl P l PM P v e Pe Pe Pe

EI P
π

= + = = =  

 
 
 
 
 
 

 
Graphically, we can show the dependency between the axial  
compressive load and the maximum deflection by taking into  

account the eccentrity of the load 
 
 
 

1 

kr

P
P

 

/ 0,002e l =  
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2

max

2 /( arccos )
/ /kr

P e l
P v l e lπ

=
+  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
A column with an initial deflection in compression 

 
 
 
 

0v  

P  

,y v  
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   The initial deflection 
 

 0 0( ) sin xv x
l
πδ=  

 
   0δ  value at mid-span 
 
 
 
 
 
 
 
 
The curvature will be consisted of the initial part, and the one due to the 
compression. 

 

0 0 0 0     M
M M Mv v v v
EI EI EI

κ κ κ κ ′′ ′′ ′′ ′′= + = + ⇒ − = − ⇒ + = , 
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where 
2

0 0 2( ),    ( ) sin xM Pv x v x
l l
π πδ′′= = −  

The differential equation is now inhogeneous 
 

2
2

0 2 sin xv k v
l l
π πδ′′ + = −  

 The particular solution is of form 
 

( ) siny
xv x C

l
π

=     Inserting this into the differential equation gives an equation 
 

2 2
2

02 2[( ) ]sin 0xk C
l l l
π π πδ− + + =  

 
The constant C will take the value  
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⇒  0 0 0
2 2 2

2 2
11 1

kr

C Pk l Pl
PEI

δ δ δ

π π

= = =
−− −

    ⇒  

 

And the particular solution              0( ) sin
1

y

kr

xv x P l
P

δ π
=

−
 

 
The general solution is finally 
 

0( ) cos sin sin
1

kr

xv x A kx B kx P l
P

δ π
= + +

−
 

 
 
 
 
  Boundary conditions 
 

(0) 0 0
  

( ) cos sin 0 0
v A A
v l A kl B kl B

≡ = = 
⇒ = + = = 
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The deflection is reduced to the particular solution only 
 

0( ) sin
1

kr

xv x P l
P

δ π
=

−
 

 
Bending moment is obtained by differentiation 
 
 

0
0( ) ( ) sin

1
kr

P xM x EI v v P l
P

δ π′′ ′′= − − =
−

 

 
Maximum deflection and bending moment take place at mid-span 
 
 

0
max

1
kr

v P
P

δ
=

−
   and   0

max .
1

kr

PM P
P

δ
=

−
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Graphically, the dependency between the compressive load and the  
maximum deflection is shown by taking into account the initial deflection. 
 
 

0

max

/1
/kr

lP
P v l

δ
= −  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison between eccentrically compressed column with and 
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0,05 0,1 

kr

P
P

 

 

0 / 0,01lδ =  

0 / 0,002lδ =  

0 / 0,005lδ =  
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without initial deflection 
 
 
 
 
 
 

The dependency between compressive load and maximum deflection 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Correspondingly, the dependency between compressive load and maximum 
bending moment 
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Eccentric compression 
Compression + init defl 
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The secant formula 
 
We consider the maximum normal stress in a column under combined compression  
and bending due to an eccentric compressive load.  
The maximum normal stress appears at mid-span 
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kr

max

kr 0

, M
P

M
P e δ
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kr

P
P

 

Eccentric compression 
Compression + init.defl 
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max

max

2 2       [1 sec( )] [1 sec( )]
2 2

M aP
A I
P ea P l P ea P
A i EI A i EA

σ

λ

= +

= + = +
 

 
• a is the distance from the axis of the column on the cross-section plane 
 

• Ii
A

=   is the radius of gyration  

 
 

• nl
i

λ =   is the effective slenderness ratio 

 
 
 
 

The secant formula is given in the form 
 



 

 295 

max

2

.
1 sec( )

2

P
A ea P

i EA

σ
λ

=
+
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