Buckling of a straight column

Equilibrium states

In stability analyses, we make studies about the equilibrium state and
Its nature.

(a) Equilibrium is stable: When a body is deviated from its equilibrium
position, it will return back to its original position.

(b) Equilibrium is unstable: When a body is deviated from its
equilibrium position, it will move farer out of its original position.
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(c) Equilibrium is not well-defined — indifferent: When a body is
deviated from its equilibrium position, the deviated position is in
equilibrium as well.

Visualization

In a stable configuration, the potential
energy takes a minimum value, in
unstable configuration maximum value,
and in indifferent configuration constant
non-zero value.
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A rigid beam supported by
Ky an elastic spring (linear
analysis)

Moment equilibrium about the bottom hinge A:

o |If , the structure is in stable equilibrium state
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If , the structure is in unstable equilibrium state
If , the equilibrium state is not well-defined

—>  The critical value for the load P with respect to felling down is P, = kl .

Buckling of a straight elastic pin-ended column

It Is worth mentioning, that the
equilibrium consideration will be
performed in the deformed
configuration of the column — the
problem will be geometrically
nonlinear.
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Now, we can write up the equilibrium equation
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By taking into account that bending moment is M =—EIV" or

(44 I\/I
V= ——
El

an ordinary differential equation of second order is obtained

where the notation k= \/g IS adopted.
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The solution of this equation is determined by a inserting the solution v =exp(rx)
Into the differential equation. This yields the characteristic equation of the problem

V(X) = Acoskx + Bsinkx

The boundary conditions:

v(0)=A=0

) = Bsinkl =0
v(l) = Acoskl +Bsinkl =0

This condition is fulfilled if B =0, which corresponds to the straight configuration
and is not of interest. But, the boundary conditions are satisfied also if ,
Independently of constant B yielding a condition
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— Taking into account the notation for k we get
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The buckling mode is thus: ~ V,(X) = BSIHT.

The critical load is the lowest value for P with

7°El

|2

P =P =

r

When the compressive load P reaches this value, the structure is in equilibrium
In the original configuration. If the value of loading is still increased, the column
will buckle immediately.
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e phenomenon: buckling
e mathematical model: Euler’s theory and equations

If the buckling mode corresponds to
load P, Is restricted to take place, the

next buckling load is R,.

2 2
7 El 7°El
|2 ! P3:9 |2 )

P, =4

The buckling modes corresponding to
various values of buckling loads P, P,

and P;:
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Buckling length:

The buckling length or effective length of a column is the distance between
the zero-moment points M (x) =0 ( the second derivative of the deflection
function v”(x) =0 will disappear) and it is different with various boundary

restrictions. Mathematically it is called an inflection point.
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The effective length of beams with various supports
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The critical load can be expressed for beams with various support conditions
according to so called Eulerian equations for beam buckling as:

2
7°El T2El
Pe = 2 or Re =4 2
n

where
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IS the effective—length factor of a beam.
The effective length and effective—length factor with different end conditions

Support (@) (b)) (¢  (d)  (d)

P 1 4 2,046 1 1/4

Buckling takes always place in the weakest direction of the cross-section, or
= =1,

Buckling stress can be expressed with an equation:

P, ~°Ei; 7°Ei?

_ min min
Gk =

A2 e
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where | = |-Mn

min A

This can further be given as o, =

Graphically the same can shown as
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A column under an eccentric compressive load

A real rod or column never is absolutely straight or the loading absolutely centric.

e Denote by e the eccentrity of the load
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Bending moment is thus:

M (x) = P[v(x) +¢€].

The differential equation for the deflection takes now the form

veM v ikiv=—k%

=

The equation is no more homogenious, and the solution will include the
part for the inhomogeneous term in addition
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V= Acoskx+ Bsinkx—e

The boundary conditions are the same, yielding for the constants the values

v(0)=A-e=0
v(l) = Acoskl + Bsinkl —e =0

Finally, the solution is fully defined

v =¢e(tan %sin kx + coskx —1)

The maximum value of the deflection is achieved at mid-span

/. =v(|§)=e( 1kl —1)=e(sec%—l)=e[sec( glg)—l] =

COS—
2
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where Ssec X =1/cos X

the maximum value for the bending moment is

M. =PV +€)= Pesecﬂ = Pesec( il) = Pesec(z i)
2 El 2 2\ P,

Graphically, we can show the dependency between the axial
compressive load and the maximum deflection by taking into
account the eccentrity of the load
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A column with an initial deflection in compression




The initial deflection

vO(x):5Osin7TTX

5, value at mid-span

The curvature will be consisted of the initial part, and the one due to the
compression.

M
K=Ky +tky=—+k, > -V =—-V, = V +—=V,
N = = =
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where

The differential equation is now inhogeneous

2
7w . X
V' + kv = -5, sin==

The particular solution is of form

v, (X) = CSInﬂT Inserting this into the differential equation gives an equation

2 2

T 7T
[(—|—2+ k?)C + 6,

|2

]sin ﬂlx =0

The constant C will take the value
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And the particular solution v, (X) =

The general solution is finally

v(X) = Acoskx + Bsinkx + % sinﬁl—x

Boundary conditions
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The deflection is reduced to the particular solution only

V(X) = P50 sinﬂlx
]
IDkr

Bending moment is obtained by differentiation

Po, . =X
P SIn |
1—
I:)kr

M(x)=—EI(V" —Vv)) =

Maximum deflection and bending moment take place at mid-span

Voo = 2 and M__ = P50.

il .
I:)kr I:)kr
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Graphically, the dependency between the compressive load and the
maximum deflection is shown by taking into account the initial deflection.
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Comparison between eccentrically compressed column with and
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without initial deflection

The dependency between compressive load and maximum deflection

0,8
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Correspondingly, the dependency between compressive load and maximum

bending moment

0,6 - — — Eccentric compression
/ —— Compression + init defl
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0.8 e

0,6 / Eccentric compression
i / Compression + init.defl

0,2

The secant formula

We consider the maximum normal stress in a column under combined compression
and bending due to an eccentric compressive load.
The maximum normal stress appears at mid-span
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=2+ Bsec( [ -2y = - (—f )

e a Is the distance from the axis of the column on the cross-section plane

. IS the radius of gyration

. IS the effective slenderness ratio

The secant formula is given in the form
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