
Chapter 4   Buckling of Frames

In chapters before, individual members with very 
idealized boundary conditions. In a framework, the 
members are rigidly connected to one another at the 
joints.



4.1  Introduction
4.1.1• Classification according to sidesway:
1. Sidesway is prevented as shown in Fig. 4-1a•4-1b•the 
frames give the symmetric buckling.

Fig.4-1 buckling modes of single-story frame         



2. Sidesway is permitted as shown in Fig.4-1c•4-1d, the 
frames give the sidesway buckling.

Fig.4-1c•4-1d



4.1.2•Classification according to the beam•s stiffness:

1. the beam is infinitely rigid and remain straight with no 
deflection while the frame deforms as shown in Fig.4-1a•c.

Fig.4-1a•c



2. The beam is infinitely flexible and can not restrain the 
rotation of the upper end of the column as shown in 
Fig.4-1b•d.



As the Fig.4-1a is concerned, the columns behave as if they were 
fixed at both extremities, and the critical load of the frame is
equal to four times the Euler load of the columns:

ecr NN 4=

in which •• the Euler load
•• the critical load
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As the Fig.4-1b is concerned, the columns behave as if they were 
fixed at one end and hinged at the other, and the critical load of the 
frame is equal to twice times the Euler load of the columns:

ecr NN 2=



For an actual frame the flexibility of the beam must lie 
somewhere between the two extreme conditions just 
considered. The critical load of  such a frame as show in Fig. 
a‚b, can be bracketed as follows:

ecre NNN 42 << ‚4.1ƒ



As the Fig.4-1c is concerned, the sidesway is permitted and the beam 
is infinitely rigid, so the upper ends of the columns are free to 
translate but not to rotate, and the critical load of the frame is equal to 
the Euler load of the columns:

ecr NN =
As the Fig.4-1d is concerned, the sidesway is permitted and the 

beam is infinitely flexible, so the upper ends of the columns are free 
to translate and rotate, and the critical load of the frame is equal to 
one fourth times the Euler load of the columns:
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The two critical loads coming from Fig.c•d give the upper limit 
and lower limit in the sidesway mode respectively, namely:
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4
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The expressions in (4.1)‚(4.2) indicate that no matter 
how the stiffness of the members is, the critical load of the 
symmetric buckling is bigger than that of sidesway
buckling. It can be therefore concluded that the portal 
frame will always buckle in the sidesway mode unless it 
is laterally braced, in which case it must buckle in the 
symmetric mode, this conclusion is always valid for 
multistory frames as well as for single-story frames.

In the code, the lateral bending rigidity of the brace system 
is five times as that of the frame system, it is assumed that 
the sidesway is prevented.



4.2  Critical load of single-story frame using neutral 
equilibrium

4.2.1•Sidesway Buckling
Sidesway buckling is happened when the sidesway is permitted.
when the frame buckles, the external load‚boundary conditions 
and the deformations are shown in Fig.4-2.



Fig.4-2 sidesway buckling



Suppose:
1‚no primary bending present in the frame prior to buckling;
2‚material behaves according to Hooke•s law ;
3‚the deformations remain small                    ; 
4‚not considering the influence of the shear Q for compressed     
vertical columns

εσ E=
ρ/1=′′y

Obtaining the critical load needs to solve two equations:
1‚the equilibrium equation  for the vertical member represented 
by the moment at the upper ends of the memberƒ
2‚the compatibility equation of the horizontal member 
represented by Slope-deflection equation at the upper ends 

of the member;



First equation„

, the equation of moment equilibrium for vertical member 
(Fig.4-2c)  is:
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The solution of Eq.(4.4) is:
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from boundary conditions: x=0… y=0
and x=0… y′=0
We obtain:

B=-MA/N    and A=0

( )xk
N

My A
1cos1−= ‚4.6ƒThus:

at            :1lx = ( )11cos1 lk
N

M A −=δ

also moment equilibrium:
N

MM BA +
=δ

so 0cos 11 =+ BA MlkM ‚4.9ƒ



Second equation„

the compatibility equation of the horizontal member represented by 
Slope-deflection equation
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Equations (4.9) and (4.12) lead to
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4.2.2•Symmetric Buckling
If the frame is prevented from translating laterally at the top,
buckling will occur in the symmetric mode.
when the frame buckles, the external load‚boundary conditions 
and the deformations are shown in Fig.4-3.

Fig.4-3 symmetric 
buckling



First equation„

the equation of moment equilibrium for vertical member (Fig.4-3c)  
is:
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The solution of Eq.(4.4) is:
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from boundary conditions: x=0… y=0
and x=0… y′=0
We obtain:

B=-MA/N    and
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Second equation„

the compatibility equation of the horizontal member represented by 
Slope-deflection equation
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Equations (4.18) and (4.21) lead to
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For example, let us suppose that
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4.3 critical loading using slope-deflection equations

Too complex
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Fig 4-4 buckling of 
two-story frame
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4.4 effect of primary bending and plasticity on frame 
behavior

4.4.1 effect of primary bending on elastic buckling load

From the study, primary bending does not significantly 
lower the critical load of a frame as long as stresses 
remain elastic. The only exception occurs when the 
beam is exceptionally long but they are rarely 
encountered. So it appears safe that the effect of primary 
bending can be neglected in determining the elastic 
buckling load of a frame.



4.4.2 inelastic buckling load

If the proportional limit is exceeded before instability 
occurs, a rough estimate of the collapse load can be 
obtained if an interaction equation is used.
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Where       =failure load

=elastically determined critical load

=plastic mechanism load
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Conservative and reasonable accurate.



4.5 design of framed columns

One way is to carry out a stability analysis of the entire 
frame. Too involved for routine design.

One very simple but quite crude method is to estimate the 
degree of restrain by interpolating between the idealized 
boundary conditions.

A one considerably more accurate was developed. It 
involves an exact analysis.however, only the member in 
question and the beams and columns that frame directly 
into it are considered..





The parameters:

BHBHFBFB

BGBGABAB
B

AEAECACA

ADADABAB
A

LILI
LILIG

LILI
LILIG

//
//
//
//

+
+

=

+
+

=

By the given stiffnesses of the adjacent members, the 
nomograph shown in Fig 4-8b allows one to determine 
directly the effective length of a framed column.


