Chapter 4 Buckling of Frames

|n chaptersbefore, individual memberswith very
Idealized boundary conditions. In a framework, the
membersarerigidly connected to one another at the
joints.



4.1 Introduction

4.1.1= Classification according to sidesway:

1. Sidesway is prevented as shown in Fig. 4-la=4-1b=the
frames give the symmetric buckling.

Fig.4-1 buckling modes of single-story frame



2. Sidesway is permitted as shown in Fig.4-1c=4-1d, the
frames give the sidesway buckling.
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Fig.4-1c=4-1d



4.1.2=Classification according to the beames stiffness:

1. the beam isinfinitely rigid and remain straight with no
deflection while the frame deforms as shown in Fig.4-la=c.
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2. Thebeam isinfinitely flexible and can not restrain the
rotation of the upper end of the column as shown in
Fig.4-1b=d.




Asthe Fig.4-1ais concerned, the columns behave as if they were
fixed at both extremities, and the critical load of the frameis
equal to four times the Euler load of the columns;

N, =4N,

In which Ne- e theEuler load
Ncr- e thecritica load

Asthe Fig.4-1b is concerned, the columns behave as if they were
fixed at one end and hinged at the other, and the critical load of the
frame is equal to twice times the Euler load of the columns:

N, =2N,



For an actual frame the flexibility of the beam must lie
somewhere between the two extreme conditions just
considered. The critical load of such aframe as show in Fig.
a , b, can be bracketed asfollows:

2N, <N, <4N, JALF



Asthe Fig.4-1c is concerned, the sidesway is permitted and the beam
Isinfinitely rigid, so the upper ends of the columns are free to

trand ate but not to rotate, and the critical load of the frame is equal to
the Euler load of the columns:

Ncr = Ne

Asthe Fig.4-1d is concerned, the sidesway is permitted and the
beam isinfinitely flexible, so the upper ends of the columns are free
to trandate and rotate, and the critical load of the frameis equal to
one fourth times the Euler load of the columns:

NCF lee
4

The two critical loads coming from Fig.c=d give the upper [imit
and lower limit in the sidesway mode respectively, namely:

%Ne<Ncr<Ne J42f



Theexpressionsin (4.1) ., (4.2) indicate that no matter
how the stiffness of the membersis, the critical load of the
symmetric buckling is bigger than that of sidesway
buckling. It can be therefore concluded that the portal
frame will always buckle in the sdesway mode unless it
Is laterally braced, in which case it must buckle in the
symmetric mode, this conclusion is always valid for
multistory frames as well asfor single-story frames.

In the code, the lateral bending rigidity of the brace system
Isfive times as that of the frame system, it is assumed that
the sidesway is prevented.



4.2 Critical load of single-story frame using neutral
equilibrium

4.2.1=Sidesway Buckling

Sidesway buckling is happened when the sidesway is permitted.
when the frame buckles, the external load ., boundary conditions

and the deformations are shown in Fig.4-2.



Fig. 4-2 Sidesway buckling.

Fig.4-2 sidesway buckling
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Suppose:

1 , no primary bending present in the frame prior to buckling;
2 , material behaves according to Hookesslaw s = Ee;

3 . thedeformationsremain small y«=1/r ;

4 _, not considering the influence of the shear Q for compressed
vertical columns

Obtaining thecritical load needsto solve two equations:
1 , the equilibrium equation for the vertical member represented

by the moment at the upper ends of the member f
2 ., the compatibility equation of the horizontal member

represented by Slope-deflection equation at the upper ends
of the member;



First equation,,

yC>0 | the equation of moment equilibrium for vertical member
(Fig.4-2¢) Is:
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The solution of Eq.(4.4) is.
. N
y = Asimk, X + Bcosk1x+WA -45f



from boundary conditions: x=0... y=0

and x=0... y&0
We obtain:

Thus: M,

Y= (1- cosk,x)
ax=l - d =%(1- coskyl, )
also moment equilibrium: d= MA:IMB

S0 M ,coskl, +M; =0
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Second eguation, ,

the compatibility equation of the horizontal member represented by
Slope-deflection equation

2E|2

Mg ] (295 +0c)
Since dg =0c MB=%%
:
g = Y| xa,
=0 Ol M sinkl,- M, =0 (4.12)



Equations (4.9) and (4.12) lead to

tankl, _ 1],
k., 6l,I,

For example, et us suppose that

(4.13)

tankl _ 1
ki 6
kKl =2.71

b - 7.34El




4.2.2=Symmetric Buckling

If the frame is prevented from trandlating laterally at the top,
buckling will occur in the symmetric mode.
when the frame buckles, the external load ., boundary conditions

and the deformations are shown in Fig.4-3.
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Fig.4-3 symmetric
buckling
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First equation,,

the equation of moment equilibrium for vertical member (Fig.4-3c)
IS

2
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The solution of Eq.(4.4) is.

y:Asink1x+Bcosk1x+%(1— I_X)+%(I_X) -41671



from boundary conditions: x=0... y=0

and x=0... y¢:0
We obtain: _M,- M,
B=-M,/N and A= N
J 1
. el 0
Thus: y = M, el sink, x- cosk x+1- éi
N gkl, L o
_ 0
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a x=1, : y=0

SO M,(sinkj], - kl, coskl,) +Mg(kl, - sinkl,)=0 _ 4.18fF



Second eguation, ,

the compatibility equation of the horizontal member represented by
Slope-deflection equation

2E|2

Mg (20 +0c)
2
. 2E |
Since ds = -0c I\/IB:I—ZqB
2
B x=l,

S0

2
M ,(coskl, +kl,sink]l, - 1)+ M, (1- cosk,l, + | I2klI2) =

I 2

(4.21)




Equations (4.18) and (4.21) lead to

2- 2coskl, - kl,sink], + Izzl—zkl(sin Kl - kl,cosk]l,)=0

I 2
(4.13)
For example, et us suppose that
I, =1,=1

Il |2

kl sinkl +4coskl + (kl)*coskl =4

ki =5.02
D = 25.2El
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4.3 critical loading using slope-deflection equations

Too complex
ifK = El /I,

|\/IBA = K(anqu)
|\/IBE = K(anZCB +af20E)

Mg =K@, 8g +a:4c¢)

Mg =K@,dc +a;0;g)

Moy =K@,4c +a;dp)

Fig 4-4 buckling of
two-story frame




ki % s
0.00 4.0000 2.0000
0.20 3.9946 2.0024
0.40 3.9786 2.0057
0.60 3.9524 2.0119
0.80 3.9136 2.0201
1.00 3.8650 2.0345
1.20 3.8042 2.0502
1.40 3.7317 2.0696
1.60 3.6466 2.0927
1.80 3.5483 2.1199
2.00 3.4364 2.1523
2.04 3.4119 2.1589
2.08 3.3872 2.1662
2.12 3.3617 2.1737
2.16 3.3358 2.1814
2.20 3.3090 2.1893
2.24 3.2814 2.1975
2.28 3.2538 2.2059
2.32 3.2252 2.2146
2.36 3.1959 2.2236
2.40 3.1659 2.2328
2.44 3.1352 2.2424



2.48 3.1039 2.2522

252 3.0717 2.2623
2.56 3.0389 2.2728
2.60 3.0052 2.2834
2.64 2.9710 2.2946
2.68 2.9357 2.3060
2.72 2.8997 2.3177
2.76 2.8631 2.3300
2.80 2.8255 2.3425
2.84 2.7870 2.3555
2.88 2.7476 2.3688
2.92 2.7073 2.3825
2.96 2.6662 2.3967
3.00 2.6243 2.4115
3.10 2.5144 2.4499
3.15 2.4549 2.4681
3.20 2.3987 2.4922
3.25 2.3385 2.5148
3.30 2.2763 2.5382
3.40 ' 2.1463 2.5881
3.50 2.0084 2.6424
3.60 1.8619 2.7017
3.70 1.7060 2.7668
3.80 ' 1.5400 2.8382
3.90 1.3627 29168
4.00 1.1731 3.0037
4.20 0.7510 3.2074
4.40 0.2592 3.4619
4.60 —0.3234 3.7866
4.80 —1.0289 4.2111
5.00 —1.9087 4.7845
5.25 —3.3951 5.8469
5.50 —5.6726 7.6472
5.75 —9.8097 11.2438
6.00 —20.6370 21.4534
6.25 —188.3751 188.4783
2r

6.50 29.4999 —30.2318




a.=-a. =4
. ™ Mgat Mg + Mg, =0

B2 78072 Mg +My =0

Jc =-0Up :'qB)

q.(@a,+a ,+2)+q.(@;;) =0
dg(@;3)*+qc(@,31t2) =0

Using thevaluesof @.K it can be solved by trial
and error for the critical loading.



since

, =~/2P/El
K, =~/ P/ El
K, = ko2
Kl =3.55
5 12.6El
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4.4 effect of primary bending and plasticity on frame
behavior

4.4.1 effect of primary bending on elastic buckling load

From the study, primary bending does not significantly
lower the critical load of aframe aslong as stresses
remain elastic. The only exception occurs when the
beam is exceptionally long but they are rarely
encountered. So it appears safe that the effect of primary
bending can be neglected in determining the elastic
buckling load of aframe.



4.4.2 inelastic buckling load

If the proportional limit is exceeded before instability
occurs, arough estimate of the collapse load can be
obtained if an interaction equation is used.

I:)f I:)f

+— =10
P P

e p

Where Pr =failureload
P =elastically determined critical load

P, =plastic mechanism |load

Conservative and reasonable accurate.



4.5 design of framed columns

One way Isto carry out astability analysis of the entire
frame. Too involved for routine design.

One very ssmple but quite crude method is to estimate the
degree of restrain by interpolating between the idealized
boundary conditions.

A one considerably more accurate was developed. It
Involves an exact analysis.however, only the member in
guestion and the beams and columns that frame directly
Into it are considered..
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Fig. 4-8 Julian and Lawrence method for estimating effective length of framed column. (Adapted from Ref. 4.9.)



The parameters:

IAB/LAB_l_IAD/LAD
ICA/LCA+IAE/LAE
IAB/LAB+IBG/LBG
IFB/LFB-l_IBH/LBH

A

Gg =

By the given stiffnesses of the adjacent members, the
nomograph shown in Fig 4-8b allows one to determine
directly the effective length of aframed column.



