
Statistical Signal Processing. Homework set #1
due November 9, 2020

1. a) Let Y1, . . . , Yn be iid observations from distribution with density function

f(y|θ) = θyθ−1, 0 < y < 1, θ > 0.

Find the MLE of θ.

b) Let Y1, . . . , Yn be iid observations from a location-shifted exponential distribution with den-
sity function

f(y|α, λ) =
1

λ
exp

(
−(y − α)

λ

)
, y ≥ α, α ∈ R, λ > 0.

Find the MLE of (α,λ).

c) Let Y1, . . . , Yn be iid observations from a zero-inflated Poisson distribution with density
function given below. Find the MLE of θ.

f(y|θ, λ) =

{
θ + (1− θ)e−λ, y = 0

(1− θ) e−λλy
y!

, y = 1, 2, 3, . . .

2. Suppose that a random variable x is distributed according to the Lévi density function with
parameter c

f(x|c) =

√
c

2π
x−

3
2 exp

(
− c

2x

)
, x ≥ 0.

a) Given N statistically independent measurements x1, . . . xN , find the maximum likelihood
estimate of the parameter c.

b) Find the Cramér-Rao lower bound on the variance of any unbiased estimator of c.

1



3. Let y1, y2, . . . , yN be i.i.d. samples from a continuous distribution given by:

f(y, θ) =
y2

2θ3
e−

y
θ , y ≥ 0, θ > 0 (1)

a) Find the maximum likelihood estimate for the parameter θ, θ̂ML

b) Show that θ̂ML is unbiased for θ and find its variance

c) Determine the Cramer-Rao lower bound on the variance of the unbiased estimators of θ.
Is θ̂ML efficient? Explain why.

d) Prove that T (y) =
∑N

n=1 yn is a sufficient statistic for θ

4. Suppose that given 256 measurements y(n) (n = 0, ..., 255) we need to estimate the amplitude
θ = [α0 α1 α2]

T of a sinusoidal in additive Gaussian noise with σ2 = 0.81:

y(n) = α0 + α1cos(2πf0n) + α2sin(2πf0n) + v(n),

where f0 = 1
16

is known. Furthermore, 10% of the original observations are randomly replaced
by outliers that have the maximum signal value (8.0). Desired value of α0 is 0. Pick desired
values of α1 ∈ [2.0, 3.0] and α2 ∈ [0.5, 1.0] randomly.

Estimate α0, α1 and α2 using M-estimation and so-called Andrew’s sine ψ-function given
as follows:

ψ(ỹ) =

{
sin(ỹ/a), |ỹ| ≤ aπ
0, |ỹ| > aπ

and the value of the tuning parameter a is set such that samples yielding measurement residuals
larger that 3σ are rejected completely (have no influence). Use the IRLS method described in
the lecture notes.

In your solution show plots of the desired signal, the noisy signal, the weighting function, the
estimated signal using both M-estimation and Maximum likelihood (LS in this case) estimation,
as well as the desired values and estimated values of the parameters using M-estimation and
LS-estimation. Enclose your matlab code as well.
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5. Expectation-Maximization Algorithm The EM algorithm simultaneously segments
and fits data generated from multiple parametric models. We consider the measured data y(n)
generated by the two linear models:

y(n) = a1x(n) + b1 + v1(n)

y(n) = a2x(n) + b2 + v2(n) (2)

where a1, b1 and a2, b2 are the model parameters. The noise terms v1(n) and v2(n) are assumed
to be Gaussian and zero mean. Generate the data corresponding to the two models, considering
N = 64 data points produced by each model. Afterwards, assume that you have only the noisy
measurements available. Then, estimate the model parameters from the noisy data by using
the EM Algorithm. The noise variance for the two models is known σ1 = σ2 = σ = 0.1.

Requirements:

a) Write the analytical derivation for the EM estimation (E-step, M-step)

b) By using Matlab, simulate the data fitting of the two linear models. Plot the data points
together with the estimated models (the two lines in (x, y) plane) after every iteration.

c) Enclose your Matlab code as well

Hints:

• EM Algorithm does not assign directly each data point to one of the models. EM assigns
to each data point, a probability of belonging to one of the models (likelihood).

• E-step: Assume random model parameters in the beginning. Calculate the likelihood of
each data point belonging to each model. For this, you consider the residual error of each
point n for each model k, rk(n) = akx(n) + bk − y(n), k = 1, 2. The likelihood of each
data point is wk(n) = P (ak, bk|rk(n)).

• M-step: Take the likelihood of each data point belonging to each model and re-estimate
the model parameters using Weighted Least Squares. For this, you need to build a
weighted quadratic error function. (The weight for the squared error of each point is the
likelihood of that point).
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