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Exponential families

* An exponential family is a parametric statistical model with probability distributions of a certain form.
 (General enough to include many of the most common families of probability distributions:

* multivariate normal

e exponential

* Poisson

* binomial (with fixed number of trials)
e Specific enough to have nice properties:

 |ikelihood function is strictly concave [lecture 0]

e exponential families have conjugate priors



(Goals

 What is an exponential family?
 How to find the of an exponential family?
* Discrete exponential models: Hypothesis testing [lecture 7]

 Gaussian exponential submodels: Conditional independence
implications [previous lecture]



Statistical models

e A statistical model is a collection of probability distributions.

* A parametric statistical model is a collection of probability distributions indexed by a finite dimensional parameter
space ® C R%

My ={P,:0€ O}

* |n the case of continuous random variables, it is often specified in terms of corresponding probability density
functions:

Mg = {f): 0 €0}
e |In the case of discrete random variables, it is often specified in terms of corresponding probability mass functions:
Mg = {p,: 0€0O}.

[A probability distribution assigns a value P(X € ) to a set. S C R; a probability mass function assigns a value
p(x) = P(X = x)toanumberx € R,




Statistic

Def: Let X be a random vector taking values in a set 2. A statistic is a
function from 2 to R* for some k € N.

Example:

Let X, ..., X be with
expected value p. Denote X = (Xj, ..., X)).

Then T : {0,1}" — R givenby 7(X) = X, + ... + X is a statistic for X.




Sufficient statistic

Def: For a parametric statistical model .4 o, a statistic I is sufficient if the probability
density function or probability mass function factorizes as f,(x) = h(x)g(1(x), 0).

Example:

-Let X, ..., X, be independent Bernoulli distributed random variables with expected
value p. Denote X = (X, ..., X)).

Then T": {0,1}" = R givenby 7(X) = X, + ... + X is a statistic for X.
PX) =X, .., X, = x,) = pUi(1 = p)! ~Heep™(1 = p) = = pT(1 — p)! =T

h(x) = 1 and g(T(x),p) = pI¥A - p)'7 T —= Tis a



Exponential families

» Let X be a random variable taking values in a set X .

 An IS the set of probabillity distributions whose
probablility mass function or density function can be expressed as

f(x) = h(x)en(é’)tT (X)—A(0)

for a given statistic T : X — |

functionsh : X - R,pandA : ©® - R.

k

, natural parametery : @ — |

. and



Exponential families

 Three equivalent forms:

+ ox) = h(x)g(0)e" T

. fo(x) = MO T(xX)—AO)+B(x)



Binomial distribution

X ~ Bin(m,0), X = 1{0,1,...,m}

(7)os-0m= (7)o | (s 555) |
p(x) = (1l —0)" = exp | | log—— ) x+ mlog(1l — 6)
X X 1 -6



Binomial distribution

e £,(00) = h(x)e@TW=AO)

. Statistic T : & — RX natural parametern : ® — RX functionsh : &’ - R_,andA : ® - R
n >0

0

Binomial distribution: p(x) = (m) (1 —-0)""= (m) CXp <log "y
I _

X

0
. k=1T0) =log——n=x.h=(  ).A=—mlog(l —6)-
1 -6 X
v, m
2. k=1,T(x)=x,;7=10g1 H,h=( ),A=—m10g(1—6’)-
— X

3. k=2T0) = (.m—x).n= (0.1 —0), h = (m>,A — (-
X

>x+m10g(1 — 0)

, because 1 should not depend on parameters



Canonical form

f(x) = h(x)er/(ﬁ)fT(X)—A(é’)
If n(6)) = 0, then the exponential family is said to be in canonical form.

By defining a transformed parameter n = n(60), it is always possible to
convert an exponential family to canonical form.

The function . It makes the pdf
(pmf) to integrate (sum) to one. Thus it can be written as a function of .

The canonical form is ]%()C) — h(x)e”tT(x)_A(”).



Discrete exponential families

« Let X be a discrete random variable taking values in 2" = [r].

* Denote
« T(x) = a,where a, = (ay,, --., 4,
» h(x) =h,soh=(h,....h)€R,
e 1 ==y,...,m) and O; = exp(n,)

| |
. Then p,(x) = h(x)e" T(x)—-A®) _ h.e > iy —AG) _ th oMidi—A) — th (&) =AM — AR
i i

b Z(0)
where Z(0) = Z th Qjafx.

XEX J

l



Discrete exponential families

Po(x) = Z(16’) th ejajx where Z(0) = Z th (g}“jx
J

xexd j

» Ita;, areintegers for all 7 and x, then the parametrizing functions are rational functions.

» The entries a;, can be recorded In the matrix

Forx € X = [r], the monomials Hé’jajx correspond to a column of the matrix A.

J

01 2 3

Example: Let A = ( ) and i = 1. Then

32 10

Do 05, 0,05, 6:0,,07) where Z(0) = 6, + 6,05 + 0{6, + 6,

~ 70 (



Discrete exponential families

e Let

The logarithm of the exponential family representation p,(x) = h 0" gives
. Po Z((g) x1:[ j

log py(x) = logh, + Z a;log 0; — log Z(0).
J

* |f we assume that the matrix A contains the vector 1 = (1,1,...,1) in its row span,
then this is equivalent to requiring that log p belongs belongs to the affine space
log(h) + rowspan(A).



Log-affine model

Def: Let A € Z"*" be a matrix of integers such that 1 € rowspan(A) and let

h € R_ . The log-affine model associated to A and £ is the set of
probability distributions

My = 1{p € int(A,_;) : logp € logh + rowspan(A) }.

fh =1, then M, := M, is called a log-linear model.



Def: Let A € Z*" be a matrix of integers such that 1 € rowspan(A) and let h € R” ..

Log-affine model

The monomial map associated to this data is the rational map

NB! The normalizing

Example: Let A = (

k
Ah . ok r Ah djj
O RY > | ,wheregbj _hjl I6’l.f.
i=1

constant Z(6) is removed.

0 1 2 3
32 10

6,,0,) — (63,6,62,020,,02).

). The monomial map is ¢ : R?

4

IS given by



Discrete independent random variables

Consider the parametrization
Pij = %Py
where i € [2],] € [2] and a,, ,8] are independent parameters.

This is the parametrization of

1 1 0
Poll 1: What are the matrix A and vector h representing the above parametrization? Answer: A = (1) 8 (1) and
0 1 1

0
1
1
0

h =] . |. Rows of A correspond to ay, a,, ;, ), and columns of A to pi1, P12, P21> P2o-

Poll 2: What is the size of the matrix of A if i € [ry] andj € [1,]? Answer: (1| + 1) X (1y75)




Log-affine model

Def: LetA € Z*" and h € | ’;O. The ideal

L, = I(p™*"(RY) € R[p]

is called the toric ideal associated to the pair A and #.

» If h =1, then we denote I, := 1, ;.

- Generators for the ideal /, , are obtained from generators of the ideal /,.



Log-affine model

Prop: LetA € Z"" and h € | _o- Then

I, =({p"—p":u,veN and Au = Av).

Example: Let A = ((3) é % (3)).The IS ¢A ' R? > R%is given by

The toric ideal Is

Iy = (p1P3 — P22 , P1P4 — P2P3> PoP4 — P32 ). [Poll]



toricMarkov -- calculates a generating set of the toric ideal |_A, given A; invokes "markov" from 4ti2

Synopsis

e Usage:
toricMarkov(A) or toricMarkov(A, InputType => "lattice") or toricMarkov(A,R)
e Inputs:
o A, a matrix, whose columns parametrize the toric variety; the toric ideal is the kernel of the map defined by a. Otherwise, if InputType is set to "lattice”, the rows of a are a lattice basis and the toric ideal is the saturation

of the lattice basis ideal.
o InputType => s, default value null, which is the string "lattice" if rows of a specify a lattice basis

o R, aring, polynomial ring in which the toric ideal /4 should live
e Optional inputs:
o |nputType => ...,

e Outputs:
o B, a matrix, whose rows form a Markov Basis of the lattice {z integral : A z = 0} or the lattice spanned by the rows of a if the option InputType => "lattice" is used

Description

Suppose we would like to comput the toric ideal defining the variety parametrized by the following matrix:

il : A = matrix*1,1,1,1:0,1,2,3"
ol=|1111)|
| 012 3|

2 4

ol : Matrix 2ZZ <--- ZZ

Since there are 4 columns, the ideal will live in the polynomial ring with 4 variables.

i2 : R = QQ[a..d]
02 = R

o2 : PolynomialRing

i3 : M = toricMarkov(A)

2

[
- |

o3 = |
I
|

O
o O

I

— |
-1 -1 |
3 4

03 : Matrix 2ZZ <--- ZZ

Note that rows of M are the exponents of minimal generators of /4. To get the ideal, we can do the following:

i4 : I = toBinomial(M,R)

2 2
o4 = ideal (- ¢ + b*d, - b + a*c, - b*c + a*d)

o4 : Ideal of R




Multivariate normal distribution

Let PD, be the set of m X m symmetric positive definite matrices.

Def: Suppose 4 € R™and 2 € PD, . Then a random vector

X = (X, ...,X ) is distributed according to the multivariate normal
distribution A", (u, 2) if it has the density function

1 1
fs() = —————exp { — = I = ) }



Normal distribution

2 2
1 1 [(x—u 1 1, u U
X) = ex —— ex X X
) JZ’GZ( ) o\/ 27t P { 2 ( 9 ) } o\/ 27 P { 20 o2 2072 }

* Poll: What are T, n, h, A?

1 1 2
1. T=(x,x2),;7=('u >,h= Az’u__

9
02 2072

2
_ n [ H I _ 1 _ . H
2. T—(x,x ),7/]— (Gz, 262>9h— 9A_10g6' -

1 1 2
3. T=(x,—x°/2),n = (/4 ),h= ,A =1ogo A iy

Vi
02 02



Multivariate normal distribution

. ﬁt,z(x) —

1
Q22 { T HE }

e T: X — R™x R™Mm+D/2 given by

T(x) = (X1, ..., X, — x12/2,..., — xnz/l/2, — XXy eeny — X, 1 X))

e h(x) = 2x)"? forallx € R™

| P |
.A(@)=5//t2 ﬂ+510g\2\



Concentration matrix

 The inverse of the covariance matrix plays an important role for Gaussian
models as a natural parameter of the exponential family.

e |tis called the concentration matrix or the precision matrix.

e |tis often denoted



Gaussian exponential families

Choose a statistic 7(x) that maps x € |

polynomials with no constant term.

™ to a vector of degree 2

This gives a subfamily of a regular multivariate Gaussian statistical model.

Equivalently take a
of the regular exponential family.

Commonly L = L,; X L, where L; C |

Often L, is either {0} or R™.

"and L, C |

of the parameter space |

(m+1)m/2

"X PD,



Gaussian exponential families

o Vanishing ideal is a subset of R|u, o] := Rlu, Oj; 1 <1 <7< mj.

» If L, = (0, then the vanishing ideal has the form (, ..., ) + I,, where I,

is an ideal in R|o].

e If L, = R", then the vanishing ideal is generated by polynomials in R|a].



Inverse linear space

 Exponential subfamily is a
matrices.

* One is often interested in describing Gaussian models in the space of
covariance matrices.

Def: Let L C R"*tD™2 e 3 linear space such that L N PD, is nonempty. The
iInverse linear space L~ is the set of positive definite matrices

L'={K':KeLnPD,).

« Gaussian exponential families have interesting ideals in R|[o].



Gaussian exponential families

Prop: If K is a concentration matrix for a Gaussian random vector, a zero
entry k; = 0 is equivalent to a conditional independence statement

AL jIm\, -

 The Cl ideals that arise from zeros in the concentration matrix might not
be primary.

» The linear space L in the concentration coordinators is irreducible and this
allows us to parametrize the main component of the Cl ideal.



Gaussian exponential families

Let m = 3. Consider the Gaussian exponential family defined by the linear
space of concentration matrices L = {K € PD; : k;, = 0,k;; = 0}.

This corresponds to Cl statements

Jg = <012033 — 013023, 013077 — 012“23)

The intersection axiom implies | 1L {2.3}, but no linear polynomials in Jo.. One
option is to compute a primary decomposition of Je..

Alternatively, we can use the parametrization of the model to compute the
vanishing ideal.
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VTEExH B R

@ lecture5.m2

restart
R = 00[k11,k22,k23,k33,s11,512,513,522,523,533]

e - DX

matrix {{k11,0,0},{0,k22,k23},{0,k23,k33}}

matrix {{s11,s12,s13},{s12,s22,s23},{s13,523,533}}
ideal (KxS - identity(1))

eliminate ({k11,k22,k23,k33},I)

~1=—— lecture5.m2 All L7 (Macaulay2)

11

ol

ol :

12 :

02

02 :

13 :

03

03 :

14 :

15

05

R = QQ[k1l,6k22,k23,k33,s11,5s12,5s13,s22,523,s33]
R

PolynomialRing

K = matrix {{k11,0,0},{0,6k22,6k23},{0,k23,k33}}
| ki1 0o |

| 8 k22 k23 |

| @ k23 k33 |

3 3
Matrix R <--- R

S = matrix {{sll,sl2,s13},{sl2,s22,s23},{sl13,s23,s33}}
| s11 s12 s13 |
| s12 s22 s23 |
| s13 s23 s33 |

3 3
Matrix R <---= R

I = ideal (KxS - identity(1))
ideal (k11xs11l - 1, k22%s12 + k23%s13, k23%s12 + k33%s13, kllxsl2, k22%s22

k33%s33 - 1)

: Ideal of R

: J = eliminate ({kll,6k22,6k23,k33},I)

05 :

: 0

Uisok= M2k Bot L58 (Macaulay2 Interaction:run)

16

ideal (s13, s12)
Ideal of R



Group projects

Group projects take place instead of lectures 8-10
Each group is assigned a different topic, in total four groups

Each group meets 2-3 times during the first two weeks and prepares a
presentation

During the third week, everyone presents the topic they studied to three
students who have studied a different topic

Goal: Learn one topic in depth and basics about other topics



The method of moments

“Algebraic Statistics of Gaussian Mixtures” by Carlos Amendola (Chapters
1 and 4)

A method for estimating parameters of a model based on a dataset
Focus on Gaussian mixtures

Dataset: Naples’ crabs (1894 Karl Pearson)



The cone of sufficient statistics

Chapter 8 of “Algebraic Statistics”
A description of the cone of sufficient statistics

Existence of the maximum likelihood estimate depends on whether a
sufficient statistic is in the interior or on the boundary of the cone

Polyhedral geometry
Discrete exponential families

Gaussian exponential families: matrix completion of positive semidefinite
matrices



Exponential random graph models

 Chapter 11 of “Algebraic Statistics”

o Statistical models frequently used in the study of social networks
 Erdos-Renyi random graphs, stochastic block model, beta model
e Samples are typically not i.i.d.

 Hypothesis testing using Fisher’s exact test [Lecture 7]



Phylogenetic models

Chapter 15 of “Algebraic Statistics” (some subchapters)
Phylogenetics studies the evolutionary history of a collection of species
A binary tree and a type of phylogenetic models gives a statistical model

Goal: Reconstruct the evolutionary tree from data (e.g. aligned DNA
sequences)



Next time

 Email me (kaie.kubjas@aalto.fi) your preferred topics
* Plan for the rest of the course:

* Next time: Likelihood inference

* Lecture 7: Fisher’s exact test

* Instead of lectures 8-10: Group work

e Lectures 11-12: Graphical models


mailto:kaie.kubjas@aalto.fi
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