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• Exponential families


• Discrete exponential families
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• Group projects



Exponential families
• An exponential family is a parametric statistical model with probability distributions of a certain form.


• General enough to include many of the most common families of probability distributions:


• multivariate normal


• exponential


• Poisson


• binomial (with fixed number of trials)


• Specific enough to have nice properties: 


• likelihood function is strictly concave [lecture 6]


• exponential families have conjugate priors



Goals

• What is an exponential family?


• How to find the vanishing ideal of an exponential family?


• Discrete exponential models: Hypothesis testing [lecture 7]


• Gaussian exponential submodels: Conditional independence 
implications [previous lecture]



Statistical models
• A statistical model is a collection of probability distributions.


• A parametric statistical model is a collection of probability distributions indexed by a finite dimensional parameter 
space : 


.


• In the case of continuous random variables, it is often specified in terms of corresponding probability density 
functions:


.


• In the case of discrete random variables, it is often specified in terms of corresponding probability mass functions:


.


[A probability distribution assigns a value  to a set ; a probability mass function assigns a value 
 to a number .]

Θ ⊆ ℝd

ℳΘ = {Pθ : θ ∈ Θ}

ℳΘ = {fθ : θ ∈ Θ}

ℳΘ = {pθ : θ ∈ Θ}

P(X ∈ S) S ⊆ R
p(x) = P(X = x) x ∈ ℝ



Statistic

Def: Let  be a random vector taking values in a set . A statistic is a 
function from  to  for some .


Example: 


•Let  be independent Bernoulli distributed random variables with 
expected value . Denote .


•Then  given by  is a statistic for .

X 𝒳
𝒳 ℝk k ∈ ℕ

X1, …, Xn
p X = (X1, …, Xn)

T : {0,1}n → ℝ T(X) = X1 + … + Xn X



Sufficient statistic
Def: For a parametric statistical model , a statistic  is sufficient if the probability 
density function or probability mass function factorizes as .


Example: 


•Let  be independent Bernoulli distributed random variables with expected 
value . Denote .


•Then  given by  is a statistic for .


• 


•  and    is a sufficient statistic

ℳΘ T
fθ(x) = h(x)g(T(x), θ)

X1, …, Xn
p X = (X1, …, Xn)

T : {0,1}n → ℝ T(X) = X1 + … + Xn X

P(X1 = x1, …, Xn = xn) = px1(1 − p)1−x1⋯pxn(1 − p)1−xn = pT(x)(1 − p)1−T(x)

h(x) = 1 g(T(x), p) = pT(x)(1 − p)1−T(x) ⟹ T



Exponential families

• Let  be a random variable taking values in a set .


• An exponential family is the set of probability distributions whose 
probability mass function or density function can be expressed as


 


for a given statistic , natural parameter , and 
functions  and .

X 𝒳

fθ(x) = h(x)eη(θ)tT(x)−A(θ)

T : 𝒳 → ℝk η : Θ → ℝk

h : 𝒳 → ℝ>0 A : Θ → ℝ



Exponential families 

• Three equivalent forms:


• 


• 


•

fθ(x) = h(x)eη(θ)tT(x)−A(θ)

fθ(x) = h(x)g(θ)eη(θ)tT(x)

fθ(x) = eη(θ)tT(x)−A(θ)+B(x)



Binomial distribution
, 


 


X ∼ Bin(m, θ) 𝒳 = {0,1,…, m}

p(x) = (m
x ) θx(1 − θ)m−x = (m

x ) exp [(log
θ

1 − θ ) x + m log(1 − θ)]



Binomial distribution
•  


• Statistic , natural parameter , functions  and 


• Binomial distribution: 


• Poll: What are  in this example?


1.  - Wrong, because  should not depend on parameters


2.  - Correct


3.  - Wrong

fθ(x) = h(x)eη(θ)tT(x)−A(θ)

T : 𝒳 → ℝk η : Θ → ℝk h : 𝒳 → ℝ>0 A : Θ → ℝ

p(x) = (m
x ) θx(1 − θ)m−x = (m

x ) exp [(log
θ

1 − θ ) x + m log(1 − θ)]
k, T, η, h, A

k = 1,T(x) = log
θ

1 − θ
, η = x, h = (m

x ), A = − m log(1 − θ) T

k = 1,T(x) = x, η = log
θ

1 − θ
, h = (m

x ), A = − m log(1 − θ)

k = 2,T(x) = (x, m − x), η = (θ,1 − θ), h = (m
x ), A = 0



Canonical form
• 


• If , then the exponential family is said to be in canonical form.


• By defining a transformed parameter , it is always possible to 
convert an exponential family to canonical form.


• The function  is determined by the other functions: It makes the pdf 
(pmf) to integrate (sum) to one. Thus it can be written as a function of .


• The canonical form is .

fθ(x) = h(x)eη(θ)tT(x)−A(θ)

η(θ) = θ

η = η(θ)

A
η

fη(x) = h(x)eηtT(x)−A(η)



Discrete exponential families
• Let  be a discrete random variable taking values in .


• Denote


•  where 


• , so 


•  and 


• Then 


where .

X 𝒳 = [r]

T(x) = ax ax = (a1x, …, akx)t

h(x) = hx h = (h1, …, hr) ∈ ℝr
>0

η = (η1, …, ηk)t θi = exp(ηi)

pη(x) = h(x)eηtT(x)−A(η) = hxe
∑i ηiaix−A(η) = hx∏

i

eηiaix−A(η) = hx∏
i

(eηi)aixe−A(η) = hx∏
i

θaix
i

1
Z(θ)

Z(θ) = ∑
x∈𝒳

hx∏
j

θajx
j



Discrete exponential families
 where 


• If  are integers for all  and , then the parametrizing functions are rational functions.


• The entries  can be recorded in the matrix .


• For , the monomials  correspond to a column of the matrix .


Example: Let  and . Then 


 where .

pθ(x) =
1

Z(θ)
hx∏

j

θajx
j Z(θ) = ∑

x∈𝒳

hx∏
j

θajx
j

ajx j x

ajx A = (ajx)j∈[k],x∈[r] ∈ ℤk×r

x ∈ 𝒳 = [r] ∏
j

θajx
j A

A = (0 1 2 3
3 2 1 0) h = 1

pθ =
1

Z(θ) (θ3
2 , θ1θ2

2 , θ2
1θ2, θ3

1) Z(θ) = θ3
2 + θ1θ2

2 + θ2
1θ2 + θ3

1



Discrete exponential families
• Let .


• The logarithm of the exponential family representation  gives


.


• If we assume that the matrix  contains the vector  in its row span, 
then this is equivalent to requiring that  belongs belongs to the affine space 

.

A = (ajx)j∈[k],x∈[r] ∈ ℤk×r

pθ(x) =
1

Z(θ)
hx∏

j

θajx
j

log pθ(x) = log hx + ∑
j

ajx log θj − log Z(θ)

A 1 = (1,1,…,1)
log p

log(h) + rowspan(A)



Log-affine model

Def: Let  be a matrix of integers such that  and let 
. The log-affine model associated to  and  is the set of 

probability distributions


.


If , then  is called a log-linear model.

A ∈ ℤk×r 1 ∈ rowspan(A)
h ∈ ℝr

>0 A h

ℳA,h := {p ∈ int(Δr−1) : log p ∈ log h + rowspan(A)}

h = 1 ℳA := ℳA,1



Log-affine model
Def: Let  be a matrix of integers such that  and let . 
The monomial map associated to this data is the rational map


, where .


NB! The normalizing constant  is removed.


Example: Let . The monomial map is  is given by


.

A ∈ ℤk×r 1 ∈ rowspan(A) h ∈ ℝr
>0

ϕA,h : ℝk → ℝr ϕA,h
j = hj

k

∏
i=1

θaij
i

Z(θ)

A = (0 1 2 3
3 2 1 0) ϕA : ℝ2 → ℝ4

(θ1, θ2) ↦ (θ3
2 , θ1θ2

2 , θ2
1θ2, θ3

1)



Discrete independent random variables
• Consider the parametrization 


,


where  and  are independent parameters.


• This is the parametrization of two discrete independent random variables.


•
Poll 1: What are the matrix  and vector  representing the above parametrization? Answer:  and 

. Rows of  correspond to  and columns of  to .


• Poll 2: What is the size of the matrix of  if  and ? Answer: 

pij = αiβj

i ∈ [2], j ∈ [2] αi, βj

A h A =

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

h =

1
1
1
1

A α1, α2, β1, β2 A p11, p12, p21, p22

A i ∈ [r1] j ∈ [r2] (r1 + r2) × (r1r2)



Log-affine model

Def: Let  and . The ideal


 


is called the toric ideal associated to the pair  and .


• If , then we denote .


• Generators for the ideal  are obtained from generators of the ideal .

A ∈ ℤk×r h ∈ ℝr
>0

IA,h := I(ϕA,h(ℝk)) ⊆ ℝ[p]

A h

h = 1 IA := IA,1

IA,h IA



Log-affine model
Prop: Let  and . Then


.


Example: Let . The monomial map is  is given by


.


The toric ideal is


. [Poll]

A ∈ ℤk×r h ∈ ℝr
>0

IA = ⟨pu − pv : u, v ∈ ℕr and Au = Av⟩

A = (0 1 2 3
3 2 1 0) ϕA : ℝ2 → ℝ4

(θ1, θ2) ↦ (θ3
2 , θ1θ2

2 , θ2
1 , θ2, θ3

1)

IA = ⟨p1p3 − p2
2 , p1p4 − p2p3, p2p4 − p2

3⟩





Multivariate normal distribution

Let  be the set of  symmetric positive definite matrices.


Def: Suppose  and . Then a random vector 
 is distributed according to the multivariate normal 

distribution  if it has the density function


.

PDm m × m

μ ∈ ℝm Σ ∈ PDm
X = (X1, …, Xm)

𝒩m(μ, Σ)

fμ,Σ(x) =
1

(2π)m/2 |Σ |1/2 exp {−
1
2

(x − μ)tΣ−1(x − μ)}



Normal distribution

• 


• Poll: What are ?


1.  - Wrong, because  depends on a parameter


2.  - Correct


3.  - Correct

fμ,σ2(x) =
1

σ 2π
exp {−

1
2 ( x − μ

σ )
2

} =
1

σ 2π
exp {−

1
2σ

x2 +
μ
σ2

x −
μ2

2σ2 }
T, η, h, A

T = (x, x2), η = ( μ
σ2

, −
1

2σ2 ), h =
1

σ 2π
, A =

μ2

2σ2
h

T = (x, x2), η = ( μ
σ2

, −
1

2σ2 ), h =
1

2π
, A = log σ +

μ2

2σ2

T = (x, − x2/2), η = ( μ
σ2

,
1
σ2 ), h =

1

2π
, A = log σ +

μ2

2σ2



Multivariate normal distribution
• 


•  given by





•  for all 


• 


•

fμ,Σ(x) =
1

(2π)m/2 |Σ |1/2 exp {−
1
2

(x − μ)tΣ−1(x − μ)}
T : 𝒳 → ℝm × ℝm(m+1)/2

T(x) = (x1, …, xm, − x2
1 /2,…, − x2

m/2, − x1x2, …, − xm−1xm)t

h(x) = (2π)m/2 x ∈ ℝm

η(θ) = (Σ−1μ, Σ−1)

A(θ) =
1
2

μtΣ−1μ +
1
2

log |Σ |



Concentration matrix

• The inverse of the covariance matrix plays an important role for Gaussian 
models as a natural parameter of the exponential family.


• It is called the concentration matrix or the precision matrix.


• It is often denoted .K = Σ−1



Gaussian exponential families
• Choose a statistic  that maps  to a vector of degree 2 

polynomials with no constant term.


• This gives a subfamily of a regular multivariate Gaussian statistical model.


• Equivalently take a linear subspace  of the parameter space  
of the regular exponential family.


• Commonly  where  and .


• Often  is either  or .

T(x) x ∈ ℝm

L ℝm × PDm

L = L1 × L2 L1 ⊆ ℝm L2 ⊆ ℝ(m+1)m/2

L1 {0} ℝm



Gaussian exponential families

• Vanishing ideal is a subset of .


• If , then the vanishing ideal has the form , where  
is an ideal in .


• If , then the vanishing ideal is generated by polynomials in .

ℝ[μ, σ] := ℝ[μi, σij : 1 ≤ i ≤ j ≤ m]

L1 = 0 ⟨μ1, …, μm⟩ + I2 I2
ℝ[σ]

L1 = ℝm ℝ[σ]



Inverse linear space
• Exponential subfamily is a linear space in the space of concentration 

matrices.


• One is often interested in describing Gaussian models in the space of 
covariance matrices.


Def: Let  be a linear space such that  is nonempty. The 
inverse linear space  is the set of positive definite matrices


.


• Gaussian exponential families have interesting ideals in .

L ⊆ ℝ(m+1)m/2 L ∩ PDm
L−1

L−1 = {K−1 : K ∈ L ∩ PDm}

ℝ[σ]



Gaussian exponential families

Prop: If  is a concentration matrix for a Gaussian random vector, a zero 
entry  is equivalent to a conditional independence statement 

.


• The CI ideals that arise from zeros in the concentration matrix might not 
be primary.


• The linear space  in the concentration coordinators is irreducible and this 
allows us to parametrize the main component of the CI ideal.

K
kij = 0

i ⊥⊥ j | [m]\{i, j}

L



Gaussian exponential families
• Let . Consider the Gaussian exponential family defined by the linear 

space of concentration matrices .


• This corresponds to CI statements  and . 


• 


• The intersection axiom implies , but no linear polynomials in . One 
option is to compute a primary decomposition of .


• Alternatively, we can use the parametrization of the model to compute the 
vanishing ideal.

m = 3
L = {K ∈ PD3 : k12 = 0,k13 = 0}

1 ⊥⊥ 2 |3 1 ⊥⊥ 3 |2

J𝒞 = ⟨σ12σ33 − σ13σ23, σ13σ22 − σ12σ23⟩

1 ⊥⊥ {2,3} J𝒞
J𝒞





Group projects
• Group projects take place instead of lectures 8-10


• Each group is assigned a different topic, in total four groups


• Each group meets 2-3 times during the first two weeks and prepares a 
presentation


• During the third week, everyone presents the topic they studied to three 
students who have studied a different topic


• Goal: Learn one topic in depth and basics about other topics



The method of moments

• “Algebraic Statistics of Gaussian Mixtures” by Carlos Amendola (Chapters 
1 and 4)


• A method for estimating parameters of a model based on a dataset


• Focus on Gaussian mixtures


• Dataset: Naples’ crabs (1894 Karl Pearson)



The cone of sufficient statistics
• Chapter 8 of “Algebraic Statistics”


• A description of the cone of sufficient statistics


• Existence of the maximum likelihood estimate depends on whether a 
sufficient statistic is in the interior or on the boundary of the cone


• Polyhedral geometry


• Discrete exponential families


• Gaussian exponential families: matrix completion of positive semidefinite 
matrices



Exponential random graph models

• Chapter 11 of “Algebraic Statistics”


• Statistical models frequently used in the study of social networks


• Erdös-Renyi random graphs, stochastic block model, beta model


• Samples are typically not i.i.d.


• Hypothesis testing using Fisher’s exact test [Lecture 7]



Phylogenetic models

• Chapter 15 of “Algebraic Statistics” (some subchapters)


• Phylogenetics studies the evolutionary history of a collection of species


• A binary tree and a type of phylogenetic models gives a statistical model


• Goal: Reconstruct the evolutionary tree from data (e.g. aligned DNA 
sequences)



Next time
• Email me (kaie.kubjas@aalto.fi) your preferred topics


• Plan for the rest of the course:


• Next time: Likelihood inference


• Lecture 7: Fisher’s exact test


• Instead of lectures 8-10: Group work


• Lectures 11-12: Graphical models

mailto:kaie.kubjas@aalto.fi
mailto:kaie.kubjas@aalto.fi





