Exponential families

Kaie Kubjas, 07.10.2020

Agenda

- Exponential families
- Discrete exponential families
- Gaussian exponential families
- Group projects

Exponential families

- An exponential family is a parametric statistical model with probability distributions of a certain form.
- General enough to include many of the most common families of probability distributions:
- multivariate normal
- exponential
- Poisson
- binomial (with fixed number of trials)
- Specific enough to have nice properties:
- likelihood function is strictly concave [lecture 6]
- exponential families have conjugate priors

Goals

- What is an exponential family?
- How to find the vanishing ideal of an exponential family?
- Discrete exponential models: Hypothesis testing [lecture 7]
- Gaussian exponential submodels: Conditional independence implications [previous lecture]

Statistical models

- A statistical model is a collection of probability distributions.
- A parametric statistical model is a collection of probability distributions indexed by a finite dimensional parameter space $\Theta \subseteq \mathbb{R}^{d}$:

$$
\mathscr{M}_{\Theta}=\left\{P_{\theta}: \theta \in \Theta\right\} .
$$

- In the case of continuous random variables, it is often specified in terms of corresponding probability density functions:

$$
\mathscr{M}_{\Theta}=\left\{f_{\theta}: \theta \in \Theta\right\} .
$$

- In the case of discrete random variables, it is often specified in terms of corresponding probability mass functions:

$$
\mathscr{M}_{\Theta}=\left\{p_{\theta}: \theta \in \Theta\right\}
$$

[A probability distribution assigns a value $P(X \in S)$ to a set $S \subseteq R$; a probability mass function assigns a value $p(x)=P(X=x)$ to a number $x \in \mathbb{R}$.]

Statistic

Def: Let X be a random vector taking values in a set \mathscr{X}. A statistic is a function from \mathscr{X} to \mathbb{R}^{k} for some $k \in \mathbb{N}$.

Example:

-Let X_{1}, \ldots, X_{n} be independent Bernoulli distributed random variables with expected value p. Denote $X=\left(X_{1}, \ldots, X_{n}\right)$.
-Then $T:\{0,1\}^{n} \rightarrow \mathbb{R}$ given by $T(X)=X_{1}+\ldots+X_{n}$ is a statistic for X.

Sufficient statistic

Def: For a parametric statistical model \mathscr{M}_{Θ}, a statistic T is sufficient if the probability density function or probability mass function factorizes as $f_{\theta}(x)=h(x) g(T(x), \theta)$.

Example:

-Let X_{1}, \ldots, X_{n} be independent Bernoulli distributed random variables with expected value p. Denote $X=\left(X_{1}, \ldots, X_{n}\right)$.
-Then $T:\{0,1\}^{n} \rightarrow \mathbb{R}$ given by $T(X)=X_{1}+\ldots+X_{n}$ is a statistic for X.
$\cdot P\left(X_{1}=x_{1}, \ldots, X_{n}=x_{n}\right)=p^{x_{1}}(1-p)^{1-x_{1}} \cdots p^{x_{n}}(1-p)^{1-x_{n}}=p^{T(x)}(1-p)^{1-T(x)}$
$\cdot h(x)=1$ and $g(T(x), p)=p^{T(x)}(1-p)^{1-T(x)} \Longrightarrow T$ is a sufficient statistic

Exponential families

- Let X be a random variable taking values in a set \mathscr{X}.
- An exponential family is the set of probability distributions whose probability mass function or density function can be expressed as

$$
f_{\theta}(x)=h(x) e^{\eta(\theta)^{t} T(x)-A(\theta)}
$$

for a given statistic $T: \mathscr{X} \rightarrow \mathbb{R}^{k}$, natural parameter $\eta: \Theta \rightarrow \mathbb{R}^{k}$, and functions $h: \mathscr{X} \rightarrow \mathbb{R}_{>0}$ and $A: \Theta \rightarrow \mathbb{R}$.

Exponential families

- Three equivalent forms:
- $f_{\theta}(x)=h(x) e^{\eta(\theta)^{t} T(x)-A(\theta)}$
- $f_{\theta}(x)=h(x) g(\theta) e^{\eta(\theta)^{t} T(x)}$
- $f_{\theta}(x)=e^{\eta(\theta)^{T} T(x)-A(\theta)+B(x)}$

Binomial distribution

$$
\begin{aligned}
& X \sim \operatorname{Bin}(m, \theta), \mathcal{X}=\{0,1, \ldots, m\} \\
& p(x)=\binom{m}{x} \theta^{x}(1-\theta)^{m-x}=\binom{m}{x} \exp \left[\left(\log \frac{\theta}{1-\theta}\right) x+m \log (1-\theta)\right]
\end{aligned}
$$

Binomial distribution

- $f_{\theta}(x)=h(x) e^{\eta(\theta)^{l} T(x)-A(\theta)}$
- Statistic $T: \mathscr{X} \rightarrow \mathbb{R}^{k}$, natural parameter $\eta: \Theta \rightarrow \mathbb{R}^{k}$, functions $h: \mathscr{X} \rightarrow \mathbb{R}_{>0}$ and $A: \Theta \rightarrow \mathbb{R}$
- Binomial distribution: $p(x)=\binom{m}{x} \theta^{x}(1-\theta)^{m-x}=\binom{m}{x} \exp \left[\left(\log \frac{\theta}{1-\theta}\right) x+m \log (1-\theta)\right]$
- Poll: What are k, T, η, h, A in this example?

1. $k=1, T(x)=\log \frac{\theta}{1-\theta}, \eta=x, h=\binom{m}{x}, A=-m \log (1-\theta)-$ Wrong, because T should not depend on parameters
2. $k=1, T(x)=x, \eta=\log \frac{\theta}{1-\theta}, h=\binom{m}{x}, A=-m \log (1-\theta)$ - Correct
3. $k=2, T(x)=(x, m-x), \eta=(\theta, 1-\theta), h=\binom{m}{x}, A=0-$ Wrong

Canonical form

- $f_{\theta}(x)=h(x) e^{\eta(\theta)^{t} T(x)-A(\theta)}$
- If $\eta(\theta)=\theta$, then the exponential family is said to be in canonical form.
- By defining a transformed parameter $\eta=\eta(\theta)$, it is always possible to convert an exponential family to canonical form.
- The function A is determined by the other functions: It makes the pdf (pmf) to integrate (sum) to one. Thus it can be written as a function of η.
- The canonical form is $f_{\eta}(x)=h(x) e^{\eta^{t} T(x)-A(\eta)}$.

Discrete exponential families

- Let X be a discrete random variable taking values in $\mathscr{X}=[r]$.
- Denote
- $T(x)=a_{x}$ where $a_{x}=\left(a_{1 x}, \ldots, a_{k x}\right)^{t}$
- $h(x)=h_{x}$, so $h=\left(h_{1}, \ldots, h_{r}\right) \in \mathbb{R}_{>0}^{r}$
- $\eta=\left(\eta_{1}, \ldots, \eta_{k}\right)^{t}$ and $\theta_{i}=\exp \left(\eta_{i}\right)$
- Then $p_{\eta}(x)=h(x) e^{\eta^{t} T(x)-A(\eta)}=h_{x} e^{\sum_{i} \eta_{i} a_{i x}-A(\eta)}=h_{x} \prod_{i} e^{\eta_{i} a_{i x}-A(\eta)}=h_{x} \prod_{i}\left(e^{\left.\eta_{i}\right)^{a_{i x}} e^{-A(\eta)}=h_{x} \prod_{i} \theta_{i}^{a_{i x}} \frac{1}{Z(\theta)}, \frac{1}{Z(\theta)}}\right.$
where $\mathbb{Z}(\theta)=\sum_{x \in \mathscr{X}} h_{x} \prod_{j} \theta_{j}^{a_{j x}}$.

Discrete exponential families

$$
p_{\theta}(x)=\frac{1}{Z(\theta)} h_{x} \prod_{j} \theta_{j}^{a_{j x}} \text { where } Z(\theta)=\sum_{x \in \mathscr{X}} h_{x} \prod_{j} \theta_{j}^{a_{j x}}
$$

- If $a_{j x}$ are integers for all j and x, then the parametrizing functions are rational functions.
- The entries $a_{j x}$ can be recorded in the matrix $A=\left(a_{j x}\right)_{j \in[k], x \in[r]} \in \mathbb{Z}^{k \times r}$.
- For $x \in \mathscr{X}=[r]$, the monomials $\prod_{j} \theta_{j}^{a_{j x}}$ correspond to a column of the matrix A.

Example: Let $A=\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0\end{array}\right)$ and $h=\mathbf{1}$. Then

$$
p_{\theta}=\frac{1}{Z(\theta)}\left(\theta_{2}^{3}, \theta_{1} \theta_{2}^{2}, \theta_{1}^{2} \theta_{2}, \theta_{1}^{3}\right) \text { where } Z(\theta)=\theta_{2}^{3}+\theta_{1} \theta_{2}^{2}+\theta_{1}^{2} \theta_{2}+\theta_{1}^{3}
$$

Discrete exponential families

- Let $A=\left(a_{j x}\right)_{j \in[k], x \in[r]} \in \mathbb{Z}^{k \times r}$.
- The logarithm of the exponential family representation $p_{\theta}(x)=\frac{1}{Z(\theta)} h_{x} \prod_{j} \theta_{j}^{a_{j x}}$ gives

$$
\log p_{\theta}(x)=\log h_{x}+\sum_{j} a_{j x} \log \theta_{j}-\log Z(\theta)
$$

- If we assume that the matrix A contains the vector $\mathbb{1}=(1,1, \ldots, 1)$ in its row span, then this is equivalent to requiring that $\log p$ belongs belongs to the affine space $\log (h)+\operatorname{rowspan}(A)$.

Log-affine model

Def: Let $A \in \mathbb{Z}^{k \times r}$ be a matrix of integers such that $\mathbf{1} \in \operatorname{rowspan}(A)$ and let $h \in \mathbb{R}_{>0}^{r}$. The log-affine model associated to A and h is the set of probability distributions

$$
\mathscr{M}_{A, h}:=\left\{p \in \operatorname{int}\left(\Delta_{r-1}\right): \log p \in \log h+\text { rowspan }(A)\right\} .
$$

If $h=\mathbf{1}$, then $\mathscr{M}_{A}:=\mathscr{M}_{A, 1}$ is called a log-linear model.

Log-affine model

Def: Let $A \in \mathbb{Z}^{k \times r}$ be a matrix of integers such that $\mathbf{1} \in \operatorname{rowspan}(A)$ and let $h \in \mathbb{R}_{>0}^{r}$.
The monomial map associated to this data is the rational map

$$
\phi^{A, h}: \mathbb{R}^{k} \rightarrow \mathbb{R}^{r}, \text { where } \phi_{j}^{A, h}=h_{j} \prod_{i=1}^{k} \theta_{i}^{a_{i j}} .
$$

NB! The normalizing constant $Z(\theta)$ is removed.
Example: Let $A=\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0\end{array}\right)$. The monomial map is $\phi^{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ is given by

$$
\left(\theta_{1}, \theta_{2}\right) \mapsto\left(\theta_{2}^{3}, \theta_{1} \theta_{2}^{2}, \theta_{1}^{2} \theta_{2}, \theta_{1}^{3}\right)
$$

Discrete independent random variables

- Consider the parametrization

$$
p_{i j}=\alpha_{i} \beta_{j},
$$

where $i \in[2], j \in[2]$ and α_{i}, β_{j} are independent parameters.

- This is the parametrization of two discrete independent random variables.

Poll 1: What are the matrix A and vector h representing the above parametrization? Answer: $A=\left(\begin{array}{llll}1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$ and
$h=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$. Rows of A correspond to $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ and columns of A to $p_{11}, p_{12}, p_{21}, p_{22}$.

- Poll 2: What is the size of the matrix of A if $i \in\left[r_{1}\right]$ and $j \in\left[r_{2}\right]$? Answer: $\left(r_{1}+r_{2}\right) \times\left(r_{1} r_{2}\right)$

Log-affine model

Def: Let $A \in \mathbb{Z}^{k \times r}$ and $h \in \mathbb{R}_{>0}^{r}$. The ideal

$$
I_{A, h}:=I\left(\phi^{A, h}\left(\mathbb{R}^{k}\right)\right) \subseteq \mathbb{R}[p]
$$

is called the toric ideal associated to the pair A and h.

- If $h=\mathbf{1}$, then we denote $I_{A}:=I_{A, 1}$.
- Generators for the ideal $I_{A, h}$ are obtained from generators of the ideal I_{A}.

Log-affine model

Prop: Let $A \in \mathbb{Z}^{k \times r}$ and $h \in \mathbb{R}_{>0}^{r}$. Then

$$
I_{A}=\left\langle p^{u}-p^{v}: u, v \in \mathbb{N}^{r} \text { and } A u=A v\right\rangle \text {. }
$$

Example: Let $A=\left(\begin{array}{llll}0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0\end{array}\right)$. The monomial map is $\phi^{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ is given by

$$
\left(\theta_{1}, \theta_{2}\right) \mapsto\left(\theta_{2}^{3}, \theta_{1} \theta_{2}^{2}, \theta_{1}^{2}, \theta_{2}, \theta_{1}^{3}\right) .
$$

The toric ideal is

$$
I_{A}=\left\langle p_{1} p_{3}-p_{2}^{2}, p_{1} p_{4}-p_{2} p_{3}, p_{2} p_{4}-p_{3}^{2}\right\rangle .[\text { Poll }]
$$

Synopsis

- Usage:
toricMarkov(A) or toricMarkov(A, InputType $=>$ "lattice") or toricMarkov(A,R)
- Inputs:
 of the lattice basis ideal
- Input Type $=>\mathrm{s}$, default value null, which is the string "lattice" if rows of a specify a lattice basis
- R , a ring, polynomial ring in which the toric ideal I_{A} should live
- Optional inputs

InputType => ...

- Outputs
- в, a matrix, whose rows form a Markov Basis of the lattice $\{z$ integral : $A z=0\}$ or the lattice spanned by the rows of a if the option Input Type $=>$ "lattice" is used

Description
Suppose we would like to comput the toric ideal defining the variety parametrized by the following matrix:
\square
Since there are 4 columns, the ideal will live in the polynomial ring with 4 variables

Note that rows of M are the exponents of minimal generators of I_{A}. To get the ideal, we can do the following:

```
i4 : I = tobinomial(M,R)
o4 = ideal (- co c
4 : Ideal of R
```


Multivariate normal distribution

Let $P D_{m}$ be the set of $m \times m$ symmetric positive definite matrices.
Def: Suppose $\mu \in \mathbb{R}^{m}$ and $\Sigma \in P D_{m}$. Then a random vector $X=\left(X_{1}, \ldots, X_{m}\right)$ is distributed according to the multivariate normal distribution $\mathcal{N}_{m}(\mu, \Sigma)$ if it has the density function

$$
f_{\mu, \Sigma}(x)=\frac{1}{(2 \pi)^{m / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{t} \Sigma^{-1}(x-\mu)\right\} .
$$

Normal distribution

. $f_{\mu, \sigma^{2}}(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right\}=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left\{-\frac{1}{2 \sigma} x^{2}+\frac{\mu}{\sigma^{2}} x-\frac{\mu^{2}}{2 \sigma^{2}}\right\}$

- Poll: What are T, η, h, A ?

1. $T=\left(x, x^{2}\right), \eta=\left(\frac{\mu}{\sigma^{2}},-\frac{1}{2 \sigma^{2}}\right), h=\frac{1}{\sigma \sqrt{2 \pi}}, A=\frac{\mu^{2}}{2 \sigma^{2}}$ - Wrong, because h depends on a parameter
2. $T=\left(x, x^{2}\right), \eta=\left(\frac{\mu}{\sigma^{2}},-\frac{1}{2 \sigma^{2}}\right), h=\frac{1}{\sqrt{2 \pi}}, A=\log \sigma+\frac{\mu^{2}}{2 \sigma^{2}}$ - Correct
3. $T=\left(x,-x^{2} / 2\right), \eta=\left(\frac{\mu}{\sigma^{2}}, \frac{1}{\sigma^{2}}\right), h=\frac{1}{\sqrt{2 \pi}}, A=\log \sigma+\frac{\mu^{2}}{2 \sigma^{2}}$ - Correct

Multivariate normal distribution

. $f_{\mu, \Sigma}(x)=\frac{1}{(2 \pi)^{m / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{)^{\Sigma} \Sigma^{-1}(x-\mu)}\right\}$

- $T: X \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{m(m+1) / 2}$ given by

$$
T(x)=\left(x_{1}, \ldots, x_{m},-x_{1}^{2} / 2, \ldots,-x_{m}^{2} / 2,-x_{1} x_{2}, \ldots,-x_{m-1} x_{m}\right)^{t}
$$

- $h(x)=(2 \pi)^{m / 2}$ for all $x \in \mathbb{R}^{m}$
- $\eta(\theta)=\left(\Sigma^{-1} \mu, \Sigma^{-1}\right)$
- $A(\theta)=\frac{1}{2} \mu^{t} \Sigma^{-1} \mu+\frac{1}{2} \log |\Sigma|$

Concentration matrix

- The inverse of the covariance matrix plays an important role for Gaussian models as a natural parameter of the exponential family.
- It is called the concentration matrix or the precision matrix.
- It is often denoted $K=\Sigma^{-1}$.

Gaussian exponential families

- Choose a statistic $T(x)$ that maps $x \in \mathbb{R}^{m}$ to a vector of degree 2 polynomials with no constant term.
- This gives a subfamily of a regular multivariate Gaussian statistical model.
- Equivalently take a linear subspace L of the parameter space $\mathbb{R}^{m} \times P D_{m}$ of the regular exponential family.
- Commonly $L=L_{1} \times L_{2}$ where $L_{1} \subseteq \mathbb{R}^{m}$ and $L_{2} \subseteq \mathbb{R}^{(m+1) m / 2}$.
- Often L_{1} is either $\{0\}$ or \mathbb{R}^{m}.

Gaussian exponential families

- Vanishing ideal is a subset of $\mathbb{R}[\mu, \sigma]:=\mathbb{R}\left[\mu_{i}, \sigma_{i j}: 1 \leq i \leq j \leq m\right]$.
- If $L_{1}=0$, then the vanishing ideal has the form $\left\langle\mu_{1}, \ldots, \mu_{m}\right\rangle+I_{2}$, where I_{2} is an ideal in $\mathbb{R}[\sigma]$.
- If $L_{1}=\mathbb{R}^{m}$, then the vanishing ideal is generated by polynomials in $\mathbb{R}[\sigma]$.

Inverse linear space

- Exponential subfamily is a linear space in the space of concentration matrices.
- One is often interested in describing Gaussian models in the space of covariance matrices.

Def: Let $L \subseteq \mathbb{R}^{(m+1) m / 2}$ be a linear space such that $L \cap P D_{m}$ is nonempty. The inverse linear space L^{-1} is the set of positive definite matrices

$$
L^{-1}=\left\{K^{-1}: K \in L \cap P D_{m}\right\}
$$

- Gaussian exponential families have interesting ideals in $\mathbb{R}[\sigma]$.

Gaussian exponential families

Prop: If K is a concentration matrix for a Gaussian random vector, a zero entry $k_{i j}=0$ is equivalent to a conditional independence statement $i \Perp j \mid[m] \backslash\{i, j\}$.

- The Cl ideals that arise from zeros in the concentration matrix might not be primary.
- The linear space L in the concentration coordinators is irreducible and this allows us to parametrize the main component of the CI ideal.

Gaussian exponential families

- Let $m=3$. Consider the Gaussian exponential family defined by the linear space of concentration matrices $L=\left\{K \in P D_{3}: k_{12}=0, k_{13}=0\right\}$.
- This corresponds to CI statements $1 \Perp 2 \mid 3$ and $1 \Perp 3 \mid 2$.
- $J_{\mathscr{C}}=\left\langle\sigma_{12} \sigma_{33}-\sigma_{13} \sigma_{23}, \sigma_{13} \sigma_{22}-\sigma_{12} \sigma_{23}\right\rangle$
- The intersection axiom implies $1 \Perp\{2,3\}$, but no linear polynomials in $J_{\mathscr{C}}$. One option is to compute a primary decomposition of $J_{\mathscr{C}}$.
- Alternatively, we can use the parametrization of the model to compute the vanishing ideal.

restart
$R=Q Q[k 11, k 22, k 23, k 33, s 11, s 12, s 13, s 22, s 23, s 33]$ $\mathrm{K}=$ matrix $\{\{\mathrm{k} 11,0,0\},\{0, \mathrm{k} 22, \mathrm{k} 23\},\{0, \mathrm{k} 23, \mathrm{k} 33\}\}$
$\mathrm{S}=$ matrix $\{\{\mathrm{s} 11, \mathrm{~s} 12, \mathrm{~s} 13\},\{\mathrm{s} 12, \mathrm{~s} 22, \mathrm{~s} 23\},\{\mathrm{s} 13, \mathrm{~s} 23, \mathrm{~s} 33\}\}$
I $=$ ideal (K*S - identity (1))
$\mathrm{J}=$ eliminate (\{k11,k22,k23,k33\},I)
-
-:-- lecture5.m2 All L7 (Macaulay2)
i1 : $R=Q Q[k 11, k 22, k 23, k 33, s 11, s 12, s 13, s 22, s 23, s 33]$
$01=R$
01 : PolynomialRing
i2 : K = matrix $\{\{\mathbf{k} 11,0,0\},\{0, \mathrm{k} 22, \mathrm{k} 23\},\{0, \mathrm{k} 23, \mathrm{k} 33\}\}$
$02=\left|\begin{array}{lll}\text { k11 } & 0 & 0 \\ 0 & \text { k22 } & \text { 223 } \\ 0 & \text { k23 } & \text { k33 }\end{array}\right|$
02 : Matrix $\mathrm{R}^{3}<--\mathrm{R}^{3}$
i3 : $\mathrm{S}=$ matrix $\{\{\mathrm{s} 11, \mathrm{~s} 12, \mathrm{~s} 13\},\{\mathrm{s} 12, \mathrm{~s} 22, \mathrm{~s} 23\},\{\mathrm{s} 13, \mathrm{~s} 23, \mathrm{~s} 33\}\}$
$03=\left|\begin{array}{lll}\mathrm{s} 11 & \mathrm{~s} 12 & \mathrm{~s} 13 \\ \mathrm{~s} 12 & \mathrm{~s} 22 & \mathrm{~s} 23 \\ \mathrm{~s} 13 & \mathrm{~s} 23 & \mathrm{~s} 33\end{array}\right|$

03 : Matrix $\mathrm{R}^{3}<--R^{3}$
i4 : I = ideal (K*S - identity(1))
$04=$ ideal (k11*s11 - 1, k22*s12 $+\mathrm{k} 23 * \mathrm{~s} 13, \mathrm{k} 23 * \mathrm{~s} 12+\mathrm{k} 33 * \mathrm{~s} 13, \mathrm{k} 11 * \mathrm{~s} 12, \mathrm{k} 22 * \mathrm{~s} 22$
$+\mathrm{k} 23 * \mathrm{~s} 23-1, \mathrm{k} 23 * \mathrm{~s} 22+\mathrm{k} 33 * \mathrm{~s} 23, \mathrm{k} 11 * \mathrm{~s} 13, \mathrm{k} 22 * \mathrm{~s} 23+\mathrm{k} 23 * \mathrm{~s} 33, \mathrm{k} 23 * \mathrm{~s} 23+$
$\mathrm{k} 33 * \mathrm{~s} 33-1$)
04 : Ideal of R
i5 : J = eliminate (\{k11,k22,k23,k33\}, I)
05 = ideal (s13, s12)
05 : Ideal of R
i6 :]
U:**- *M2* Bot L58 (Macaulay2 Interaction:run)

Group projects

- Group projects take place instead of lectures 8-10
- Each group is assigned a different topic, in total four groups
- Each group meets 2-3 times during the first two weeks and prepares a presentation
- During the third week, everyone presents the topic they studied to three students who have studied a different topic
- Goal: Learn one topic in depth and basics about other topics

The method of moments

- "Algebraic Statistics of Gaussian Mixtures" by Carlos Amendola (Chapters 1 and 4)
- A method for estimating parameters of a model based on a dataset
- Focus on Gaussian mixtures
- Dataset: Naples' crabs (1894 Karl Pearson)

The cone of sufficient statistics

- Chapter 8 of "Algebraic Statistics"
- A description of the cone of sufficient statistics
- Existence of the maximum likelihood estimate depends on whether a sufficient statistic is in the interior or on the boundary of the cone
- Polyhedral geometry
- Discrete exponential families
- Gaussian exponential families: matrix completion of positive semidefinite matrices

Exponential random graph models

- Chapter 11 of "Algebraic Statistics"
- Statistical models frequently used in the study of social networks
- Erdös-Renyi random graphs, stochastic block model, beta model
- Samples are typically not i.i.d.
- Hypothesis testing using Fisher's exact test [Lecture 7]

Phylogenetic models

- Chapter 15 of "Algebraic Statistics" (some subchapters)
- Phylogenetics studies the evolutionary history of a collection of species
- A binary tree and a type of phylogenetic models gives a statistical model
- Goal: Reconstruct the evolutionary tree from data (e.g. aligned DNA sequences)

Next time

- Email me (kaie.kubjas@aalto.fi) your preferred topics
- Plan for the rest of the course:
- Next time: Likelihood inference
- Lecture 7: Fisher's exact test
- Instead of lectures 8-10: Group work
- Lectures 11-12: Graphical models

