
symmehtic
$n \times n$ table
of zeroes \& ones

fons $[0,1]^{2} \rightarrow\{0,1\}$
constant on subsquares
of size $\frac{1}{n} \times \frac{1}{n}$.

n verter graph

ヘ.
SRL
in L_{1}
E-Approximated by piecenise constan \rightarrow functions $[0,1] \rightarrow[0,1]$ on boxes of

$$
\text { size } \frac{1}{m} \times \frac{1}{m}
$$

$$
0<m \ll n
$$

Used SRL to prove Erdós-Stone: For wary ε, s : If $161^{=n}$ large cong and G has $t_{r-1}(n)+E_{n}^{2}$ eyes, then G contains a $T_{r}(s)$

Idea:
if 6 has $>t_{r_{-1}}(n)$ edges.
then it must have a K_{r} subset
If 6 has $>t_{n-1}\left(C_{1}\right)+\varepsilon_{n}{ }^{2}$ ed for,
then it has, a blown up K_{r}

Blown y Regularity graph R_{s} has a
blown ye complete subs eph $\quad\left(K_{r}\right)_{s}=T_{r}\left(r_{r}\right)$
bonded degree

$$
161 \geqslant n_{0}=10^{10^{10}} \quad s=10^{80} \quad \varepsilon=10^{-4 .} \quad r=3
$$

$\|_{\lambda}^{\|G\|}=\frac{n^{2}}{4}+\frac{n^{2}}{10^{4}}$, then it has a \#efoes blown up triangle

Ramsey Theory
"Every large enough gogh (in terms of $|V|$ - no need to increase $|E|$) conking either H or its complanet had a L"
"Complete Lisonder is impossible"
Prop In a group of 6 , there are always 3 mutual non.trieds. or 3 mutual friends. In ar grape 6 with $101=6$, wither $K_{3} \subseteq G$ or $K_{3} \subseteq \bar{G}$
Proofs NTS: if 1 colon the offer of K. blued red, there is either a blue or a red triangle.

Fix a vertex

Without log, assume is has $\geqslant 3$ blue edges sain out, to a, b, c.
If a, b, c not a red trimgle, say $a-b$ is blue edge, then u-a blue triangle.

This/ is best possible
(6)

2- cowed K_{5} with no monochrome. triangles.

Def: Let st $\in \mathbb{N}$, $R(s, t)$ smallest N st every red-blue colowing of K_{1} contains, a blue $K_{\text {s }}$ or a red K_{t}.
E_{x} :

$$
\begin{aligned}
& R(3,3)=6 \\
& R(s, t)=R(t, s)
\end{aligned}
$$

$$
R(s, 2)=s \text { (either there }
$$

Lm: $\quad R(s, t)$ finite for all st. namely:

$$
R(s, t) \leq\binom{ s+t-2}{s-1}
$$

Let 6 be a 2-coloured

$$
\underbrace{}_{N_{N_{1}}^{R\left(r_{1}, t\right)}}+\underbrace{R\left(s_{1}, t-1\right)}_{N_{2}} .
$$ edje

$$
\text { Fix } u \in G
$$

u has

$$
\begin{gathered}
N_{1}+N_{2}-1 \\
\text { a boos, } \\
\text { so by/ } \\
\text { pijonatole }
\end{gathered}
$$

principle,
either Ni blue edges ont,
or N_{z} red ester out
Assume wog N_{1} blue edges. Let the set of nibows of n with blue edges be A.
Inside A is a blue $\begin{gathered}K_{s-r} \text { or } \\ K_{t} \\ \text { red }\end{gathered}$

$$
\begin{aligned}
& \text { If } A \text { has a red } K_{t} \\
& \text { then } G \text { " } \\
& \text { If } A \text { hal " blue } K_{f-1}
\end{aligned}
$$

If ${ }^{A}$ has ci blue K_{f-1} blue

$$
\begin{array}{lr}
R(3,3)=6 \\
R(4,4)=18 \\
R(5,5)=? & \\
R(6,6)=? ? ? ? & R(5,5) \leqslant\binom{ 25-2}{5-1} \\
& \approx \begin{array}{c}
\text { c } \frac{2^{2,-2}}{\sqrt{s}} \\
\\
\end{array}
\end{array}
$$

Def: $R\left(s_{1} \ldots s_{k}\right)$ smallest N st. every k-colowning of K_{N} has a $K_{s i}$ with colour i for some $i=1 \ldots k$.

Th $m_{0}: \quad R\left(s_{1}, \ldots, s_{k}\right) \leqslant R\left(R\left(s_{1}, s_{2}\right), s_{3}, \ldots s_{k}\right)$
k-colowed
$R_{\text {ansey amber }}$
$(k-1)$-coloured Ramsey number (in particular, all Ramsey numbers $\begin{gathered}\text { are finite.) }\end{gathered}$

Note (base case) $R\left(s_{1}, t\right)=R\left(R C_{s}, t\right)$
Prop: Ni: In a k-colouring of K_{N},
there is a C_{i}-coloured $\left.N=R\left(R C_{1}, s_{2}\right), s_{3} \ldots s_{i}\right)$
si-clifue
tor same it
1 know there is either C_{k}-colowete $K_{S_{k}}$
or ε_{k-1}-colonel $K_{S_{k}}$,
or c_{3}-coloured $K_{s_{3}}$
or $C_{1}\left(c_{2}\right.$-colowed $R\left(R\left(s_{\left.1, s_{2}\right)}\right)\right.$
in this case, either c_{1}-colonel K_{s}, or C_{2}-coloured $K_{s_{2}}$.

Obs: $R(s, t) \leq N$ mears that any staph
G on N sodes has $\alpha(\sigma) \geqslant t$
or $\omega(6) \geqslant s$
Thm: (Erdos, 1iu7)

$$
R(s, s)>\sqrt{2}^{s}
$$

Pf: NTs exish groph on $n \approx \sqrt{2}^{s}$ nodes with $\alpha(G)<s$ $\omega(6)<s$.
Consider all $Z^{\left(\frac{1}{2}\right)}$ graphs on n sodes.

A given set of s aodes is

- a clifue in $2^{\left(\frac{1}{2}\right)-\left(\frac{5}{2}\right)}$ of these
- a indep sel in $2^{\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)}$ of there froph

So \# graphs withe no s-tuple is clique or indef

$$
\geqslant 2^{\binom{n}{2}}-\binom{n}{s} \cdot 2 \cdot 2^{\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)}=A
$$

Done if we can show $A>0$
wives

$$
\begin{aligned}
2^{\binom{1}{2}} \stackrel{?}{>}\binom{1}{5} \cdot 2 \cdot 2^{(2)-\binom{5}{2}} \\
1 \stackrel{?}{>}\binom{1}{5} \cdot 2^{1-\left(\frac{3}{2}\right)}
\end{aligned}
$$

this holds for $n=\sqrt{2}^{s}$

The: $R_{k}(3)=R(\underbrace{3, \ldots 3)}_{k \text { colours }} \leqslant$ eck $!]+1$
PF: By induction. $k=2$

$$
R(3,3)=6=\left[e^{-}\right]+1
$$

Suppose x is a vertex of a k-coloured graph on $N=k\left(R_{k-1}(3)-1\right)+1$ nodes

If a red ede within the set of red (by pigeon hole) n'bours of x then Otherwise red shod of $\times{ }^{\text {rel }} k_{3}$. $k-1$-colours, so monochron Δ.

$$
\begin{aligned}
& R_{k}(3) \leqslant k\left(R_{k-1}(3)-1\right)+1 \\
& R_{2}(3)=6
\end{aligned}
$$

The number sequence defined by

$$
\begin{aligned}
& a_{2}=6 \\
& a_{k}=k a_{k-1}-k+1
\end{aligned}
$$

is $a_{k}=\lfloor e k!\rfloor+1$
$\left(\begin{array}{c}\text { simple calculation } \\ \text { using } \\ e=\sum_{j=0}^{\infty} \frac{1}{j!}\end{array}\right)$

