Statistical Mechanics
FO415

Fall 2020, lecture 5
Percolation: a phase transition



Take home (previous)

Take home (Sethna Chapter 10 plus additional material Ginzburg-Landau theory: Chaikin-Lubensky, Principles of
Condensed Matter Physics, Ch. 4.1-4.4 and Ch. 10.1 and 10.2.).

Read the chapter, and the parts of Ginzburg-Landau theory. Check also the cluster Monte Carlo algorithms (the web is full
of lecture notes, and Wikipedia has a good article on the S-W algorithm): do you think you understand why they work?

Here we introduce the Ising model as the paradigm of statistical ph?Isics and phase transitions. The book discusses the
model and how to study it by computational means. The CL-part tells how a "coarse-grained" theory is formed for the
Ising model (and its variants and other systems; "phase-field model" is a key concept).

The random field Ising model (RFIM) comes when you introduce the random fields to each site. The RFIM has a phase
diagram like the normal Ising except that random fields can destroy ferromagnetic order at any temperature if they are
strong enough.

How would the random field affect a) a GL-theory (what is the free energy like?) and b) the physics of a domain wall?

Then check the following application of the model: https://link.springer.com/article/10.1140/epjb/e2005-00307-0

Read through the paper. How would you simulate the model - how do the random fields enter the picture? Put the model
on a 2D lattice, with a fixed set of neighbors for each "opinion" for that purpose.
What kind of transitions would you expect in this system?

(For those interested please see https://www.cfm.fr/work-with-us/#0ur%20internships for summer jobs)



https://link.springer.com/article/10.1140/epjb/e2005-00307-0
https://www.cfm.fr/work-with-us/#Our%20internships

Answers...

"GL-theorY] is @ mean field theory, i.e. it
assumes that the order parameter is
uniform, at least near the critical
temperature. Therefore, adding random
fields to the Ising model affects the free
energy in GL-theory only via the average
effect on the local order parameters. With
the mean field treatment, the effect of an
added random fields is the same as that o
a uniform field that is as strong as the
average of the random field contributions."

"Let F(x) be a random field. In GL-theory, if
(F) =0, there is no effect on the theory.
This is due to that GL-theory is a mean field

theory."

"As for the domain walls, the random fields
would guide the location of the different
clusters of spins. It would be more
energetically favorable for the domain wall
to form in an area where the sign of the
random field is suitable. However, with less
possible microstates corresponding to a
given energy, the entropy of some of these
configurations would be lower than without
the random fields, thus increasing the free
energy. Some kind of balance would need
to be achieved, and this is also of course
?_ffledctcle'd by the strength of the random
ields.
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Locally varying OP, locally varying RF

Result (H breaks the parity T | |
symmetry, “-Hm”) reads then: *‘:/ {” m o+ goaMmt+ 301 (Tm)" +. }

"As for the domain walls, the random fields
would guide the location of the different
clusters of spins. It would be more
energetically favorable for the domain wall
to form in an area where the sign of the
random field is swgge. However, with less
possible microsta orresponding to a
given energy, the entropy of some of these
configurations would be lower than without
the random fields, thus increasing the free
energy. Some kind of balance would need
to be achieved, and this is also of course
?_ffledctcle'd by the strength of the random
ields.

Locally varying field, where is the DW and
how does it move?



Last point (answers)

"In the opinion formation model, the random field is, as it's called in the paper, the idiosyncratic field. Essentially, a
random term phi_iis added to the local Hamiltonian of each site. This could then be simulated with a Metropolis-type
algorithm, flipping opinions randomly with probabilities based on the local Hamiltonians, while varying the global
strength of the imitation interactions. Over a certain threshold, | would expect there to be similar sudden transitions as
in the basic Ising model, maybe spread out a bit more since due to the random fields some clusters would be more
susceptible to the imitation than others (you could say that the critical point would vary locally)."

"So RFIM is suitable for the realistic case where every one has different inclination on his/her own opinion. If simulating
the model according to Eq. (1) in the paper, | would set J>Jc with a strong positive F(t), and to see what would happen if
F(t) suddenly goes to 0 or strong negative.The setting somehow has a link with Cultural Revolution of China or the
Dissolution of U.S.S.R in my mind...will people start to have different opinions (small F(t)) / be diverted to the other
polor (strong negative F(t)) in a relatively short lapse, or will the inertia be in effect for some time?"

"-- On a 2-dimensional lattice with the paper’s opinion model, I'd expect that in areas where the (random) correlation in
the opinions of the individuals is high, the consensus would start to form and depending on the strength of the social
pressure effects, the consensus would then, more or less, start to spread from these initial areas of correlated opinions.
In case of (&) —F=0 I'd expect that "bubbles” of consensus form as in real life, meaning that neither of the opinions
wins.With {¢) -F different from 0, I'd think that the other opinion would eventually win."



Summary of a geometrical phase transition

 What is percolation?

* How does it depend on typical parameters like the dimension?
* What kind of physics might be important for?

* What kind of quantities turn out to be important?



What is percolation?

The study of connectedness

“How far can | go?” —idea of a
cluster (of size s, with a given p).

What is this transition at a p_ like?

What does it depend on and not
depend on?

Why is it relevant?

Suppose a large porous rock is submerged
under water for a long time, will the water
reach the center of the stone?

(Broadbent and Hammersley, 1957)
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Main definitions

Y

=< L >

» a cluster is a group of nearest-neighbor occupied sites
» the size s of a cluster is the number of sites in this cluster

« the critical occupation probability p_is the probability p at
which an infinite cluster appears for the first time in an infinite
lattice



Conductivity of random systems

Electrical transport properties of percolating random networks

of carbon nanotube bundles

EPL, 91 (2010) 47002

CNT bundle systems: some CNT segments are
semiconducting, some are metallic due to impurities
(or not). Make a network: is it a good transistor?
Which network conducts or in other words
percolates?
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Main properties in a lattice

 bond percolation - all nodes on the lattice are occupied, the
edges between neighbors may be open (present) with
probability p or closed with probability I-p; edges are
assumed to be independent
« example: liquid poured on top of some porous material

» site percolation - all edges are open, a node is occupied
with probability p
* more general approach
« every bond model may be reformulated as a site model on a

different lattice but not vice versa

« onset of percolation - critical occupation probability p_
« probability that a site belongs to the infinite cluster, P_(p)
« geometry of the infinite cluster at p=p_and p>p_

Maln q ua ntltles or q uestlons « if one excludes the infinite cluster:

» average cluster size, y(p)
» typical size of the largest cluster, s(p)

* typical radius (linear size) of the largest cluster, &(p)



Examples of thresholds

2D vs 3D (or ND): p. and its
trends

Site vs. bond thresholds

In a fixed dimension:
threshold vs. lattice type

(Value: math vs. physics vs.
numerics)

l Lattice

[ = nn ’ Site percolation I

Bond percolation |

1d 2 1
2d Honeyeomb 3 0.6962 | 1 = 2sin(7/18) = (0.65271
2d Square l 0.592746 1/2
2d Triangular 6 1/2 2sin(m/18) = 0.34729
3d Diamond | 0.43 (). 388
3d Simple cubic f 0.3116 (.2488
3d BCC 0.246 (0.1803
dd FCC (.198 .119
id Hypercubic 0.197 0.1601
¢ ||1.p(‘t'f‘1*hnr 141 0.1182




Percolation property Il

The largest cluster
either percolates or
not.

This defines a
probability and a
phase transition.

The transition is
second order:
correlation length
diverges
continuously. (Or: it
is usually 2"9 order.)

My(p, L = o)

0.8

0.6~

0.4

0.2

0 »
|
|
|
|
|

|
Phase'transition
" No percolating cluster 1| Percolating cluster
Sub-critical p < p,  Super-critical p > p,
|

\
Critical}p =pPc
|

|
| L L L | |
0.2 0.4 0.6 0.8 1
P \

Critical point

1
| Pac(p; L=0ox) picks up abruptly for p > pc
o.gl. Pec(piL=00) = 0forp<pc
0.6
0.4+
o2l No percolating cluster Percolating cluster
. ] . | . | \ | .
08 0.2 0.4 0.6 0.8 1

p




What is the percolating cluster like?

The mass is not volume-like

The structure is “tenuous” — the
cluster can be broken up by
“cutting” or “red bonds” —if you
do transport phenomena
(conductivity...) on the cluster the
physics comes from these.

The perimeter is an interesting
random walk-process — Stochastic
Lowner Evolution....



Mass of the spanning cluster, correlation length

m o LY fractal dimension df o — T

91/48 in 2D, an universal value
(little bit less than 21) o | 7

Mass scaling above defines an e I
exponent for the mass above the 108
transition, B, 2D 5/36, 3D 0.14 o |

Correlation length exponent &, 2D i
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Example: 1D case (in probability)

Exactly solvable, but boring case.

Similar problems are found on
trees (Bethe lattice, Cayley tree).

They generalize into other
connectivity problems (“2-
connectivity” or rigidity,
combinatorial
optimization/Satisfiability
problems...).




Notes on scale-free behavior

Re-scale lengths
(or time) —
avalanche/cluster
size and the pdf
also re-scale.

Pdf invariant, solve
for D(S).

More complicated
examples (book).

'=¢/B=¢/(1+e),
S' = 8§/C = S/(1 + ce),
D" = AD = D(1 + ae).

D'(8') = AD(S) = AD(CS') = (1 + ae)D((1 + ce)S").

D(S') = D'(S") = (1 + ae)D((1 + ce)S’),

0 =aeD + :::ES’%,
dD _ aD
dS =~ ¢S’

D = DS~ */°.



Renormalization (easy case

1. Divide the lattice into blocks of linear size b (in terms of the lattice constant) with each block
containing a few sites (spin).

2. Neuxt, the coarse graining procedure takes place. The sites in the blocks are averaged in some Real space’ k Space IS the usual

way (to be specified more precisely shortly) and the entire block is replaced by a single su- and ha rd ca Se
[ X ]

per site (spin) which is occupied with a probability according to the renormalisation group
transformation p' = Ry(p).

In the combined procedure 1 and 2. one should keep the symmetry of the original lattice such
that we can repeat the coarse graining procedure again. The result of these two operations are
to create a new lattice whose fundamental spacing is b times as large as the original lattice.

3. Restore original lattice constant by rescaling the length scales by the factor b.
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Next exercise

4.1 1D Ising HOMEWORK (5 points)

Consider the one-dimensional Ising model, with Hamiltonian

N
H=-1> SSu—-HY S, 1)
i=1

where S; = 41 are ’spins’ in chain, .J is the coupling strength and H the external field.
The 1D Ising model can be solved exactly and here we do it step-by-step.

(a) Start by writing the canonical partition function

Iy = Z(_-xp [—5H], (2)
{si}
where the second term of the exponential function in the Hamiltonian has form -+ >7.(S; +

Siy1).

(b) From the obtained expression for the partition function, one can modify it to Zy =
Z_‘,.l._s.z_w‘,,v l_[[\: L T'(S;, Si1). By expanding T'(S;, Siy1) to a 2 x 2 transfer matriz

T(+,+) 1'(+.—>> .
T = =(...), 3
(T(—«+) r(~-)) =) ®)
show that the partition function is a trace of a product of N transfer matrices, i.e. Zy =
Te(T)N.

(e) Solve for the eigenvalues Ay, Ay (with Ay > X\y) of T and argue that Zy ~ A\ in the
thermodynamic limit.

(d) From the above expression for the partition function, compute the free energy per site
g(T, H) = limy 00 (—ﬁ log Z,,) .

(e) Finally, you get the magnetization m(T, H) from the free energy by

m(T.H) = — (j—f])r (4)

If H =0, does the system undergo a phase transition as the temperature is lowered?

4.2 The Ising model (Sethna 8.1 p. 174)

The Ising Hamiltonian in 2D is:
H=-T> SS—HY S (5)

where S; = +1 are ’spins’ on a square lattice, and the sum > iy 18 over the four nearest-
neighbor bonds (each pair summed once). It is conventional to set the coupling strength
J = 1 and Boltzmann’s constant kg = 1, which amounts to measuring energies and
temperatures in units of .J. The constant H is called the external field, and M = 3", Si is
called the magnetization.

Play with the simulation. At high temperatures, the spins should not be strongly corre-
lated. At low temperatures the spins should align all parallel, giving a large magnetization.
Roughly locate T, , the largest temperature where distant spins remain parallel on average
at H = 0. Eaplore the behaviour by gradually lowering the temperature from just above T,
to just below T.; does the behaviour gradually change, or jump abruptly (like water freezing
to ice)? Eaxplore the behaviour at T = 2 (below T..) as you vary the external field H = £0.1
up and down through the ‘phase boundary’ at H = 0. Does the behaviour vary smoothly in
that case?

If using the software suggested by Sethna, try also changing the update method and see
how the cluster algorithm works in practice.

4.3 Ising self-similarity (Sethna 12.1 p. 282)

Run a large Ising system at zero external field and 7" = 7. = 2/log(1 + 2) =~ 2.26919.
Run for at least a few hundred sweeps to equilibrate. You should see a fairly self-similar



Take home 5

* We concentrate on Sethna Ch 12 and percolation. Study the first two sections (12.1,
12.2). You may also read through the rest of the chapter. On percolation, there is a lot
of material available. We woul
recommend http://www.ams.org/publicoutreach/feature-column/fcarc-percolation for
a mathematical viewpoint, which may be entertaining. It shortly explains how
percolation is related to conformal invariance.

Check out also Kim Christensen's lecture notes on easily solvable percolation

problems, https://web.mit.edu/ceder/publications/Percolation.pdf. Spend a moment in
understanding how the cluster size distribution is derived (Equations 1.1-1.3) and the
same for the correlation length in 1D (1.9-1.10, roughly). The analysis of the Bethe
lattice percolation is entertaininﬁ but it is useful for our purposes (at most) for showing
what kind of quantities one might want to compute.

A final piece of reading is the lecture note for engineers, http://www.idc-
online.com/technical references/pdfs/chemical engineering/Percolation.pdf, which
Introduces to some practical applications.



http://www.ams.org/publicoutreach/feature-column/fcarc-percolation
https://web.mit.edu/ceder/publications/Percolation.pdf
http://www.idc-online.com/technical_references/pdfs/chemical_engineering/Percolation.pdf

Note on take-home’s

Please remember, that the
purpose is NOT to answer
correctly. The purpose is that you
answer SOMETHING (and think
about the question and the

material).

That is sufficient for “passing” the
qguestion (read: getting the
points).



.... Questions...

The take-home questions are two. Check the real-space renormalization
art of the KC (1.9 section). Try out that for 1D percolation, eg. draw what
appens to the system as you coarse-grain it (to larger scalesﬁ

The last set of notes in particular mentions again the conductivity problem
(e.g. take a system of insulating/conducting sticks, look at the conductivity
when such sticks percolate by varying their fraction and assuming the
system is connected anyways, or a bond percolation system say in 2d).
Another variant of this is the elasticity of the percolation cluster, imagine
that the sticks are very very soft or very hard springs so that the
percolation transition leads to the stiffening of the whole thing.

Both of these "transport quantities" are described by their own exponents
(conductivity and elasticity). The question to answer is: which of these has
a bigger value? Does the conductivity or the elastic modulus increase
faster? Do you have an argument why?



