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Fall 2020, lecture 5
Percolation: a phase transition



Take home (previous)

• Take home (Sethna Chapter 10 plus additional material Ginzburg-Landau theory: Chaikin-Lubensky, Principles of 
Condensed Matter Physics, Ch. 4.1-4.4 and Ch. 10.1 and 10.2.). 

Read the chapter, and the parts of Ginzburg-Landau theory.  Check also the cluster Monte Carlo algorithms (the web is full 
of lecture notes, and Wikipedia has a good article on the S-W algorithm): do you think you understand why they work?

Here we introduce the Ising model as the paradigm of statistical physics and phase transitions. The book discusses the 
model and how to study it by computational means. The CL-part tells how a "coarse-grained" theory is formed for the 
Ising model (and its variants and other systems; "phase-field model" is a key concept).

The random field Ising model (RFIM) comes when you introduce the random fields to each site. The RFIM has a phase 
diagram like the normal Ising except that random fields can destroy ferromagnetic order at any temperature if they are 
strong enough.

How would the random field affect a) a GL-theory (what is the free energy like?) and b) the physics of a domain wall?

Then check the following application of the model: https://link.springer.com/article/10.1140/epjb/e2005-00307-0

Read through the paper. How would you simulate the model - how do the random fields enter the picture? Put the model 
on a 2D lattice, with a fixed set of neighbors for each "opinion" for that purpose.
What kind of transitions would you expect in this system?

(For those interested please see https://www.cfm.fr/work-with-us/#Our%20internships for summer jobs)

https://link.springer.com/article/10.1140/epjb/e2005-00307-0
https://www.cfm.fr/work-with-us/#Our%20internships


Answers…

"GL-theory is a mean field theory, i.e. it 
assumes that the order parameter is 
uniform, at least near the critical 
temperature. Therefore, adding random 
fields to the Ising model affects the free 
energy in GL-theory only via the average 
effect on the local order parameters. With 
the mean field treatment, the effect of any 
added random fields is the same as that of 
a uniform field that is as strong as the 
average of the random field contributions."

"Let F(x) be a random field. In GL-theory, if
〈F〉= 0, there is no effect on the theory. 
This is due to that GL-theory is a mean field 
theory."

"As for the domain walls, the random fields 
would guide the location of the different 
clusters of spins. It would be more 
energetically favorable for the domain wall 
to form in an area where the sign of the 
random field is suitable. However, with less 
possible microstates corresponding to a 
given energy, the entropy of some of these 
configurations would be lower than without 
the random fields, thus increasing the free 
energy. Some kind of balance would need 
to be achieved, and this is also of course 
affected by the strength of the random 
fields."
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YesNo

No

Locally varying field, where is the DW and 
how does it move? 

Locally varying OP, locally varying RF 



Last point (answers)
"In the opinion formation model, the random field is, as it's called in the paper, the idiosyncratic field. Essentially, a 
random term phi_i is added to the local Hamiltonian of each site. This could then be simulated with a Metropolis-type 
algorithm, flipping opinions randomly with probabilities based on the local Hamiltonians, while varying the global 
strength of the imitation interactions. Over a certain threshold, I would expect there to be similar sudden transitions as 
in the basic Ising model, maybe spread out a bit more since due to the random fields some clusters would be more 
susceptible to the imitation than others (you could say that the critical point would vary locally)."

"So RFIM is suitable for the realistic case where every one has different inclination on his/her own opinion. If simulating 
the model according to Eq. (1) in the paper, I would set J>Jc with a strong positive F(t), and to see what would happen if 
F(t) suddenly goes to 0 or strong negative.The setting somehow has a link with Cultural Revolution of China or the 
Dissolution of U.S.S.R in my mind...will people start to have different opinions (small F(t)) / be diverted to the other 
polor (strong negative F(t)) in a relatively short lapse, or will the inertia be in effect for some time?"

"-- On a 2-dimensional lattice with the paper’s opinion model, I’d expect that in areas where the (random) correlation in 
the opinions of the individuals is high, the consensus would start to form and depending on the strength of the social 
pressure effects, the consensus would then, more or less, start to spread from these initial areas of correlated opinions. 
In case of〈φ〉−F= 0 I’d expect that ”bubbles” of consensus form as in real life, meaning that neither of the opinions 
wins.With〈φ〉−F different from 0, I’d think that the other opinion would eventually win."



Summary of a geometrical phase transition

• What is percolation?

• How does it depend on typical parameters like the dimension?

• What kind of physics might be important for?

• What kind of quantities turn out to be important?



What is percolation?

The study of connectedness

“How far can I go?” – idea of a 
cluster (of size s, with a given p).

What is this transition at a pc like?

What does it depend on and not 
depend on?

Why is it relevant?



Main definitions



Conductivity of random systems

CNT bundle systems: some CNT segments are 
semiconducting, some are metallic due to impurities 
(or not). Make a network: is it a good transistor? 
Which network conducts or in other words 
percolates?



Main properties in a lattice

Main quantities or questions



Examples of thresholds

2D vs 3D (or ND): pc and its 
trends 

Site vs. bond thresholds

In a fixed dimension: 
threshold vs. lattice type

(Value: math vs. physics vs. 
numerics)



Percolation property Π∞
The largest cluster 
either percolates or 
not. 

This defines a 
probability and a 
phase transition.

The transition is 
second order: 
correlation length 
diverges 
continuously. (Or: it 
is usually 2nd order.)



What is the percolating cluster like?

The mass is not volume-like

The structure is “tenuous” – the 
cluster can be broken up by 
“cutting” or “red bonds” – if you 
do transport phenomena 
(conductivity…) on the cluster the 
physics comes from these.

The perimeter is an interesting 
random walk-process – Stochastic 
Lowner Evolution….



Mass of the spanning cluster, correlation length

𝑚 ∝ 𝐿𝑑
𝑓

, fractal dimension 𝑑𝑓

91/48 in 2D, an universal value 
(little bit less than 2!)

Mass scaling above defines an 
exponent for the mass above the 
transition, β, 2D 5/36, 3D 0.14

Correlation length exponent ξ, 2D 
4/3, 3D 0.88

Exponents universal! (Bond/site, 
lattice type)



Example: 1D case (in probability)

Exactly solvable, but boring case.

Similar problems are found on 
trees (Bethe lattice, Cayley tree).

They generalize into other 
connectivity problems (“2-
connectivity” or rigidity, 
combinatorial 
optimization/Satisfiability 
problems…).



Notes on scale-free behavior

Re-scale lengths 
(or time) –
avalanche/cluster 
size and the pdf 
also re-scale.

Pdf invariant, solve 
for D(S).

More complicated 
examples (book).



Renormalization (easy case)

Real-space, k-space is the usual 
and hard case…



Next exercise



Take home 5

• We concentrate on Sethna Ch 12 and percolation. Study the first two sections (12.1, 
12.2). You may also read through the rest of the chapter. On percolation, there is a lot 
of material available. We would 
recommend http://www.ams.org/publicoutreach/feature-column/fcarc-percolation for 
a mathematical viewpoint, which may be entertaining. It shortly explains how 
percolation is related to conformal invariance.

Check out also Kim Christensen's lecture notes on easily solvable percolation 
problems, https://web.mit.edu/ceder/publications/Percolation.pdf. Spend a moment in 
understanding how the cluster size distribution is derived (Equations 1.1-1.3) and the 
same for the correlation length in 1D (1.9-1.10, roughly). The analysis of the Bethe 
lattice percolation is entertaining but it is useful for our purposes (at most) for showing 
what kind of quantities one might want to compute.

A final piece of reading is the lecture note for engineers, http://www.idc-
online.com/technical_references/pdfs/chemical_engineering/Percolation.pdf, which 
introduces to some practical applications.

http://www.ams.org/publicoutreach/feature-column/fcarc-percolation
https://web.mit.edu/ceder/publications/Percolation.pdf
http://www.idc-online.com/technical_references/pdfs/chemical_engineering/Percolation.pdf


Note on take-home’s

Please remember, that the 
purpose is NOT to answer 
correctly. The purpose is that you 
answer SOMETHING (and think 
about the question and the 
material).

That is sufficient for “passing” the 
question (read: getting the 
points).



…. Questions…

The take-home questions are two. Check the real-space renormalization 
part of the KC (1.9 section). Try out that for 1D percolation, eg. draw what 
happens to the system as you coarse-grain it (to larger scales).

The last set of notes in particular mentions again the conductivity problem 
(e.g. take a system of insulating/conducting sticks, look at the conductivity 
when such sticks percolate by varying their fraction and assuming the 
system is connected anyways, or a bond percolation system say in 2d). 
Another variant of this is the elasticity of the percolation cluster, imagine 
that the sticks are very very soft or very hard springs so that the 
percolation transition leads to the stiffening of the whole thing.

Both of these "transport quantities" are described by their own exponents 
(conductivity and elasticity). The question to answer is: which of these has 
a bigger value? Does the conductivity or the elastic modulus increase 
faster? Do you have an argument why?


