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Kernel methods

Key characteristics of kernel methods:

• Embedding: Inputs x ∈ X from some input space X are embedded

into a feature space F via a feature map φ : X 7→ F . φ may be

highly non-linear and F potentially very high-dimensional vector

space

• Linear models: are built for the the patterns in the feature space

(typically wTφ(x)); efficient to find the optimal model, convex

optimization

• Kernel trick: Algorithms work with kernels, inner products of

feature vectors κ(x, z) =
∑

j φj(x)φj(z) rather than the explicit

features φ(x); side-step the efficiency problems of

high-dimensionality

• Regularized learning: To avoid overfitting, large feature weights

are penalized, separation by large margin is favoured
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Data analysis tasks via kernels

Many data analysis algorithms can be ’kernelized’, i.e. transformed to an

equivalent form by replacing object descriptions (feature vectors) by

pairwise similarities (kernels):

• Classification (SVM)

• Regression

• Ranking

• Novelty detection

• Clustering

• Principal component analysis, canonical correlation analysis

• Multi-label/Multi-task/Structured output

• ...

More of the tasks beyond classification will be discussed at the course

Kernel Methods in Machine Learning (Spring 2021 by Rohit Babbar)

2



Modularity of kernel methods

• Algorithms are designed that work with arbitrary inner products (or

kernels) between inputs

• The same algorithm will work with any inner product (or kernel)

• This allows theoretical properties of the learning algorithm to be

investigated and the results will carry to all application domains

• Kernel will depend on the application domain; prior information is

encoded into the kernel
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What is a kernel?

• Informally, a kernel is a function that calculates the similarity

between two objects, e.g.

• two proteins

• two images

• two documents

• . . .

• xi ∈ X and xj ∈ X

• X = set of all proteins in the nature (finite set)

• X = all possible images (infinite set)

• X = all possible documents (infinite set)

• κ : X × X → R
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Data and Feature maps

• We assume inputs x to come from an arbitrary set X :

• Vectors, matrices, tensors

• Structured objects: Sequences, hierarchies, graphs

• We further assume the data items can be expressed as objects in

some feature space F

• Typically F is a space of feature vectors, F ⊆ RN , where N is the

dimension of the feature space, or more generally matrices or tensors.

• Inputs x are mapped to this space by a feature map φ : X 7→ F

• φ(x) is the image of the data item in the feature space
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What is a kernel?

• Formally: a kernel function is an inner product (scalar product, dot

product) in a feature space F ,denoted by 〈·, ·〉F
• Often the subscript F is dropped when it is clear from context

• Linear kernel: If x ∈ Rd and the feature map φ(x) = x is the

identity, then F = Rd and the resulting kernel

κlin(x, z) = 〈φ(x), φ(z)〉F = 〈x, z〉Rd

is called the linear kernel

• Linear kernel therefore corresponds to the dot product in Rd

κlin(x, z) =
d∑

j=1

xjzj = xT z
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Geometric interpretation

• Geometric interpretation of the linear kernel: cosine angle between

two feature vectors

cosβ =
xT z

‖x‖2 ‖z‖ 2
=

κlin(x, z)√
κlin(x, x)

√
κlin(z, z)

,

where

‖x‖2 =
√
κlin(x, x) =

√
〈x, x〉 =

√√√√ n∑
j=1

x2j

is the Euclidean norm.
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Kernel vs. Euclidean distance

• Assume two vectors x, z ∈ Rn with unit length ‖x‖2 = ‖z‖2 = 1

• Kernel: κ(x, z) = xT z

• Euclidean Distance: d(x, z) = ‖x− z‖2 =
√∑n

k=1(xk − zk)2

• Expanding the squares and using unit length of the vectors we get:

1

2
d(x, z)2 =

1

2
‖x− z‖22 =

1

2
(x− z)T (x− z) =

=
1

2

(
‖x‖22 − 2xT z + ‖z‖22

)
= 1− xT z = 1− κ(x, z)
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Hilbert space*

Formally the underlying space of a kernel is required to be a Hilbert

space

A Hilbert space is a real vector space H, with the following additional

properties

• Equipped with a inner product, a map 〈., .〉, which satisfies for all

objects x , x ′, z ∈ H
• linear: 〈ax + bx ′, z〉 = a〈x , z〉+ b〈x ′, z〉
• symmetric: 〈x , x ′〉 = 〈x ′, x〉
• positive semi-definite: 〈x , x〉 ≥ 0, 〈x , x〉 = 0 if and only if x = 0

• Complete: every Cauchy sequence {hn}n≥1 of elements in H
converges to an element of H

• Separable: there is a countable set of elements {h1, h2, . . . , } in H
such that for any h ∈ H and every ε > 0 ‖hi − h‖ < ε.

On this lecture H = RN , where the dimension N is finite or infinite. Both

cases are Hilbert spaces.

* Advanced material; will not be examined
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The kernel matrix

• In kernel methods, a kernel matrix, also called the Gram matrix,

an m ×m matrix of pairwise similarity values is used:

K =


κ(x1, x1) κ(x1, x2) . . . κ(x1, xm)

κ(x2, x1) κ(x2, x2) . . . κ(x2, xm)
...

...
. . .

...

κ(xm, x1) κ(xm, x2) . . . κ(xm, xm)


• Each entry is an inner product between two data points

κ(xi , xj) = 〈φ(xi ),φ(xj)〉, where φ is a feature map

• Since an inner product is symmetric, K is a symmetric matrix

• The kernel matrix has size O(m2), processing it during

preprocessing, training and prediction time is the major factor of the

time-complexity of kernel methods

• The kernel matrix replaces the m × N matrix of feature vectors of

the training data ⇒ the kernel methods have computational edge

when N >> m
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The kernel matrix

• A symmetric matrix A ∈ Rm×m is positive semi-definite (PSD) if for

any vector v ∈ Rm, we have vTAv ≥ 0

• The kernel matrix corresponding to the kernel function

κ(x, z) = 〈φ(x),φ(z)〉 on a set of data points {xi}mi=1 is positive

semidefinite:

vTKv =
n∑

i,j=1

viKijvj =
m∑

i,j=1

vi 〈φ(xi ),φ(xj)〉vj =

=〈
m∑
i=1

viφ(xi ),
m∑
j=1

vjφ(xj)〉 = ‖
m∑
i=1

viφ(xi )‖2 ≥ 0

• Consequence: as a symmetric PSD matrix, kernel matrix K has

non-negative eigenvalues λ1 ≥ · · · ≥ λn ≥ 0
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PSD property and optimization

• Consider objective of the dual SVM optimization problem

OBJ(α) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjκ(xi , xj) =
m∑
i=1

αi −
1

2
αTHα

where

H =

(
∂2OBJ(α)

∂αi∂αj

)m

i,j=1

= (yiyjκ(xi , xj))mi,j=1

is the Hessian matrix of second derivatives of the objective

• If H is PSD OBJ(α) is concave (−OBJ(α) is convex), and has no

non-optimal local maxima

• However, H is PSD if and only if K is PSD

• Thus, a PSD kernel matrix K ensures that we can find a global

optimum by gradient descent approaches
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Non-linear kernels



Non-linear kernels

• By defining kernels that are non-linear functions of the original

feature vectors, a linear models (e.g. SVM classifier) can be turned

into a non-linear model

• However, the learning algorithm does not need to be changes, apart

from plugging in the new kernel matrix

• The most commonly used non-linear kernels:

• Polynomial kernel: κpol(x, z) = (xT z + c)q

• Gaussian (or radial basis function, RBF) kernel:

κRBF (x, z) = exp
(
−‖x− z‖2/(2σ2)

)
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Non-linear kernels: Polynomial kernel

• Given inputs x ∈ Rd , the polynomial kernel is given by

κpol(x, z) = (xT z + c)q

• Integer q > 0 gives the degree of the polynomial kernel

• Real value c ≥ 0 is a weighting factor for lower order polynomial

terms

• The underlying features are non-linear: monomial combinations

x1 · x2 · · · xk of degree k ≤ q of the original features xj
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Example: Polynomial kernel on 2D inputs

• Consider two-dimensional inputs x = [x1, x2]T ∈ R2

• The second degree polynomial kernel is given by

κ(x, x′) = (xTx′ + c)2

• We can write it as a inner product in R6:

κ(x, x′) = (xTx′ + c)2 = (x1x
′
1 + x2x

′
2 + c)2 =

= x1x
′
1x1x

′
1 + x2x

′
2x2x

′
2 + c2+

+ 2x1x
′
1x2x

′
2 + 2cx1x

′
1 + 2cx2x

′
2

=


x21
x22√
2x1x2√
2cx1√

2cx2, c



T 
x ′21
x ′22√
2x ′1x

′
2√

2cx ′1√
2cx ′2, c


= φ(x)Tφ(x′),

where φ(x) = [x21 , x
2
2 ,
√

2x1x2,
√

2cx1,
√

2cx2, c]T
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Non-linear kernels: Polynomial kernel

κpol(x, z) = (〈x, z〉+ c)q

A linear model in the polynomial feature space corresponds to a

non-linear model in the original feature space

• In the previous example, the model

wTφ(x) = w1x
2
1 +w2x

2
2 +w3

√
2x1x2+w4

√
2cx1+w5

√
2cx2+w6c = 0

is a second degree polynomial in the original inputs space, but a

hyperplane in the new 6-dimensional feature space

• Using the dual representation w =
∑m

i=1 αiyiφ(xi ), the polynomial

kernel allows non-linear classification in the input space by

wTφ(x) =
∑
i

αiyi 〈φ(xi ), φ(x)〉 =
∑
i

αiyiκ(xi , x)
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Example: XOR with polynomial kernel

Consider the following simple example:

• Input data points

{(−1,−1), (−1, 1), (1,−1), (1, 1)}
and the label (red = 1, blue =-1)

given by a XOR type function

y = x1x2 =

{
+1 if x1 = x2

−1 if x1 6= x2

• The classes are not linearly separable:

there is no consistent line that

separates the two classes
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Example: XOR with polynomial kernel

• However, map the data using the

feature map φ(x) =

[x21 , x
2
2 ,
√

2x1x2,
√

2cx1,
√

2cx2, c]T

underlying the polynomial kernel

function

• Now, the example data is linearly separable in the feature space, for

example, choose αi = 1/(4
√

2), for all i :

w =
∑
i

αiyiφ(xi ) =

= (φ([−1,−1]T )− φ([−1, 1]T )− φ([1,−1]T ) + φ([1, 1]T ))/(4
√

2)

= [0, 0, 1, 0, 0, 0]T

• We can consistently classify the example data by using the kernel

function κ(x, x′) = 〈φ(x), φ(x′)〉: h(x) = sgn
(∑m

i=1 αiyiκ(xi , x)
)
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Non-linear kernels: Polynomial kernel

• The dimension of the polynomial feature space is
∑q

r=0

(
d
r

)
= O(dq)

where d is the dimension of the input space X and q is the degree of

the polynomial

• Explicitly maintaining the feature map φ(x) and the weight vector

w, and evaluating the model wTφ(x) takes O(dq) time and space

• However, the polynomial kernel κ(x, x′) = (〈x, x′〉+ c)q can be

computed in time O(d) in preprocessing, and evaluated in constant

time

• Evaluating the model using the dual representation∑m
i=1 αiyiκ(xi , x) takes O(m) time

• Trade-off: No computational overhead from working in the

high-dimensional feature space, but linear dependency in the size of

training data
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Non-linear kernels: Gaussian kernel (Radial basis function ker-

nel, RBF)

κRBF (x, z) = exp
(
−‖x− z‖2/(2σ2)

)
• Gaussian kernel can be seen as a limit of polynomial kernels =⇒

corresponds to an infinite dimensional polynomial kernel

• Smoothness of Gaussian kernel is controlled by the parameter σ

• Higher-order features are exponentially downweighted.

• Proof: through power series expansion of ex =
∑∞

n=0
xn

n! and using

elementary properties of kernels (see Mohri book ch. 6 for details)
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Kernels and generalization



Rademacher complexity

• Assume a symmetric positive definite kernel κ : X × X 7→ R with

associated feature map φ, and a sample S of size m, with the kernel

matrix K = (κ(xi , xj))mi,j=1, and κ(xi , xi ) ≤ r2 for all i = 1, . . . ,m

• Empirical Rademacher complexity of the hypothesis class

H = {x 7→ 〈w, φ(x)〉 : ‖w‖ ≤ B}

for some B ≥ 0 satisfies (c.f. Mohri book for the proof)

R̂S(H) ≤
B
√

trace(K)

m

• The key quantities are

• the upper bound B of the norm of weight vector – relates to the

margin

• the trace of the kernel matrix

trace(K) =
∑m

i=1 κ(xi , xi ) =
∑m

i=1 ‖φ(xi )‖2 ≤ mr 2 – relates to the

norm of the data points
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Generalization error bound

• We can plug the above to a Rademacher complexity based

generalization bound (c.f. Lecture 3)

R(h) ≤ R̂(h) + R̂(H) + 3

√
log 2

δ

2m

≤ R̂(h) +
B
√
trace(K)

m
+ 3

√
log 2

δ

2m

• Evaluating this bond required observing the empirical risk of the

hypothesis R̂(h), the norm of the weight vector

B =
√∑m

i=1 αiαjyiyjκ(xi , xj), and the trace of the kernel matrix

• Note that we do not need to run simulations with random labelings

the above only requires computing the kernel matrix and the

hypothesis with the real training data
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Designing kernels



Several ways to get to a kernel

Approach I. Construct a feature map φ and think about efficient ways to

compute the inner product 〈φ(x),φ(x)〉

• If φ(x) is very high-dimensional, computing the inner product

element by element is slow, we don’t want to do that

• For several cases, there are efficient algorithms to compute the

kernel in low polynomial time, even with exponential or infinite

dimension of φ
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Several ways to get to a kernel

Approach II. Construct similarity measure and show that it qualifies as a

kernel:

• Show that for any set of examples the matrix K = (κ(xi , xj))mi,j=1 is

positive semi-definite (PSD).

• In that case, there always is an underlying feature representation, for

which the kernel represents the inner product

• Example: if you can show the matrix is a covariance matrix for some

variates, you will know the matrix will be PSD.
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Several ways to get to a kernel

Approach III. Convert a distance or a similarity into a kernel

• Take any distance d(x, z) or a similarity measure s(x, z) (that do not

need to be a kernel)

• In addition a set of data points Z = {zj}mj=1 from the same domain

is required (e.g. training data)

• Construct feature vector from distances (similarly for s):

φ(x) = (d(x, z1), d(x, z2), . . . , d(x, zm))

• Compute linear kernel, also know as the empirical kernel map:

κ(x, x′) = 〈φ(x),φ(x′)〉
• This will always work technically, but requires that the data Z

captures the essential patterns in the input space =⇒ need enough

data
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Several ways to get to a kernel

Approach IV. Making kernels from kernels

• Examples of elementary operations that give valid kernels when

applied to kernels κn, n = 1, 2, . . .

1. Sum: κ(x, z) = κ1(x, z) + κ2(x, z)

2. Scaling with a positive scalar: κ(x, z) = aκ1(x, z), a > 0

3. Itemwise product: κ(x, z) = κ1(x, z)κ2(x, z)

4. Normalization: κ(x, z) = κ1(x,z)√
κ1(x,x)κ1(z,z)

= 〈 φ(x)
‖φ(x)‖ ,

φ(z)
‖φ(z)‖ 〉

5. Pointwise limit: κ(x, z) = limn→∞ κn(x, z)

6. Composition with a power series of radius of convergence ρ:

κ(x, z) =
∑∞

n=0 anκ(x, z)n, with an ≥ 0 for all n, and |κ(x, z)| < ρ

• The operations can be combined to construct arbitrarily complex

kernels, e.g. polynomial kernels and Gaussian kernels can be derived

this way (see details in the Mohri book ch. 6)
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Kernels for structured data



Kernels for structured data

• In many applications the data does not come in the form of

numerical vectors or data matrices

• Assume that the data comes from a general set of objects

xi ∈ X , i , . . . ,m, and there is a feature map φ : X 7→ F , and the

corresponding kernel κ(xi , xj) = 〈φ(xi ), φ(xj)〉F
• We need to first convert our data x into vectorial form through

φ(x), or directly to kernels K = (κ(xi , xj))mi,j avoiding writing down

high-dimensional feature vectors
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Kernels for structured data

• Typically, the feature vectors will be sparse and very

high-dimensional (often exponential dimension in the size of original

data) =⇒ writing down the feature vectors φ(x) explicitly is not

efficient

• In many cases, efficient (low polynomial time) algorithms exist for

computing the kernels κ(xi , xj) directly from the structured data,

skipping the feature vector representation

• Examples include:

• Sequential data - text analysis kernels, string kernels

• Molecular data - graph kernels

• Structured documents, context-free grammars, classification

taxonomies, ... - tree kernels
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String kernels

• String kernels is a family of kernels between sequences based on

”counting” common subsequences two sequences have

• Underlying feature map, also called subsequence spectrum, contains

a feature for each possible substring

• The feature spaces included by subsequences are generally

exponential in the length of the subsequences

• However, low polynomial time algorithms (linear to quadratic time)

exist to compute string kernels
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String kernel Variations

Different kernels can be defined by changing the details

• Position dependency: substrings need to reside in same positions in

both strings

• Length of substrings: fixed, bounded, unbounded

• Gaps allowed/penalized: match non-contiguous subsequences

instead of substrings, downweight gappy ones

• Soft-matching between symbols: symbols can match several symbols

(with different weights)

• Factorized representations: mixing several representation levels in

one kernel

• Generalized alphabets: characters, syllables, words, motifs
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Kernels on graphs

• Graphs (or networks) are found in

many fields of life:

• Computer networks, internet:

computers + communication

channels

• Social networks: “people” +

“friendship”

• Bioinformatics, protein interaction

networks: protein molecules as

nodes, physical binding as edges

• Drug discovery: atom species as

nodes, bonds as edges

• Graph kernels are a large family of

kernels for measuring the similarity of

graphs
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Graph kernels

• Basic idea: count common substructures in two graphs

• Example substructures:

• Walks

• Paths

• Cyclic patterns

• Tree-shaped subgraphs

• (small) General subgraphs

• Generally:

• Huge sparse feature spaces, exponential in the size of the graphs

=⇒ we will not want to represent features explicitly

• Trade-off between computational complexity and accuracy, need to

avoid NP-hard problems but still use informative features

• Polynomial-time kernel computation possible for selected feature

representations
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Challenge: comparing graphs is hard

• Graph isomorphism

• Find a mapping f of the nodes of G to the nodes of H such that G

and H are identical; i.e. (x , y) is an edge of G iff (f (x), f (y)) is an

edge of H. Then f is an isomorphism, and G and F are called

isomorphic.

• No polynomial-time algorithm is known for graph isomorphism

• Neither is it known to be NP-complete

• Subgraph isomorphism

• Subgraph isomorpism asks if there is a subset of edges and nodes of

G that is isomorphic to a smaller graph H.

• Subgraph isomorphism is NP-complete

• Need polynomial time alternatives!
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Graph kernels based on random walks

Walk kernel idea:

• Count the number of matching walks in two graphs

• In an unlabeled graph two walks match if they have the same length

• In a labeled graph also the node and edge labels need to match
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Graph kernels based on random walks

• Two design choices:

1. Set a upper limit q on the length of walks

K(x, z) =

q∑
`=1

K`(x, z),

where Kl is the number of common walk of length `

2. Allow unlimited length walks, but weight exponentially decaying by

the length

K(x, z) =
∞∑
`=0

a`K`(x, z), 0 < a < 1

• In both cases, can be computed in polynomial time in the size of the

graphs, despite the exponential (first case) or infinite-dimensional

(second case) feature space
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Summary

• Kernel methods are a broad class of data analysis methods

• Kernels allow efficient non-linear learning in high-dimensional feature

spaces

• Special kernels can be designed for different data types such as

sequential or graph data

• Time-complexity of kernel methods generally scale quadratically in

the number of training points (due to the kernel matrix), which can

be a limitation when huge datasets are processed

• More on kernel methods on the course CS-E4830 Kernel methods in

machine learning (Spring 2021)
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