
CS-E4710 Machine Learning: Supervised

Methods

Lecture 6: Kernel methods

Juho Rousu

13. October, 2020

Department of Computer Science

Aalto University

Kernel methods

Key characteristics of kernel methods:

• Embedding: Inputs x ∈ X from some input space X are embedded

into a feature space F via a feature map φ : X 7→ F . φ may be

highly non-linear and F potentially very high-dimensional vector

space

• Linear models: are built for the the patterns in the feature space

(typically wTφ(x)); efficient to find the optimal model, convex

optimization

• Kernel trick: Algorithms work with kernels, inner products of

feature vectors κ(x, z) =
∑

j φj(x)φj(z) rather than the explicit

features φ(x); side-step the efficiency problems of

high-dimensionality

• Regularized learning: To avoid overfitting, large feature weights

are penalized, separation by large margin is favoured

1

Data analysis tasks via kernels

Many data analysis algorithms can be ’kernelized’, i.e. transformed to an

equivalent form by replacing object descriptions (feature vectors) by

pairwise similarities (kernels):

• Classification (SVM)

• Regression

• Ranking

• Novelty detection

• Clustering

• Principal component analysis, canonical correlation analysis

• Multi-label/Multi-task/Structured output

• ...

More of the tasks beyond classification will be discussed at the course

Kernel Methods in Machine Learning (Spring 2021 by Rohit Babbar)

2

Modularity of kernel methods

• Algorithms are designed that work with arbitrary inner products (or

kernels) between inputs

• The same algorithm will work with any inner product (or kernel)

• This allows theoretical properties of the learning algorithm to be

investigated and the results will carry to all application domains

• Kernel will depend on the application domain; prior information is

encoded into the kernel

3

What is a kernel?

• Informally, a kernel is a function that calculates the similarity

between two objects, e.g.

• two proteins

• two images

• two documents

• . . .

• xi ∈ X and xj ∈ X

• X = set of all proteins in the nature (finite set)

• X = all possible images (infinite set)

• X = all possible documents (infinite set)

• κ : X × X → R

4

Data and Feature maps

• We assume inputs x to come from an arbitrary set X :

• Vectors, matrices, tensors

• Structured objects: Sequences, hierarchies, graphs

• We further assume the data items can be expressed as objects in

some feature space F

• Typically F is a space of feature vectors, F ⊆ RN , where N is the

dimension of the feature space, or more generally matrices or tensors.

• Inputs x are mapped to this space by a feature map φ : X 7→ F

• φ(x) is the image of the data item in the feature space

5

What is a kernel?

• Formally: a kernel function is an inner product (scalar product, dot

product) in a feature space F ,denoted by 〈·, ·〉F
• Often the subscript F is dropped when it is clear from context

• Linear kernel: If x ∈ Rd and the feature map φ(x) = x is the

identity, then F = Rd and the resulting kernel

κlin(x, z) = 〈φ(x), φ(z)〉F = 〈x, z〉Rd

is called the linear kernel

• Linear kernel therefore corresponds to the dot product in Rd

κlin(x, z) =
d∑

j=1

xjzj = xT z

6

Geometric interpretation

• Geometric interpretation of the linear kernel: cosine angle between

two feature vectors

cosβ =
xT z

‖x‖2 ‖z‖ 2
=

κlin(x, z)√
κlin(x, x)

√
κlin(z, z)

,

where

‖x‖2 =
√
κlin(x, x) =

√
〈x, x〉 =

√√√√ n∑
j=1

x2j

is the Euclidean norm.

7

Kernel vs. Euclidean distance

• Assume two vectors x, z ∈ Rn with unit length ‖x‖2 = ‖z‖2 = 1

• Kernel: κ(x, z) = xT z

• Euclidean Distance: d(x, z) = ‖x− z‖2 =
√∑n

k=1(xk − zk)2

• Expanding the squares and using unit length of the vectors we get:

1

2
d(x, z)2 =

1

2
‖x− z‖22 =

1

2
(x− z)T (x− z) =

=
1

2

(
‖x‖22 − 2xT z + ‖z‖22

)
= 1− xT z = 1− κ(x, z)

8

Hilbert space*

Formally the underlying space of a kernel is required to be a Hilbert

space

A Hilbert space is a real vector space H, with the following additional

properties

• Equipped with a inner product, a map 〈., .〉, which satisfies for all

objects x , x ′, z ∈ H
• linear: 〈ax + bx ′, z〉 = a〈x , z〉+ b〈x ′, z〉
• symmetric: 〈x , x ′〉 = 〈x ′, x〉
• positive semi-definite: 〈x , x〉 ≥ 0, 〈x , x〉 = 0 if and only if x = 0

• Complete: every Cauchy sequence {hn}n≥1 of elements in H
converges to an element of H

• Separable: there is a countable set of elements {h1, h2, . . . , } in H
such that for any h ∈ H and every ε > 0 ‖hi − h‖ < ε.

On this lecture H = RN , where the dimension N is finite or infinite. Both

cases are Hilbert spaces.

* Advanced material; will not be examined
9

The kernel matrix

• In kernel methods, a kernel matrix, also called the Gram matrix,

an m ×m matrix of pairwise similarity values is used:

K =


κ(x1, x1) κ(x1, x2) . . . κ(x1, xm)

κ(x2, x1) κ(x2, x2) . . . κ(x2, xm)
...

...
. . .

...

κ(xm, x1) κ(xm, x2) . . . κ(xm, xm)


• Each entry is an inner product between two data points

κ(xi , xj) = 〈φ(xi),φ(xj)〉, where φ is a feature map

• Since an inner product is symmetric, K is a symmetric matrix

• The kernel matrix has size O(m2), processing it during

preprocessing, training and prediction time is the major factor of the

time-complexity of kernel methods

• The kernel matrix replaces the m × N matrix of feature vectors of

the training data ⇒ the kernel methods have computational edge

when N >> m

10

The kernel matrix

• A symmetric matrix A ∈ Rm×m is positive semi-definite (PSD) if for

any vector v ∈ Rm, we have vTAv ≥ 0

• The kernel matrix corresponding to the kernel function

κ(x, z) = 〈φ(x),φ(z)〉 on a set of data points {xi}mi=1 is positive

semidefinite:

vTKv =
n∑

i,j=1

viKijvj =
m∑

i,j=1

vi 〈φ(xi),φ(xj)〉vj =

=〈
m∑
i=1

viφ(xi),
m∑
j=1

vjφ(xj)〉 = ‖
m∑
i=1

viφ(xi)‖2 ≥ 0

• Consequence: as a symmetric PSD matrix, kernel matrix K has

non-negative eigenvalues λ1 ≥ · · · ≥ λn ≥ 0

11

PSD property and optimization

• Consider objective of the dual SVM optimization problem

OBJ(α) =
m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjκ(xi , xj) =
m∑
i=1

αi −
1

2
αTHα

where

H =

(
∂2OBJ(α)

∂αi∂αj

)m

i,j=1

= (yiyjκ(xi , xj))mi,j=1

is the Hessian matrix of second derivatives of the objective

• If H is PSD OBJ(α) is concave (−OBJ(α) is convex), and has no

non-optimal local maxima

• However, H is PSD if and only if K is PSD

• Thus, a PSD kernel matrix K ensures that we can find a global

optimum by gradient descent approaches

12

Non-linear kernels

Non-linear kernels

• By defining kernels that are non-linear functions of the original

feature vectors, a linear models (e.g. SVM classifier) can be turned

into a non-linear model

• However, the learning algorithm does not need to be changes, apart

from plugging in the new kernel matrix

• The most commonly used non-linear kernels:

• Polynomial kernel: κpol(x, z) = (xT z + c)q

• Gaussian (or radial basis function, RBF) kernel:

κRBF (x, z) = exp
(
−‖x− z‖2/(2σ2)

)

13

Non-linear kernels: Polynomial kernel

• Given inputs x ∈ Rd , the polynomial kernel is given by

κpol(x, z) = (xT z + c)q

• Integer q > 0 gives the degree of the polynomial kernel

• Real value c ≥ 0 is a weighting factor for lower order polynomial

terms

• The underlying features are non-linear: monomial combinations

x1 · x2 · · · xk of degree k ≤ q of the original features xj

14

Example: Polynomial kernel on 2D inputs

• Consider two-dimensional inputs x = [x1, x2]T ∈ R2

• The second degree polynomial kernel is given by

κ(x, x′) = (xTx′ + c)2

• We can write it as a inner product in R6:

κ(x, x′) = (xTx′ + c)2 = (x1x
′
1 + x2x

′
2 + c)2 =

= x1x
′
1x1x

′
1 + x2x

′
2x2x

′
2 + c2+

+ 2x1x
′
1x2x

′
2 + 2cx1x

′
1 + 2cx2x

′
2

=


x21
x22√
2x1x2√
2cx1√

2cx2, c



T 
x ′21
x ′22√
2x ′1x

′
2√

2cx ′1√
2cx ′2, c


= φ(x)Tφ(x′),

where φ(x) = [x21 , x
2
2 ,
√

2x1x2,
√

2cx1,
√

2cx2, c]T

15

Non-linear kernels: Polynomial kernel

κpol(x, z) = (〈x, z〉+ c)q

A linear model in the polynomial feature space corresponds to a

non-linear model in the original feature space

• In the previous example, the model

wTφ(x) = w1x
2
1 +w2x

2
2 +w3

√
2x1x2+w4

√
2cx1+w5

√
2cx2+w6c = 0

is a second degree polynomial in the original inputs space, but a

hyperplane in the new 6-dimensional feature space

• Using the dual representation w =
∑m

i=1 αiyiφ(xi), the polynomial

kernel allows non-linear classification in the input space by

wTφ(x) =
∑
i

αiyi 〈φ(xi), φ(x)〉 =
∑
i

αiyiκ(xi , x)

16

Example: XOR with polynomial kernel

Consider the following simple example:

• Input data points

{(−1,−1), (−1, 1), (1,−1), (1, 1)}
and the label (red = 1, blue =-1)

given by a XOR type function

y = x1x2 =

{
+1 if x1 = x2

−1 if x1 6= x2

• The classes are not linearly separable:

there is no consistent line that

separates the two classes

17

Example: XOR with polynomial kernel

• However, map the data using the

feature map φ(x) =

[x21 , x
2
2 ,
√

2x1x2,
√

2cx1,
√

2cx2, c]T

underlying the polynomial kernel

function

• Now, the example data is linearly separable in the feature space, for

example, choose αi = 1/(4
√

2), for all i :

w =
∑
i

αiyiφ(xi) =

= (φ([−1,−1]T)− φ([−1, 1]T)− φ([1,−1]T) + φ([1, 1]T))/(4
√

2)

= [0, 0, 1, 0, 0, 0]T

• We can consistently classify the example data by using the kernel

function κ(x, x′) = 〈φ(x), φ(x′)〉: h(x) = sgn
(∑m

i=1 αiyiκ(xi , x)
)

18

Non-linear kernels: Polynomial kernel

• The dimension of the polynomial feature space is
∑q

r=0

(
d
r

)
= O(dq)

where d is the dimension of the input space X and q is the degree of

the polynomial

• Explicitly maintaining the feature map φ(x) and the weight vector

w, and evaluating the model wTφ(x) takes O(dq) time and space

• However, the polynomial kernel κ(x, x′) = (〈x, x′〉+ c)q can be

computed in time O(d) in preprocessing, and evaluated in constant

time

• Evaluating the model using the dual representation∑m
i=1 αiyiκ(xi , x) takes O(m) time

• Trade-off: No computational overhead from working in the

high-dimensional feature space, but linear dependency in the size of

training data

19

Non-linear kernels: Gaussian kernel (Radial basis function ker-

nel, RBF)

κRBF (x, z) = exp
(
−‖x− z‖2/(2σ2)

)
• Gaussian kernel can be seen as a limit of polynomial kernels =⇒

corresponds to an infinite dimensional polynomial kernel

• Smoothness of Gaussian kernel is controlled by the parameter σ

• Higher-order features are exponentially downweighted.

• Proof: through power series expansion of ex =
∑∞

n=0
xn

n! and using

elementary properties of kernels (see Mohri book ch. 6 for details)

20

Kernels and generalization

Rademacher complexity

• Assume a symmetric positive definite kernel κ : X × X 7→ R with

associated feature map φ, and a sample S of size m, with the kernel

matrix K = (κ(xi , xj))mi,j=1, and κ(xi , xi) ≤ r2 for all i = 1, . . . ,m

• Empirical Rademacher complexity of the hypothesis class

H = {x 7→ 〈w, φ(x)〉 : ‖w‖ ≤ B}

for some B ≥ 0 satisfies (c.f. Mohri book for the proof)

R̂S(H) ≤
B
√

trace(K)

m

• The key quantities are

• the upper bound B of the norm of weight vector – relates to the

margin

• the trace of the kernel matrix

trace(K) =
∑m

i=1 κ(xi , xi) =
∑m

i=1 ‖φ(xi)‖2 ≤ mr 2 – relates to the

norm of the data points

21

Generalization error bound

• We can plug the above to a Rademacher complexity based

generalization bound (c.f. Lecture 3)

R(h) ≤ R̂(h) + R̂(H) + 3

√
log 2

δ

2m

≤ R̂(h) +
B
√
trace(K)

m
+ 3

√
log 2

δ

2m

• Evaluating this bond required observing the empirical risk of the

hypothesis R̂(h), the norm of the weight vector

B =
√∑m

i=1 αiαjyiyjκ(xi , xj), and the trace of the kernel matrix

• Note that we do not need to run simulations with random labelings

the above only requires computing the kernel matrix and the

hypothesis with the real training data

22

Designing kernels

Several ways to get to a kernel

Approach I. Construct a feature map φ and think about efficient ways to

compute the inner product 〈φ(x),φ(x)〉

• If φ(x) is very high-dimensional, computing the inner product

element by element is slow, we don’t want to do that

• For several cases, there are efficient algorithms to compute the

kernel in low polynomial time, even with exponential or infinite

dimension of φ

23

Several ways to get to a kernel

Approach II. Construct similarity measure and show that it qualifies as a

kernel:

• Show that for any set of examples the matrix K = (κ(xi , xj))mi,j=1 is

positive semi-definite (PSD).

• In that case, there always is an underlying feature representation, for

which the kernel represents the inner product

• Example: if you can show the matrix is a covariance matrix for some

variates, you will know the matrix will be PSD.

24

Several ways to get to a kernel

Approach III. Convert a distance or a similarity into a kernel

• Take any distance d(x, z) or a similarity measure s(x, z) (that do not

need to be a kernel)

• In addition a set of data points Z = {zj}mj=1 from the same domain

is required (e.g. training data)

• Construct feature vector from distances (similarly for s):

φ(x) = (d(x, z1), d(x, z2), . . . , d(x, zm))

• Compute linear kernel, also know as the empirical kernel map:

κ(x, x′) = 〈φ(x),φ(x′)〉
• This will always work technically, but requires that the data Z

captures the essential patterns in the input space =⇒ need enough

data

25

Several ways to get to a kernel

Approach IV. Making kernels from kernels

• Examples of elementary operations that give valid kernels when

applied to kernels κn, n = 1, 2, . . .

1. Sum: κ(x, z) = κ1(x, z) + κ2(x, z)

2. Scaling with a positive scalar: κ(x, z) = aκ1(x, z), a > 0

3. Itemwise product: κ(x, z) = κ1(x, z)κ2(x, z)

4. Normalization: κ(x, z) = κ1(x,z)√
κ1(x,x)κ1(z,z)

= 〈 φ(x)
‖φ(x)‖ ,

φ(z)
‖φ(z)‖ 〉

5. Pointwise limit: κ(x, z) = limn→∞ κn(x, z)

6. Composition with a power series of radius of convergence ρ:

κ(x, z) =
∑∞

n=0 anκ(x, z)n, with an ≥ 0 for all n, and |κ(x, z)| < ρ

• The operations can be combined to construct arbitrarily complex

kernels, e.g. polynomial kernels and Gaussian kernels can be derived

this way (see details in the Mohri book ch. 6)

26

Kernels for structured data

Kernels for structured data

• In many applications the data does not come in the form of

numerical vectors or data matrices

• Assume that the data comes from a general set of objects

xi ∈ X , i , . . . ,m, and there is a feature map φ : X 7→ F , and the

corresponding kernel κ(xi , xj) = 〈φ(xi), φ(xj)〉F
• We need to first convert our data x into vectorial form through

φ(x), or directly to kernels K = (κ(xi , xj))mi,j avoiding writing down

high-dimensional feature vectors

27

Kernels for structured data

• Typically, the feature vectors will be sparse and very

high-dimensional (often exponential dimension in the size of original

data) =⇒ writing down the feature vectors φ(x) explicitly is not

efficient

• In many cases, efficient (low polynomial time) algorithms exist for

computing the kernels κ(xi , xj) directly from the structured data,

skipping the feature vector representation

• Examples include:

• Sequential data - text analysis kernels, string kernels

• Molecular data - graph kernels

• Structured documents, context-free grammars, classification

taxonomies, ... - tree kernels

28

String kernels

• String kernels is a family of kernels between sequences based on

”counting” common subsequences two sequences have

• Underlying feature map, also called subsequence spectrum, contains

a feature for each possible substring

• The feature spaces included by subsequences are generally

exponential in the length of the subsequences

• However, low polynomial time algorithms (linear to quadratic time)

exist to compute string kernels

29

String kernel Variations

Different kernels can be defined by changing the details

• Position dependency: substrings need to reside in same positions in

both strings

• Length of substrings: fixed, bounded, unbounded

• Gaps allowed/penalized: match non-contiguous subsequences

instead of substrings, downweight gappy ones

• Soft-matching between symbols: symbols can match several symbols

(with different weights)

• Factorized representations: mixing several representation levels in

one kernel

• Generalized alphabets: characters, syllables, words, motifs

30

Kernels on graphs

• Graphs (or networks) are found in

many fields of life:

• Computer networks, internet:

computers + communication

channels

• Social networks: “people” +

“friendship”

• Bioinformatics, protein interaction

networks: protein molecules as

nodes, physical binding as edges

• Drug discovery: atom species as

nodes, bonds as edges

• Graph kernels are a large family of

kernels for measuring the similarity of

graphs

31

Graph kernels

• Basic idea: count common substructures in two graphs

• Example substructures:

• Walks

• Paths

• Cyclic patterns

• Tree-shaped subgraphs

• (small) General subgraphs

• Generally:

• Huge sparse feature spaces, exponential in the size of the graphs

=⇒ we will not want to represent features explicitly

• Trade-off between computational complexity and accuracy, need to

avoid NP-hard problems but still use informative features

• Polynomial-time kernel computation possible for selected feature

representations

32

Challenge: comparing graphs is hard

• Graph isomorphism

• Find a mapping f of the nodes of G to the nodes of H such that G

and H are identical; i.e. (x , y) is an edge of G iff (f (x), f (y)) is an

edge of H. Then f is an isomorphism, and G and F are called

isomorphic.

• No polynomial-time algorithm is known for graph isomorphism

• Neither is it known to be NP-complete

• Subgraph isomorphism

• Subgraph isomorpism asks if there is a subset of edges and nodes of

G that is isomorphic to a smaller graph H.

• Subgraph isomorphism is NP-complete

• Need polynomial time alternatives!

33

Graph kernels based on random walks

Walk kernel idea:

• Count the number of matching walks in two graphs

• In an unlabeled graph two walks match if they have the same length

• In a labeled graph also the node and edge labels need to match

34

Graph kernels based on random walks

• Two design choices:

1. Set a upper limit q on the length of walks

K(x, z) =

q∑
`=1

K`(x, z),

where Kl is the number of common walk of length `

2. Allow unlimited length walks, but weight exponentially decaying by

the length

K(x, z) =
∞∑
`=0

a`K`(x, z), 0 < a < 1

• In both cases, can be computed in polynomial time in the size of the

graphs, despite the exponential (first case) or infinite-dimensional

(second case) feature space

35

Summary

• Kernel methods are a broad class of data analysis methods

• Kernels allow efficient non-linear learning in high-dimensional feature

spaces

• Special kernels can be designed for different data types such as

sequential or graph data

• Time-complexity of kernel methods generally scale quadratically in

the number of training points (due to the kernel matrix), which can

be a limitation when huge datasets are processed

• More on kernel methods on the course CS-E4830 Kernel methods in

machine learning (Spring 2021)

36

	Non-linear kernels
	Kernels and generalization
	Designing kernels
	Kernels for structured data
	Example: Walk kernels
	Example: Walk kernels

