

## **Exercises 3.**

**Exercise 3.1.** Let X be a Banach space and  $u_k \in X$  such that  $\sum_{k=1}^{\infty} ||u_k|| < \infty$ . Show that the vectors

$$v_N := \sum_{k=1}^N u_k \in X$$

form a Cauchy sequence  $(v_N)_{N=1}^{\infty}$ , thus converging to

$$v = \lim_{N \to \infty} v_N =: \sum_{k=1}^{\infty} u_k \in X.$$

Moreover, when Y is another Banach space and  $A \in \mathscr{B}(X, Y)$ , show that here

$$A\sum_{k=1}^{\infty}u_k=\sum_{k=1}^{\infty}Au_k.$$

**Exercise 3.2.** Show:  $\mathscr{B}(X, Y)$  is a Banach space if Y is Banach.

**Exercise 3.3.** Let  $A : \mathbb{K}^n \to \mathbb{K}^m$  be a linear mapping defined by

$$(Au)_j := \sum_{k=1}^n A_{jk} u_k.$$

Show that

$$||A||_{\ell^1 \to \ell^1} = \max_{k \in \{1, \dots, n\}} \sum_{j=1}^m |A_{jk}|,$$
  
$$||A||_{\ell^\infty \to \ell^\infty} = \max_{j \in \{1, \dots, m\}} \sum_{k=1}^n |A_{jk}|,$$
  
$$||A||_{\ell^2 \to \ell^2} \le \left(\sum_{j=1}^m \sum_{k=1}^n |A_{jk}|^2\right)^{1/2}$$

**Exercise 3.4.** Let  $A \in \mathscr{B}(X)$ . Assume that A is *power bounded*: this means that there is a constant c > 0 such that  $||A^k u|| \le c ||u||$  for all  $u \in X$  and  $k \ge 1$ . Define  $||u||_* := \sup_{k \ge 0} ||A^k u||$ .

- 1. Show that  $\|\cdot\|_{\star}$  is a norm.
- 2. Prove that the norms  $\|\cdot\|$  and  $\|\cdot\|_*$  are equivalent: there are constants a, b > 0 such that  $a\|u\| \le \|u\|_* \le b\|u\|$  for all  $u \in X$ .
- 3. Let  $||A||_{\star} := \sup_{u \in X: ||u||_{\star} \le 1} ||Au||_{\star}$ . Show that  $||A||_{\star} \le 1$ .