

Exercises 5.

Exercise 5.1. Prove complex scalar Hahn–Banach Theorem.

Exercise 5.2. Show: if $v \in X \setminus Z$ (where $Z \subset X$ is a closed subspace) then there exists $\Phi \in X'$ such that $\Phi(v) \neq 0 = \Phi(u)$ for all $u \in Z$. (Hint: Let $Z_{\varphi} := \{\lambda v - u : \lambda \in \mathbb{K}, \ u \in Z\}$ and $\varphi(\lambda v - u) := \lambda$.)

Exercise 5.3. Let X, Y be Banach spaces. Show that for $A \in \mathcal{B}(X, Y)$ there is unique $A' \in \mathcal{B}(Y', X')$ so that

$$\langle Av, \psi \rangle = \langle v, A'\psi \rangle$$

for every $v \in X$ and $\psi \in Y'$. Moreover, show:

- (a) ||A'|| = ||A||.
- (b) (BA)' = A'B' if $B \in \mathcal{B}(Y, Z)$.
- (c) $(A^{-1})' = (A')^{-1}$ if A is invertible.

Exercise 5.4. Let X, Y be Banach spaces and $A \in \mathcal{B}(X, Y)$. Show that

$$\operatorname{Ran}(A)^{\perp} = \operatorname{Ker}(A'),$$

$$\overline{\operatorname{Ran}(A)} = {}^{\perp}\operatorname{Ker}(A'),$$

$${}^{\perp}\operatorname{Ran}(A') = \operatorname{Ker}(A),$$

$$\overline{\operatorname{Ran}(A')} = \operatorname{Ker}(A)^{\perp}.$$