Aalto University School of Electrical
Engineering

Celestial Mechanics and Satellite Orbits

Introduction to Space

Slides: Jaan Praks, Hannu Koskinen, Zainab Saleem
Lecture: Jaan Praks

Assignment

- Draw Earth, and a satellite orbiting the Earth.
- Draw the orbit of the satellite.
- Mark rotation direction of the Earth.
- Change your picture with your neighbour. Discuss.
$A ?$
Aalto University
School of Electrical Engineering

History

scnema nuius pramuix diunonsspnararum .

(Photograph ©2007-08 Tunç Tezel.)

Planets, stars with will of their own...

AP
Aalto University
School of Electrical
Engineering

NICOLAI CO
PERNICI TORINENSIS
de revolvtionibvs orbie um cceleftium, Libri $\overline{\mathrm{VI}_{6}}$

Habes in hoc opere iam recens nato, $\%$ æditò, fudiofe lector,Motus ftellarum, tam fixarum, Tudiofe lector, Motus ftellarum, tam fixarum, ex recentibus obferuationibus reftitutos: 2 no* uis infuper ac admirabilibus hypothefibus ors
natos. Habes etiam Tabulas expeditifsimas ex natos. Habes etiam Tabulas expedinisuim facilli me calculare poteris. Igitur eme, lege, fruere.

-listhey an im. Dijuccim

Norimbergæ apud Ioh. Petreium, Anno M. D. XLIII,

Nicolaus Copernicus 1473-1543

Tycho Brahe (1546-1601)

Danish nobleman and astronomer.
Passionate about planetary motion.
Made the most accurate measurements of planetary
 movements. (without a telescope!)

Tycho Brahe's Mars Observations

Aalto University School of Electrical Engineering

Tycho Brahe's Mars Observations

Kepler's laws

Based on observations of Tycho Brahe 1546-1601

I. Each of the planets moves on an elliptical path with the Sun at one focus of the ellipse (1609)
II. For each of the planets, the straight line connecting the planet to the Sun sweeps out equal areas in equal times (1609)
III. The squares of the periods of the planets are proportional to the cubes of the major axes of their orbits (1619)

Johannes Kepler (1571-1630)

Kepler's

Engineering
Planet or comet

Kepler's

Aalto University
School of Electrical
Engineering

Kepler's

The Solar Svstem

Newtonian Mechanics

Study of orbits of natural and artificial bodies in space

Based on Newton's laws (transl. Andrew Motte, 1729):
"LAW I. Every body perseveres in its state of rest, or of uniform motion in a right line, unless it is compelled to change that state by forces impressed thereon."
"LAW II. The alteration of motion is ever proportional to the motive force impressed; and is made in the direction of the right line in which that force is impressed."

$$
\frac{d p}{d t}=F \quad(p \equiv m v)
$$

"LAW III. To every action there is always opposed an equal reaction; or the mutual actions of two bodies upon each other are always equal, and directed to contrary parts."

$$
\boldsymbol{F}_{12}=-\boldsymbol{F}_{21}
$$

Aalto University

School of Electrical
Engineering

Isaac Newton (1642-1727)

afler dimer, Ithe notalten Going warm, wo went
inlo the gatrens, drank thea wit foinc approtions; only foe, my olfordif coutfo, ho lots mo, the Sallw. filuallor, as witon foryw gravitation camo into fist minc applo ahways ∂ ofeend porpo groum, thotight fo to fumifolf; © of an apple, as he fat in a cortis why st? is not go fidesoats, orf up Chulby to tho eartis corter.t af. $\int_{\text {Sn }}$ is, that tho oarth araws it. orawing power in matter. gis ing pownor in tho matter of tho θ. the canliss conler, not in anuy fid Iherefore acs shis appre fall or lowate the conlor. if naltor lor; ; reuff to in propoortion of: the rie form tho app to draws iac as the oarll arakes the apple.

Aalto University
School of Electrical
Engineering

Basics of classical orbital mechanics

Two body problem: Reduction to one-body problem; central forces

$$
\begin{aligned}
& \boldsymbol{R}=\frac{m_{1} \boldsymbol{r}_{1}+m_{2} \boldsymbol{r}_{2}}{m_{1}+m_{2}} \\
& \text { Center of Mass } \\
& \text { CM (or CoM) } \\
& m_{1} \ddot{\boldsymbol{r}}_{1}=\boldsymbol{F}_{12} \text {; } \\
& m_{2} \ddot{\boldsymbol{r}}_{2}=\boldsymbol{F}_{21}=-\boldsymbol{F}_{12} \Rightarrow \\
& m_{2} \ddot{\boldsymbol{r}}_{2}-m_{1} \ddot{\boldsymbol{r}}_{1}=2 \boldsymbol{F}_{21} \\
& m \ddot{\boldsymbol{r}}=\boldsymbol{F}_{21} \quad m=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \quad \begin{array}{l}
\text { reduced } \\
\text { mass }
\end{array} \\
& \boldsymbol{F}_{21}=f(r) \boldsymbol{e}_{r} \\
& \text { central force } \\
& \boldsymbol{r}_{1}=\boldsymbol{R}-\frac{m_{2} \boldsymbol{r}}{m_{1}+m_{2}} \\
& r_{2}=\boldsymbol{R}+\frac{m_{1} \boldsymbol{r}}{m_{1}+m_{2}}
\end{aligned}
$$

$$
-0
$$

Motion under central force (e.g. gravity)

$$
\boldsymbol{F}(\boldsymbol{r})=f(r) \boldsymbol{e}_{r} \quad \text { points to the origin }
$$

Calculate the moment of the force
$\boldsymbol{r} \times \dot{\boldsymbol{p}}=\boldsymbol{r} \times \boldsymbol{F}=f(r) \boldsymbol{r} \times \boldsymbol{e}_{r}=0$
Calculate the time derivative of the angular momentum
$\dot{\boldsymbol{L}}=\frac{d}{d t}(\boldsymbol{r} \times \boldsymbol{p})=\boldsymbol{v} \times \boldsymbol{p}+\boldsymbol{r} \times \dot{\boldsymbol{p}}=0$
L is a constant of motion
$r \perp L$ and $v \perp L:$ the motion takes place on a plane
Calculate the area element

$$
\begin{aligned}
& d A=\frac{1}{2} r \sin \theta d r=\frac{1}{2}|\boldsymbol{r} \times d \boldsymbol{r}| \\
& \Rightarrow \frac{d A}{d t}=\frac{1}{2}|\boldsymbol{r} \times \boldsymbol{v}|=\frac{1}{2 m}|\boldsymbol{L}|
\end{aligned}
$$

The surface velocity $d A / d t$ is constant (Kepler's second law)

Solutions of the equation of motion Conic sections

Solutions of the equation $m \ddot{r}=-\frac{G M m}{r^{2}} e_{r} \quad$ are of the form

$$
\begin{array}{lll}
r=\frac{p}{1+\varepsilon \cos \theta}: & p=\frac{l^{2}}{m k} & |\boldsymbol{L}|=l \\
& \varepsilon=\sqrt{1+\frac{2 E l^{2}}{m k^{2}}} & k=G M m
\end{array}
$$

These are known as conic sections with ellipticity:

$$
\begin{cases}\varepsilon=0 & \text { circle } \\ 0<\varepsilon<1 & \text { ellipse } \\ \varepsilon=1 & \text { parabola } \\ \varepsilon>1 & \text { hyperbola }\end{cases}
$$

hyperbola

Trajectories

If $\mathrm{e}>1$, the trajectory is a hyperbola (an open trajectory)
If $\mathrm{e}=1$, the trajectory is a parabola (an open trajectory)
If $0<e<1$, the trajectory is an ellipse (a closed trajectory; i.e., an orbit)
If $e=0$, the orbit is circular.
(a closed trajectory; i.e., an orbit) This is just a special case of the ellipse

Aalto University
School of Electrical
Engineering

Modern interpretation of gravity

General Relativity (1915)

The observed gravitational effect between masses results from their warping of spacetime

c circular orbit
e elliptical orbit
u unbound orbit

Mike Gruntman
file: mikegruntman-02.wmv, run time 5 min 30 sec
http://astronauticsnow.com more instructional video clips

Educational Use Only.
Rotation of Apsides effeçt of 32

Orbits: .
Period - 12 hours inclination $0,63.4$, 90 deg perigee alt. 500 km apogee alt. 39867 km

Earth Inertial Axes
3 Jan 2008 13:20:00:000 Time Educational Use only

Aalto University
School of Electrical Engineering

Orbits and their properties

Elliptical orbits and Kepler's laws

K-I $\quad r=\frac{p}{1+\varepsilon \cos \theta} ; \quad \varepsilon=\sqrt{1+\frac{2 E l^{2}}{m k^{2}}}<1$.

$$
\begin{aligned}
& 2 a=\frac{p}{1-\varepsilon}+\frac{p}{1+\varepsilon}=\frac{2 p}{1-\varepsilon^{2}} \\
& c=a-p /(1+\varepsilon)=\varepsilon a \\
& b^{2}=a^{2}-c^{2}=a^{2}\left(1-\varepsilon^{2}\right)=a p
\end{aligned}
$$

K-II During an infinitesimal time period $d t$

$$
d A=\frac{1}{2} r r d \varphi \Rightarrow \dot{A}=\frac{1}{2} r^{2} \dot{\varphi}=\frac{l}{2 m}=\text { constant }
$$

K-III From above $\frac{b^{2}}{a}=p=\frac{l^{2}}{m k} \Rightarrow b=\frac{\sqrt{a} l}{\sqrt{m k}}$. and the area of the ellipse is

$$
A=\int_{0}^{T} \dot{A} d t=\frac{l T}{2 m}=\pi a \frac{\sqrt{a} l}{\sqrt{m k}} \quad \Rightarrow \quad T=2 \pi \sqrt{\frac{m}{k}} a^{3 / 2}
$$

Aalto University

School of Electrical
Engineering

Ellipticity of planetary orbits

Aalto University

School of Electrical
Engineering

Kinetic + potential energy

Orbital energy is constant

Kinetic plus potential energy

$$
E=\frac{-G M m}{r}+\frac{M\left(v_{M}\right)^{2}}{2}+\frac{m\left(v_{m}\right)^{2}}{2}
$$

Parabolic and hyperbolic orbits: Escape velocity

For an open conic section

$$
\varepsilon=\sqrt{1+\frac{2 E l^{2}}{\mu k^{2}}} \geq \mu=\frac{m M}{m+M}
$$

thus $E \geq 0$
and the minimum velocity to escape is given by $\frac{1}{2} \mu v_{e}^{2}=\frac{G M m}{r}$

$$
v_{e}=\sqrt{\frac{2 G M m}{\mu r}}=\sqrt{\frac{2 G(M+m)}{r}} \approx \sqrt{\frac{2 G M}{r}}
$$

From the surface of the Earth $v_{e}=11.2 \mathrm{~km} / \mathrm{s}$
From the surface of the Sun $v_{e}=618 \mathrm{~km} / \mathrm{s}$
Escape from geostationary orbit $r=6.6 R_{E}$
$v_{\varphi 0}=2 \pi r /(24 \mathrm{~h})=3.06 \mathrm{~km} / \mathrm{s}$
$v_{e}=11.2 \mathrm{~km} / \mathrm{s} / \sqrt{6.6}=4.36 \mathrm{~km} / \mathrm{s}$
$\Delta v=v_{e}-v_{\varphi 0}=1.3 \mathrm{~km} / \mathrm{s}$ in the direction of the motion

Aalto University

School of Electrical
Engineering

How to change the orbit

Recall the work done by a force

$$
\begin{aligned}
W & =\int_{\boldsymbol{r}(t)}^{\boldsymbol{r}(t+\Delta t)} \boldsymbol{F} \cdot d \boldsymbol{r} \\
& =\int_{t}^{t+\Delta t} \boldsymbol{F} \cdot \frac{d \boldsymbol{r}}{d t} d t
\end{aligned}
$$

To lift the apogee, fire the rocket in perigee To lift the perigee, fire the rocket in apogee

To reach from one circular orbit to another with least energy:
Hohmann transfer orbit
Thus only the component of force in the direction of the spacecraft motion can change its kinetic energy!

Vis-viva equation

Orbital energy is constant

Kinetic plus potential energy

$$
\begin{aligned}
& E=\frac{-G M m}{r}+\frac{M\left(v_{M}\right)^{2}}{2}+\frac{m\left(v_{m}\right)^{2}}{2} \\
& E=\frac{-G M m}{r}+\mu \frac{v^{2}}{2} \\
& v^{2}=G(M+m)\left(\frac{2}{r}-\frac{1}{a}\right)
\end{aligned}
$$

Hohmann transfer orbit

Hyperbolic orbits: Scattering in the gravitational field of a planet

Symmetry: $\Rightarrow \Theta=\pi-2 \theta_{0}$.

$$
\cot \frac{\Theta}{2}=\sqrt{\varepsilon^{2}-1}=\sqrt{\frac{2 E l^{2}}{m k^{2}}}=\frac{2 E b}{|k|} \quad b=\frac{|k|}{2 E} \cot \frac{\Theta}{2} \quad \text { impact parameter }
$$

Aalto University

School of Electrical
Engineering

Using a planet to accelerate / decelerate a spacecraft

Frame of Reference: Moving with Planet

Frame of Reference: Planet Moving Left

In the frame of the Sun:
To accelerate
take over the planet from behind
To decelerate
let the planet take over you

Cassini gravity assited trajectory

Aalto University

School of Electrical
Engineering

Aalto University
School of Electrical
Engineering

Orbits around real celestial body

Potato \#345

Kevin Abosch (2010)

Aalto University
School of Electrical Engineering

Earth gravity field measured by GOCE

Aalto University
School of Electrical Engineering

coct eesa

Perturbations to orbits

The two-body approach is a theorist's dream Other effective forces arise from:

- atmospheric drag
- largest at perigee and makes an elliptical orbit more circular
- steady deceleration on the circular orbit lowers the altitude and finally the satellites return to the atmosphere
- radiation pressure of the Sun
- increased need for orbital corrections
- telecommunication satellites on GEO have typically large solar panels
- inhomogeneous gravitational field
- oblateness
- uneven distribution of matter
- other celestial bodies
- Moon, Jupiter

Gravitational perturbations

The gravitational potential can be represented as a spherical harmonic expansion
$U(r, \Phi, \Lambda)=\frac{\mu}{r}\left\{-1+\sum_{n=2}^{\infty}\left[\left(\frac{R_{E}}{r}\right)^{n} J_{n} P_{n 0}(\cos \Phi)+\sum_{m=1}^{n}\left(\frac{R_{E}}{r}\right)^{n}\left(C_{n m} \cos m \Lambda+S_{n m} \sin m \Lambda\right) P_{n m}(\cos \Phi)\right]\right\}$
The most important contribution is due to the oblateness
$>$ it turns the angular momentum vector
$>$ the nodal line rotates
$\Delta \Omega=-\frac{3 \pi J_{2} R_{E}^{2}}{p^{2}} \cos i \frac{\mathrm{rad}}{\mathrm{rev}}$
A shift of 360 deg / year results in a Sun-synchronous orbit
run time Tess than 5 min

Gravitational perturbations

http://astronauticsnow.com

 more instructional video clipsThe oblateness also causes precession of the line of the apsides

$$
\Delta \omega=3 \pi \frac{J_{2} R_{E}^{2}}{p^{2}}\left(2-\frac{5}{2} \sin ^{2} i\right) \frac{\mathrm{rad}}{\mathrm{rev}}
$$

Inclination of 63.4 deg is a special case: so-called Molniya orbits

Effects of other celestial bodies Three-body problem

For more than 2 bodies the equation of motion
$m_{i} \ddot{\boldsymbol{r}}_{i}=-\sum_{j \neq i} \frac{G m_{i} m_{j}\left(\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right)}{\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|^{3}} \quad i=1,2, \ldots, N$
soon becomes intractable
Poincaré (ca. 1890): the system is very sensitive to initial conditions $>$ chaos (which was reinvented in the 1960s)
K. F. Sundman (1912): there is a unique solution for the 3-body problem
$>$ a very slowly converging expansion in powers fo $t^{1 / 3}$
$>$ impractical for calculations in celestial mechanics

Aalto University

School of Electrical
Engineering
Page 54

Reduced three-body problem Lagrange points

Two large and one small body

- solve the 2-body problem for the large masses
- consider the motion of the small body in the gravitational potential of the large ones.

Does not work in the
Sun-Earth-Moon system
but OK for
Sun-Earth-spacecraft
Five Lagrange points

Aalto University

School of Electrical
Engineering

Sun

Good to know about Lagrange points

Troyan asteroids around the
Sun-Jupiter system's
L4 and L5

People often have two misconseptions:

- L1 is NOT the point where gravitational forces of the Sun and the Earth balance each other
- How can a S/C stay around L2?

These are three-body problems!!

Aalto University
School of Electrical
Engineering

Describing orbital motion

Orbital elements: Astronomer's view

1. Semi major axis a
2. Eccentricity ε (or e)
3. Inclination i (or i)
4. Right ascencion of the ascending node Ω (from vernal equinox i)
5. Argument of perihelion ω; or length of the perihelion $\sigma=\Omega+\omega$
6. Perihelion time τ

Orbital elements: Satellite operator's view

Also other sets of elements are used; the number of independent elements is always 6

Figure 3.11 Characterization of an ideal orbit and the satellite position by Keplerian elements: $\{a, e, i, \Omega, \omega$, and $v\}$.

Engineering
Page 62

Orbital Elements

Semi-major axis a (size of the ellipse)

- the longest axis of the ellipse going through the two foci.

Eccentricity e (oblateness of the ellipse)

- the elongation of the ellipse

Inclination of the orbit i (orbit position relative to equator)

- the orbit plane is tipped relative to the reference equatorial plane.

Argument of Perigee ω (place of the perigee)

- an angle in the orbital plane between the ascending node and peri-apsis, measured in the direction of the satellite's motion
Right ascension of the ascending node Ω (ellipse rotation around poles)
- the angle measured to the point where the orbit crosses the equatorial plane relative to a reference direction known as the vernal equinox.
True anomaly v (place of the satellite on orbit)
- the angular distance of a point in an orbit past the point of peri-apsis, measured in degrees

Parameters of Elliptical Orbit

Legend:

- A - Minor, orbiting body
- B - Major body being orbited by A
- C - Reference plane, e.g. the
- D - Orbital plane of A
- E - Descending node
- F - Periapsis
- G - Ascending node
- H-Apoapsis
- i - Inclination
- J - Reference direction; for orbits in or near the ecliptic, usually the vernial point
- Ω - Longitude of the ascending node
- ω - Argument of the periapsis
- The red line is the line of apsides; going through the periapsis (F) and apoapsis (H); this line coincides with the major axis in the elliptical shape of the orbit
- The green line is the node line; going through the ascending (G) and descending node (E); this is where the reference plane (C) intersects the orbital plane (D).

[Source: Wikipedia]

Aalto University
School of Electrical
Engineering

Artificial satellites around the Earth

Satellite oribit classification

LEO: low Earth orbit

- lowest stable orbit at about 180 km
- often polar oribits
- Earth observation and military satellites

MEO: medium altitudes

- e.g. GPS and Galileo

GEO: geostationary orbit

- Altitude: 35786 km, geocentric distance 6.6 RE

HEO: highly elliptical orbit

- Apogee above GEO
- some scientific S/C
- Molnyia

Types of Orbits

Altitude classifications

- Low Earth orbit (LEO): Geocentric orbits with altitudes up to 2,000 km
- Medium Earth orbit (MEO): Geocentric orbits ranging in altitude from 2,000 km to just below geosynchronous orbit at $35,786 \mathrm{~km}$.
- High Earth orbit: Geocentric orbits above the altitude of geosynchronous orbit $35,786 \mathrm{~km}$

Centric classifications

- Galactocentric orbit: An orbit about the center of a galaxy. The Sun follows this type of orbit
- Heliocentric orbit: An orbit around the Sun. In our Solar System, all planets, comets, and asteroids are in such orbits, as are many artificial satellites and pieces of space debris. Moons by contrast are not in a heliocentric orbit but rather orbit their parent planet.
- Geocentric orbit: An orbit around the planet Earth, such as that of the Moon or of artificial satellites.

Types of Orbits

Eccentricity classifications

- There are two types of orbits: closed (periodic) orbits, and open (escape) orbits. Circular and elliptical orbits are closed. Parabolic and hyperbolic orbits are open.
- Circular orbit: An orbit that has an eccentricity of o and whose path traces a circle.
- Elliptic orbit: An orbit with an eccentricity greater than 0 and less than 1 whose orbit traces the path of an ellipse.
- Parabolic orbit: An orbit with the eccentricity equal to 1 . Such an orbit also has a velocity equal to the escape velocity and therefore will escape the gravitational pull of the planet. If the speed of a parabolic orbit is increased it will become a hyperbolic orbit.
Inclination classifications
- Inclined orbit: An orbit whose inclination in reference to the equatorial plane is not 0 .
- Non-inclined orbit: An orbit whose inclination is equal to zero with respect to some plane of reference.

Types of Orbits

Synchronicity classifications

Synchronous orbit:

An orbit whose period is a rational multiple of the average rotational period of the body being orbited and in the same direction of rotation as that body. This means the track of the satellite, as seen from the central body, will repeat exactly after a fixed number of orbits.

- Geosynchronous orbit (GSO): An orbit around the Earth with a period equal to one sidereal day, which is Earth's average rotational period of 23 hours, 56 minutes, 4.091 seconds. For a nearly circular orbit, this implies an altitude of approximately $35,786 \mathrm{~km}$. The orbit's inclination and eccentricity may not necessarily be zero.
- Geostationary orbit (GEO): A circular geosynchronous orbit with an inclination of zero. To an observer on the ground this satellite appears as a fixed point in the sky

Two Line Elements (TLE)

North American Aerospace Defense Command

ISS (ZARYA)
125544 U 98067A 14260.21469767 .00018739 00000-0 $\quad 33124-3$ - 989 $\begin{array}{llllllllllll}2 & 25544 & 51.6477 & 3.4590 & 0002230 & 112.1112 & 330.1591 & 15.50366882905605\end{array}$ IANGONG 1
14260.09847079 00037692 00000-0 34424-3 0 3932 $\begin{array}{llllllllllllllllll}2 & 37820 & 42.7690 & 118.2614 & 0007048 & 254.3650 & 242.2970 & 15.67126632170471\end{array}$ FLOCK 1-12 $\begin{array}{llllllllll}1 & 39528 & 51.6355 & 341.6772 & 0005790 & 353.2487 & 6.8436 & 15.80898745 & 33599\end{array}$ $\begin{array}{llllll}\text { FLOCK 1-18 } & & & \\ 1\end{array}$ $\begin{array}{lllllllll}1 & 39556 U & 980670 Z & 1426069 & 0005652 & 358.9003 & 1.1985 & 15.79867661 & 31675\end{array}$ FLoCK 1-20

1
$\because \quad$ a
8 or $-y^{2}$

The GEO Belt

Luxembourg 2| 13 Italy 5|9|2

Assignment

- Draw Earth, and a satellite orbiting the Earth.
- Draw the orbit of the satellite.
- Mark rotation direction of the Earth.
- Change your picture with your neighbour. Discuss.
- Draw the Sun and the Earth in summer and winter.
- Draw the same satellite orbiting the Earth.
- Change your picture with your neighbour. Discuss.
$A ?$
Aalto University
School of Electrical
Engineering

Additional notes

Geostationary orbit (GEO)

24-hour orbit

- satellite always on the same longitude
- good for, e.g., telecommunications and broadcasting
- good global coverage

Orbit in the equatorial plane

- poor coverage at high latitudes

GEO is becoming crowded

Periapsis \& Apoapsis

The point on the orbit nearest the occupied focus is called the periapsis The point farthest from the occupied focus is called the apoapsis. If the central body is the Earth, these points are also referred to as the perigee and apogee, respectively. Similarly, if the central body is the sun, the names change to perihelion and aphelion.

Some links, used in lecture

Gravity

https://www.youtube.com/watch?v=MTY1KjeOyLg https://www.youtube.com/watch?v=a3OQ7ek7t68 Orbit elements made easy
http://www.amsat.org/amsat/keps/kepmodel.html

Satellite orbits

https://www.youtube.com/watch?v=4K5FyNbVOnA
https://www.youtube.com/watch?v=Hcm7oQwpZfg https://www.youtube.com/watch?v=uZc0YJjyWGM

Sun synchronous orbits

Combined effect of the precession of the orbit and the motion around the Sun
Same geographic location (e.g. equator) passed always at the same local time

- useful in many Earth-observation applications

Useful relations

- Angular Momentum

$$
\overrightarrow{\boldsymbol{h}}=\overrightarrow{\boldsymbol{r}} \times \overrightarrow{\boldsymbol{v}}
$$

- Node Line Vector

$$
\overrightarrow{\boldsymbol{N}}=\widehat{\boldsymbol{K}} \times \overrightarrow{\boldsymbol{h}}
$$

\vec{N} is line of nodes;
\vec{K} is reference axis

- Argument of the periapsis

$$
\omega=\cos ^{-1} \frac{\overrightarrow{\boldsymbol{N}} \cdot \overrightarrow{\boldsymbol{e}}}{|N||e|}
$$

- Inclination

$$
i=\cos ^{-1} \frac{h_{z}}{h}
$$

- True anomaly

$$
\theta=\cos ^{-1} \frac{\overrightarrow{\boldsymbol{e}} \cdot \overrightarrow{\boldsymbol{r}}}{|e||r|}
$$

- Right Ascention of the ascending node

$$
\Omega=\cos ^{-1} \frac{\overrightarrow{\vec{I}} \cdot \vec{N}}{|N|}
$$

\vec{I} is reference axis

- Eccentricity

$$
\begin{gathered}
\overrightarrow{\boldsymbol{e}}=\frac{1}{\mu}\left[\left(v^{2}-\frac{\mu}{r}\right) \overrightarrow{\boldsymbol{r}}-r v_{r} \overrightarrow{\boldsymbol{v}}\right] \\
v_{r}=\frac{\overrightarrow{\boldsymbol{r}} \cdot \overrightarrow{\boldsymbol{v}}}{r}
\end{gathered}
$$

Autumnal
equinox,
September 22

Line of Nodes

Ascending Node

- For geocentric and heliocentric orbits, the ascending node (or north node) is where the orbiting object moves north through the plane of reference.
Descending node
- For geocentric and heliocentric orbits, the descending node (or south node) is where it moves south through the plane of reference.
In the case of objects outside the Solar System, the ascending node is the node where the orbiting secondary passes away from the observer, and the descending node is the node where it moves towards the observer.

Line of Nodes

[Source: Wikipedia]

Inclination Angle

Prograde Orbit

- A spacecraft or other body moves in the same direction as the planet rotates.
- An orbit inclination between 0 and 90 degrees will generate a prograde orbit.

Retrograde Orbit

[Source: NASA]

- A spacecraft or other body moves in the opposite direction to the planet's rotation
- An orbit inclination between 90 and 180 degrees is generate a retrograde orbit.
- An object with an inclination of 90 degrees is said to be neither prograde nor retrograde, but it is instead called a polar orbit. (since it does not have an east-west directional component)

