
Hyperbolic
geometry & 
Fractals

Shapes in Action 13th Oct 2020



Program schedule  for Oct 13th

15:15 Hyperbolic geometry (cont.)
16:00 Break
16:15   Some ideas about fractals
17:00 Break
17:15 A folding activity
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Euclidean (=flat), spherical and 
hyperbolic models of 2D geometry

K = 0  (17 types) K>0 (14) K<0 (∞ )



What is curvature ?

Curvature of a smooth 
planar curve at point P is 
𝝒(P)=1/𝝆
• works also for curves 

in space or higher 
dimensions 

• points should be 
approachable with 
circles

• extrinsic quantity 
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What is curvature of a surface ?
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Gauss curvature

K(p)= 𝝒1(p) 𝝒2(p)



Theorema Egregium (Gauss, 1827)
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Curvature K is an intrinsic
quantity !



What are possible constant Gauss curvature 
geometries for smooth closed surfaces ?
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A possible construction for a torus
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Note: V-E+F=0 for the torus
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Eugenio Beltrami (1835-1900)
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Pseudosphere (1866) : A local model via ‘lazy 
dogs curve’ (tractrix) rotating around x-axis

Curvature -1
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Antonio Candido Capelo, Mario
Ferrari, La ‘‘cuffia’’ di Beltrami: storia e 
descrizione, Bollettino
di Storia delle Scienze Matematiche 2 (1982): 
233–237.



David Hilbert (1862-1943)
Answer  (1901) to the question (*) posed by 
Riemann:

It is not possible to have an equation 
describe a surface in 3-space that has 
constant negative curvature and that is 
extended indefinitely in all directions.
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Improvements by Erik Holmgren (1902), 
Marc Amsler (1955)



On various ways to map hyperbolic 
surfaces to Euclidean 3-space 
Analogous problem as studying geography of our spherical 
planet by looking a flat map.
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Ex: stereographic projection



Beltrami-Klein model for the hyperbolic 
plane (1868, 1871)
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Disk model, boundary not included

Advantage: shortest distances between
points are straight lines

Weakness: Does not
preserve angles, 
Circles are not circular in
general



Henri Poincaré (1854-1912) models 
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• Preserve angles (conformal model)
• Circular arcs perpendicular to the 

boundary realise shortest distances 
between points

Isometries = Möbius maps preserving half plane/unit circle !



*642 if colours ignored
642 if not
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Price(*642)=1+5/12+3/8+1/4=2+2/48; Price(642)=5/6+3/4+1/2= 2+2/24



Source of inspiration for M.C. Escher (1898-1972)
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*443 symmetry 
Cost: 1+3/8+3/8+2/6=2 1/12 >2 !
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http://www.josleys.com/

443

¾+¾+ 2/3= 13/6>2
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333
443
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Poicaré disk vs half plane model



4*3 total prize ¾+1+1/3 =2 1/12   
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4*3 or *3333 ?
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¾+1+1/3 =2 + 2/24

1+1/3 +1/3 + 1/3 + 1/3 
= 2 1/3 = 2 + 2/6

Interpretation for 24 and 6 ?

*3333 index 4 subgroup of 4*3

Magic theorem fails but



Riemann mapping theorem & Escher
Every domain (= open and connected set) without holes (=simply 
connected) whose exterior contains at least one point in the plane 
can be mapped conformally to a disk
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Space-time interpretation of the hyperbolic space
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23q(x)=x1

2+ … +xn-1
2 – xn

2



What surfaces support hyperbolic 
structures ?
• Sphere supports spherical structure
• Torus has a flat structure 
• Surfaces of higher genus can be 

equipped with a hyperbolic structure
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Classification of closed (compact 
without boundary) surfaces 

All  orientable surfaces are 
connected sums of a sphere and 
finitely many tori
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Connected sum operation

All non-orientable surfaces are 
connected sums of a sphere and 
finitely many projective spaces



All  surfaces can be described as 
polygons with  boundary 
identifications (normal form)
The Euler characteristic of a 
surface 𝝌(S) =2-2g is  a 
topological invariant !
g=0 sphere
g=1 torus
𝝌(S) = V-E+F, V= number of vertices, 

E= number of edges, F=number of faces 
of any cell subdivision of the surface

Especially 𝝌(S) =2 for all 
polyhedrons !
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Pair of pants decompositions of surfaces
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A pair of pants

Pair of pants 
decomposition of 
a two holed 
torus

Pair of pants decomposition of a three holed torus



Gauss-Bonnet Theorem for compact 
orientable surfaces at least genus 2
Every two pair of pant decomposition of a surface S have the 
same number of pair of pants and this number is even. The 
number of pair of pants is -𝝌(S) =2g-2, g≥2 and the (normalized) 
hyperbolic surface area is -2𝝅𝝌(S) 
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Hyperbolic structure can be given for example through hexagons with
90 degree angles



A construction by Daina Taimina
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A hyperbolic octagon with 45 deg interior angles can be glued to a
hyperbolic pair of pants



Thurston model to approximate 
hyperbolic plane
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• Cut out a hexagon formed by 6 equilateral 
triangles

• Make a slit and tape one more triangle so 
that 7 triangles meet at a vertex

• Add at least two 
layers of 
triangles so that  
every vertex is 
adjacent to 7 
triangles



Thurston vs Poincaré & Beltrami-Klein
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732 (or *732 by ignoring colours) 



The Eightfold way by Helaman Ferguson
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24 heptagons
The title refers to the fact that starting at any vertex of the triangulated surface and moving 
along any edge, if you alternately turn left and right when reaching a vertex, you always 
return to the original point after eight edges. 
http://library.msri.org/books/Book35/files/thurston.pdf

Klein Quartic x,y,z complex (homogenous) coordinates



Why hyperbolic geometry ?
• Connections to cellular automata (Margenstern-Morita etc.)
• Visualizations of Web, Network security
• Modular functions in number theory (Fermat’s last theorem)
• Algebraic geometry, differential geometry, complex variables, 

dynamical systems
• Biology
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• Self folding materials in chemistry
• R. Nesper, S. Leoni structural chemistry
• Medicine ex. M. Steiner brain image 

analysis 
• Physics J. Richard Gott III : multiply 

connected universe model
• Ergodic theory, string theory
• J. Vigoureux, R. Giust: Multilayers in optics
• Music Dmitri Tymoczko and his music chord 

orbifolds
• Why not !
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Fractal Geometry
Phenomena that cannot be explained by
classical geometry
Shapes in Action Tue 13th Oct



Contents
1. An introduction to Fractal Geometry
2. Times before computers
3. Benoit Mandelbrot
4. Self similar wave origami
5. Indra’s pearl
6. Fractals and Nature
7. Self similarity in architecture



‘Natural’  vs. ‘man-made’ objects
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What do these pictures present?



What happened ? Why does the trick work?

12.10.2020
38



Many objects look the same in different scales.
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How can one distinguish the correct size?
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Who invented ‘fractal geometry’ in the sense of ‘new 
geometry of nature’?
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Many fundamental examples 
due to classical mathematics !

George Ferdinand Ludwig Philipp
Cantor  1845-1918  
• the crisis of the dimension 
• exceptional objects
• ‘mathematical monsters’
• limits of fundamental notions
(‘curve’, ‘continuous’)

Abnormal Monsters or 
Typical Nature ?



Cantor’s middle third set (1883)

12.10.2020
42

• are there any points left in the limit?
• subintervals left (2/3)n → 0 as n →∞
• endpoints never removed !
• infinite decimal presentation  of 0’s 

and 2’s in a base 3 (1/3=0.0222…!)
• is it possible to numerate them ?
• size of the limit set vs [0,1]?
• dimension of the limit set?
• connectedness of the limit set?
• a self-similar set
• a prototype of a fractal set



Giuseppe Peano, 1858-1932

12.10.2020
43

What is a curve?
What is the dimension of a curve?
Can a curve fill a square/cube/hypercube/…? 



A Peano curve by David Hilbert (1862-1943)
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A 3D generalisation of Hilbert’s construction by W. 
Gilbert (Mathematical Intelligencer 6(3) (1984), page 78)
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Space filling structures in Nature
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Wacław Franciszek Sierpiński 1882-1969
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A self similar process in Sierpiński gasket (1916)
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The Chaos Game (Barnsley)
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Cathedral Anagni (Italy) 1104
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The stone triangle is usually on the floor and rather large, but it can also be found in other 
architectural elements, not meant to be walked upon. In the latter case, the motives are in smaller 
scale and vitreous matter could be used instead of stone, allowing brighter colors, golden leaf and a 
general more refined processing (fig. 5). The use of vitreous matter in minute geometrical 
compositions on the spiral columns is one of the most magnificent accomplishments of this 
artisanship. 
 

 
 

Fig. 5 San Lorenzo fuori le mura, Rome (date unkown) altar. Foto Conversano. 
 

We stress here that we are abiding by the caveat that to claim for a self-similar organization, 
not only the rescaling should point in the limit to a Cantor set, rather than to isolated points, but also 
that at least three levels of rescaling should be visible. We therefore include also an example (fig. 6) 
in which rescaling is clear down to four levels, albeit the largest central triangle has been filled by 
another Sierpinski. If it had been left void, we would have a five level subdivision. 

 

 
 

Fig. 6 SS. Giovanni e Paolo (13th century), Rome 



Santa Maria in Cosmedin, Rome
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for several designs. On an elementary level (i.e. reducing to the simpler element), ad quadratum 
(fig.1) consists of a square, overdrawn with another square, whose vertices are at middle point of its 
sides. Thus the second, inner, has diagonal the same size as the side of the outer. The overall picture 
now is composed of a square and four rectangle triangles. One can also say the inner square is 
rotated by �/4. If the second square has instead the same size of the first, we obtain an 8-pointed 
star. Also this is called ad quadratum. In any case, some isosceles triangles result in the procedure. 
The first procedure is the one that naturally points to recursion possibilities, and is in fact exploited 
at several scales by the Marmorari, in the first centuries of their activity. Later, possibly under the 
influence of southern Italy, other ad quadratum appear. 

Again an elementary level ad triangulum consists of an equilateral triangle overdrawn with 
another one, whose vertices are at the middle points of its sides. The overall picture is now made of 
four equilateral triangles; the squares and triangles thus obtained can be reprocessed in one of the 
two ways, using smaller tiles. Due to the rescaling, all sizes of the triangular and square tesserae are 
in a precise relation, so that an atelier could carry colored tesserae already cut to mount a pavement. 
 

          
 

Fig. 1 Ad quadratum carpets Santa Maria in Cosmedin, Rome, left and SS. Giovanni e Paolo (Rome), right 
 

Ad quadratum and ad triangulum are, per se, rules of subdivision. While it is reported that 
the Marmorari worked by filling [9,11], we think our change in perspective is what can account for 
the general ability of the Marmorari Romani to work controlling different spatial scales: motives 
where planned as subdivisions, and laid as filling when on premises. In this way, naturally, by 
successive subdivision of triangles into triangles, textures result, that we will call Sierpinski carpets, 
at times worked in equilateral triangles, and at times in isosceles right triangles (fig. 2). 

 

          
 

Fig. 2 Sierpinski carpets, Santa Maria in Cosmedin, Rome 
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Escher’s studies of Sierpinski gasket-type patterns
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On twelfth-century pulpit of Ravello
Cathedral, 1923



Sierpiński Carpet and generalizations
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Karl Menger 1902-1985 and his sponge 
1926
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Menger sponge via business card origami 
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Jeannine Mosely
66048 business cardsThree interlinked Level One Menger

Sponges, by Margaret Wertheim.



Niels Fabian Helge von Koch (1870-1924) and
his snowflake (1904)
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Evolution à la Mandelbrot
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Canopy, by Craig Harris 2008
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Similarity mapping
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A plane transformation f is a similarity if there exists a positive number k
such that for every point A and B, d(f(A),f(B))=kd(A,B). The number k
Is a stretching factor of the similarity. Case k=1 gives a symmetry.

Similarities here are
central similarities or
dilations



Classification of similarities in the plane
Spiral symmetry: rotation composed with a central similarity (w.r.t
same point)
Dilative reflection: central similarity w.r.t. point O composed with a 
reflection w.r.t. a line going through O. 

Can show: Every similarity is a symmetry, a spiral similarity or a 
dilative reflection.
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The self similar wave by Tom Hull
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Is the outcome a fractal ?
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Question 1
Suppose we started with a square paper  with side length 1 and folded 
the wave with an infinite number of levels, what would the coordinates 
of the limit point P of the spiral be ?
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Geometric transformation solution
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(1,y)

(1,0)

• Find affine mapping (scaling+ translation) taking (1,0) 
to (1,y) (and hence unit square to a square of side 
length 1-y

• y =  √2 -1 from the picture=> scaling factor =1-y =2- √2 

(y,y)



Self similarity in the folded wave pattern
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(x,0)

(1,y)

• (1,0) mapped (1,y) again 
• (0,0) mapped to (x,0) x=1-y =2- √2 
• P will become a fixed point of the 

mapping

Þ Rotation  of 45 °counter clockwise wrt to the origin + scaling by factor 2- √2 
+ translation from origin to point (x,0) 

Þ P=(2/3, √2 /3)



Solution through complex (= nature’s) numbers
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Fix  P0 = 0, P1=a =2- √2 

P1

P2

P3

a

a2

P2=  P1+a2ei𝜃, 𝜃= !
"

P3=  P2+a3ei2𝜃
…

Pn=  Pn-1+anei(n-1)𝜃

=> P = a∑(aei𝜃)n = 2/3+ √2 /3 𝒾

∑

The spiral is logarithmic:  |P-Pn|=  √6 /3 (2-√2)n+1



Some other self similar origami patterns 
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Sometimes called  ‘fractal origami’ but are they fractals really ? 



Gaston Maurice Julia 1893-1978
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Iteration of planar rational functions
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Squaring transformation: s: s(r,α)=(r2,  2α)
Power n: pn: pn(r,α)=(rn, nα) 

Preserves angles outside 
the origin !



… and  (geometric) inversion in a circle
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Planar rational maps are compositions of similarities, powers
and inversions.



Pierre Joseph Louis Fatou 1878-1929
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• ‘Fatou set’
• Holomorphic dynamics



Benoit Mandelbrot 1924-2010
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Mandelbrot coined (70’s) the word ‘fractal’ to
explain self similar objects 

Fractus= fractured, broken



Mandelbrot set
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Parameter space for
C=(Cx,Cy) under
f: f(r,α)=(r2,2α) +C

Look at C=0 once more!



C=-1, Julia/Fatou set
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Douady’s rabbit (Adrien Douady 1935-2006) 
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Dragon c=0.360284+0.100376i
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Dendrite and Cantor dust
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Higher dimensional analogues of complex polynomials (joint 
work in progress with G. Martin)
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Kleinian groups
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Ex: pairing of circles under
Möbius transformations



An artistic interpretation by Jos Leys
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Fractals in approximating natural forms
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Change from 
mechanical/geometrical to 
organic by using mathematical 
algorithm



Aristid Lindenmayer 1925-1989 (L-systems) in plant 
biology
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Artistic inventions of fractals a bit earlier and its reproduction by a process 
called Iterated Function System IFS.
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‘Driving Rain’ by Ando Hiroshige (1797-1858)



‘A Thousand Pictures of the Sea’ by Katsushika 
Hokusai (1817-1859) and IFS again
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Frank Lloyd Wright (1867-1959)
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Palmer house in Michigan
(1950-51)



Fallingwater, Pennsylvania (1937) and Li Cheng 
(960-1127): Solitary Temple
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African fractals: Ron Eglash
http//www.ted.com/talks/ron_eglash_on_african_fractals.html
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