Taloustieteen matemaattiset menetelmaét

31C01100

Syksy 2020
Lassi Tervonen
lassi.tervonen@aalto.fi

Problem Set 4: Solutions

1. Solution

1.

f(x1, 1) = 3z129 — 23 — x3. The FOCs reduce to the equations z5 = 2% and

x1 = x3, which solve for x; = x5 = 0 and x; = x5 = 1. Thus the critical points
are (0,0) and (1,1). The Hessian is

—06x 3

_ 2 _ 1

H=D f(l’l,l'Q) = ( 3 —6I2) .

At (1,1), the Hessian is negative definite. Therefore, (1,1) is a local maxi-
mizer. However, this is not a global maximizer. Notice that f(1,1) =1 <5 =

f(=1,-1).

At (0,0), the Hessian is indefinite (the determinant is —9). Therefore, (0,0) is
a saddle point.

Thus, this function attains only a local maximum at (1, 1).

[y, 29) = 3z1e"2— 23 —€372. The FOCs reduce to e*2 —x? = 0 and x; —e?*2 = (),
which solve for z; = 1 and 9 = 0. So the only critical point is (1, 0). The Hessian
is

—61‘1 3e*?

At (1,0), the Hessian is negative definite, so implying that (1,0) is a local
maximizer. However, (1,0) is not a global maximizer. Indeed we have f(1,0) =
1 <718 ~ f(—2, -2).

2. Solution

1.

f(x1, 29, 3) = 23 + 23 + 323 — 2129 + 22103 + Tox3. The only critical point is
the origin (0,0,0). The Hessian is

2 -1 2
H=D?f(zy,x9,23) = | -1 2 1
2 1 6

The leading principal minors are |H;| = 2, |Hy| = 3 and |Hs| = 4. Hence the
Hessian is positive definite at every point of the domain. This implies that f is
a convex function and (0,0, 0) is the unique global (and local) minimizer.
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2. The unique critical point is the origin (0,0). The Hessian is

2(1 + ZE2)3 6(1 + 1’2)21’1 )

12 _
H=D f(xhx?) - (6(1 + 1;2)2;(;1 2+ 6(1 + l‘g)fE%

At (0,0), the Hessian is positive definite, so implying that (0, 0) is a local mini-
mizer. However, it is not a global minimizer. Notice that f(x, —2) = —2? + 4
tends to —oo as x goes to 400.

3. Solution

1. f(z,y) = —2x +y + 2* — 22y + y*. The Hessian matrix is

H = D*f(x,y) = (_22 _22)

The two first order principal minors are positive, the second order principal
minor (that is, the determinant) is equal to zero (consequently, non-negative).
Hence the Hessian is positive semidefinite and the function is convex.

2. f(x,y,2) = 100 — 22% — y* — 32 — 2y — *¥*=. This is the same function of
exercise 4 in Problem Set 3. Let u := x 4+ y + 2. The Hessian is

—4 —e* —1—e* —ev

H=Df(z,y,2)=| —1—¢e* —2—¢e* —¢*
—el —el —el
The leading principal minors are |A;| = —4 — e* < 0, |As| = 7+ 4e* > 0 and
|As| = —7e" < 0. Hence the Hessian is negative definite and f is concave.

4. Solution

The profit function is 7(q1, ¢2) = p1g1 + p2g2 — (243 + q1g2 + 2¢*). The FOCs are:

P —4a — ¢ p—4g—q@ = 0 (1)
\% = =0 =
™ (a1, ¢2) {p2—4Q2—CI1] {p2—4CI2—Q1 = 0 (2)

Substitute go = p; — 4¢; to the equation (2):
p2—4(p1 —4q) —q1 = p2 — 4p1 + 15¢1 = 0,

which solves for ¢ = 22 =2 and ¢ = p1 — 44 2= 4”21;“. The Hessian is

-4 —1
H(m) = [ 1 4 ] :
The leading principal minors are |H;| = —4 < 0 and |Hs| = |H (7) | = 15 > 0, so the

Hessian is negative definite and 7(qi, ¢2) is concave. Thus, (¢}, q5) = (24722, 22201)
is the (global and local) maximizer of 7(q1, go)-



5. Solution

The two principal minors —2 and —4 are negative, hence A cannot be positive semi-
definite and, consequently, cannot be positive definite either.

In order for A to be negative definite, it must be the case that the leading principal
minors are as follows i) a < 0, ii) |A2| > 0, which is true iff (if and only if) a < —2,
and iii) |A3| = |A] < 0, which is true iff 8a + 16 + 20* < 0. In sum, A is negative
definite iff @ < —2 and 4a + 8 + b? < 0.

In order for A to be negative semidefinite, we must have a < 0 (first order principal
minor), a < —2 and 4a + b* < 0 (second order principal minors), and 4a + 8 +b* < 0
(third order principal minor). In sum, A is negative semidefinite if a < —2 and
4a+8+0* < 0.

In all the remaining cases, the matrix is indefinite.



