Problem Set 4: Solutions

1. Solution

1. $f\left(x_{1}, x_{2}\right)=3 x_{1} x_{2}-x_{1}^{3}-x_{2}^{3}$. The FOCs reduce to the equations $x_{2}=x_{1}^{2}$ and $x_{1}=x_{2}^{2}$, which solve for $x_{1}=x_{2}=0$ and $x_{1}=x_{2}=1$. Thus the critical points are $(0,0)$ and $(1,1)$. The Hessian is

$$
H=D^{2} f\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
-6 x_{1} & 3 \\
3 & -6 x_{2}
\end{array}\right) .
$$

At $(1,1)$, the Hessian is negative definite. Therefore, $(1,1)$ is a local maximizer. However, this is not a global maximizer. Notice that $f(1,1)=1<5=$ $f(-1,-1)$.

At $(0,0)$, the Hessian is indefinite (the determinant is -9$)$. Therefore, $(0,0)$ is a saddle point.

Thus, this function attains only a local maximum at $(1,1)$.
2. $f\left(x_{1}, x_{2}\right)=3 x_{1} e^{x_{2}}-x_{1}^{3}-e^{3 x_{2}}$. The FOCs reduce to $e^{x_{2}}-x_{1}^{2}=0$ and $x_{1}-e^{2 x_{2}}=0$, which solve for $x_{1}=1$ and $x_{2}=0$. So the only critical point is $(1,0)$. The Hessian is

$$
H=D^{2} f\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
-6 x_{1} & 3 e^{x_{2}} \\
3 e^{x_{2}} & -9 e^{3 x_{2}}
\end{array}\right) .
$$

At $(1,0)$, the Hessian is negative definite, so implying that $(1,0)$ is a local maximizer. However, $(1,0)$ is not a global maximizer. Indeed we have $f(1,0)=$ $1<7.18 \approx f(-2,-2)$.

2. Solution

1. $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+3 x_{3}^{2}-x_{1} x_{2}+2 x_{1} x_{3}+x_{2} x_{3}$. The only critical point is the origin $(0,0,0)$. The Hessian is

$$
H=D^{2} f\left(x_{1}, x_{2}, x_{3}\right)=\left(\begin{array}{ccc}
2 & -1 & 2 \\
-1 & 2 & 1 \\
2 & 1 & 6
\end{array}\right)
$$

The leading principal minors are $\left|H_{1}\right|=2,\left|H_{2}\right|=3$ and $\left|H_{3}\right|=4$. Hence the Hessian is positive definite at every point of the domain. This implies that f is a convex function and $(0,0,0)$ is the unique global (and local) minimizer.
2. The unique critical point is the origin $(0,0)$. The Hessian is

$$
H=D^{2} f\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
2\left(1+x_{2}\right)^{3} & 6\left(1+x_{2}\right)^{2} x_{1} \\
6\left(1+x_{2}\right)^{2} x_{1} & 2+6\left(1+x_{2}\right) x_{1}^{2}
\end{array}\right)
$$

At $(0,0)$, the Hessian is positive definite, so implying that $(0,0)$ is a local minimizer. However, it is not a global minimizer. Notice that $f\left(x_{1},-2\right)=-x_{1}^{2}+4$ tends to $-\infty$ as x goes to $+\infty$.

3. Solution

1. $f(x, y)=-2 x+y+x^{2}-2 x y+y^{2}$. The Hessian matrix is

$$
H=D^{2} f(x, y)=\left(\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right)
$$

The two first order principal minors are positive, the second order principal minor (that is, the determinant) is equal to zero (consequently, non-negative). Hence the Hessian is positive semidefinite and the function is convex.
2. $f(x, y, z)=100-2 x^{2}-y^{2}-3 z-x y-e^{x+y+z}$. This is the same function of exercise 4 in Problem Set 3. Let $u:=x+y+z$. The Hessian is

$$
H=D^{2} f(x, y, z)=\left(\begin{array}{ccc}
-4-e^{u} & -1-e^{u} & -e^{u} \\
-1-e^{u} & -2-e^{u} & -e^{u} \\
-e^{u} & -e^{u} & -e^{u}
\end{array}\right)
$$

The leading principal minors are $\left|A_{1}\right|=-4-e^{u}<0,\left|A_{2}\right|=7+4 e^{u}>0$ and $\left|A_{3}\right|=-7 e^{u}<0$. Hence the Hessian is negative definite and f is concave.

4. Solution

The profit function is $\pi\left(q_{1}, q_{2}\right)=p_{1} q_{1}+p_{2} q_{2}-\left(2 q_{1}^{2}+q_{1} q_{2}+2 q^{2}\right)$. The FOCs are:

$$
\nabla \pi\left(q_{1}, q_{2}\right)=\left[\begin{array}{l}
p_{1}-4 q_{1}-q_{2} \tag{1}\\
p_{2}-4 q_{2}-q_{1}
\end{array}\right]=0 \quad \Rightarrow \quad\left\{\begin{array}{l}
p_{1}-4 q_{1}-q_{2}=0 \\
p_{2}-4 q_{2}-q_{1}=0
\end{array}\right.
$$

Substitute $q_{2}=p_{1}-4 q_{1}$ to the equation (2):

$$
p_{2}-4\left(p_{1}-4 q_{1}\right)-q_{1}=p_{2}-4 p_{1}+15 q_{1}=0
$$

which solves for $q_{1}^{*}=\frac{4 p_{1}-p_{2}}{15}$ and $q_{2}^{*}=p_{1}-4 \frac{4 p_{1}-p_{2}}{15}=\frac{4 p_{2}-p_{1}}{15}$. The Hessian is

$$
H(\pi)=\left[\begin{array}{ll}
-4 & -1 \\
-1 & -4
\end{array}\right]
$$

The leading principal minors are $\left|H_{1}\right|=-4<0$ and $\left|H_{2}\right|=|H(\pi)|=15>0$, so the Hessian is negative definite and $\pi\left(q_{1}, q_{2}\right)$ is concave. Thus, $\left(q_{1}^{*}, q_{2}^{*}\right)=\left(\frac{4 p_{1}-p_{2}}{15}, \frac{4 p_{2}-p_{1}}{15}\right)$ is the (global and local) maximizer of $\pi\left(q_{1}, q_{2}\right)$.

5. Solution

The two principal minors -2 and -4 are negative, hence A cannot be positive semidefinite and, consequently, cannot be positive definite either.
In order for A to be negative definite, it must be the case that the leading principal minors are as follows i) $a<0$, ii) $\left|A_{2}\right|>0$, which is true iff (if and only if) $a<-2$, and iii) $\left|A_{3}\right|=|A|<0$, which is true iff $8 a+16+2 b^{2}<0$. In sum, A is negative definite iff $a<-2$ and $4 a+8+b^{2}<0$.

In order for A to be negative semidefinite, we must have $a \leq 0$ (first order principal minor), $a \leq-2$ and $4 a+b^{2} \leq 0$ (second order principal minors), and $4 a+8+b^{2} \leq 0$ (third order principal minor). In sum, A is negative semidefinite if $a \leq-2$ and $4 a+8+b^{2} \leq 0$.
In all the remaining cases, the matrix is indefinite.

