Worksheet 4

MS-E1621, Algebraic Statistics

October 14, 2020

Group members: Write your names here.
The 2×2 independence model is

$$
\mathcal{M}_{X \Perp Y}=\left\{p=\left(\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right) \in \Delta_{3}: p_{i j}=\alpha_{i} \beta_{j},(\alpha, \beta) \in \Delta_{1} \times \Delta_{1}\right\} .
$$

Let the matrix of counts be

$$
u=\left(\begin{array}{ll}
19 & 141 \\
17 & 149
\end{array}\right) .
$$

1. Write down the likelihood function $L(\theta \mid D)=\prod p_{\theta}(j)^{u_{j}}$.
2. Write down the \log-likelihood function $l(\theta \mid D)=\log L(\theta \mid D)$.
3. The maximum likelihood estimate $\hat{\theta}$ is the maximizer of the log-likelihood function:

$$
\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} l(\theta \mid D) .
$$

How would you find the maximum likelihood estimate for the model $\mathcal{M}_{X \Perp Y}$ and the matrix of counts u using the log-likelihood function? You do not have to explicitly write down the solution, but discuss what are the steps.
4. Alternatively, the model $\mathcal{M}_{X \Perp Y}$ can be given implicitly as

$$
\mathcal{M}_{X \Perp Y}=\left\{P=\left(\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right) \in \Delta_{3}: p_{11} p_{22}-p_{12} p_{21}=0\right\} .
$$

How would you find the maximum likelihood estimate for the implicit model?

