
Likelihood inference
Kaie Kubjas, 14.10.2020



• Send me preferences for group work topics today.


• From Homework 3, one can resubmit only problems for which there was 
an attempt at the original submission.


• Period II: Matrix Theory course by Vanni Noferini


• Hourly-based teacher positions for spring 2021 (deadline November 5)



Agenda

• Gaussian exponential families


• Parameter estimation


• Maximum likelihood estimation


• Implicit models


• Exponential families



Gaussian exponential families



Exponential families

• Let  be a random variable taking values in a set .


• An exponential family is the set of probability distributions whose 
probability mass function or density function can be expressed as


 


for a given statistic , natural parameter , and 
functions  and .

X 𝒳

fθ(x) = h(x)eη(θ)tT(x)−A(θ)

T : 𝒳 → ℝk η : Θ → ℝk

h : 𝒳 → ℝ>0 A : Θ → ℝ



Multivariate normal distribution
• 


•  given by





•  for all 


• 


•

fμ,Σ(x) =
1

(2π)m/2 |Σ |1/2 exp {−
1
2

(x − μ)tΣ−1(x − μ)}
T : 𝒳 → ℝm × ℝm(m+1)/2

T(x) = (x1, …, xm, − x2
1 /2,…, − x2

m/2, − x1x2, …, − xm−1xm)t

h(x) = (2π)m/2 x ∈ ℝm

η(θ) = (Σ−1μ, Σ−1)

A(θ) =
1
2

μtΣ−1μ +
1
2

log |Σ |



Gaussian exponential families
• Choose a statistic  that maps  to a vector of degree 2 

polynomials with no constant term.


• Example: Let  and 
.


• Equivalently take a linear subspace  of the parameter space  
of the regular exponential family.


• Example: Let  and .

T(x) x ∈ ℝm

m = 3
T(x) = (x1, x2, x3, − x2

1 /2, − x2
2 /2, − x2

3 /2, − x2x3)t

L ℝm × PDm

m = 3 L = ℝ3 × {K ∈ PD3 : k12 = 0,k13 = 0}



Inverse linear space

• We focus on the cases  or . Then exponential subfamily is 
determined by a linear space in the space of concentration matrices.


• One is often interested in describing Gaussian exponential subfamilies in 
the space of covariance matrices.


Def: Let  be a linear space such that  is nonempty. 
The inverse linear space  is the set of positive definite matrices


.

{0} × L ℝm × L

L ⊆ ℝ(m+1)m/2 L ∩ PDm
L−1

L−1 = {K−1 : K ∈ L ∩ PDm}



Gaussian exponential families

• The vanishing ideal of  is a subset of .


• Gaussian exponential subfamilies have interesting ideals in .

L−1 ℝ[σ] := ℝ[σij : 1 ≤ i ≤ j ≤ m]

ℝ[σ]



Gaussian exponential families

Prop: If  is a concentration matrix for a Gaussian random vector, a zero 
entry  is equivalent to a conditional independence statement 

.


• The CI ideals that arise from zeros in the concentration matrix might not 
be primary.


• The linear space  in the concentration coordinators is irreducible and this 
allows us to parametrize the main component of the CI ideal.

K
kij = 0

i ⊥⊥ j | [m]\{i, j}

L



Gaussian exponential families
• Let . Consider the Gaussian exponential family defined by the linear 

space of concentration matrices .


• This corresponds to CI statements  and . 


• 


• The intersection axiom implies , but no linear polynomials in . One 
option is to compute a primary decomposition of .


• Alternatively, we can use the parametrization of the Gaussian exponential model 
to compute the vanishing ideal.

m = 3
L = {K ∈ PD3 : k12 = 0,k13 = 0}

1 ⊥⊥ 2 |3 1 ⊥⊥ 3 |2

J𝒞 = ⟨σ12σ33 − σ13σ23, σ13σ22 − σ12σ23⟩

1 ⊥⊥ {2,3} J𝒞
J𝒞





Parameter estimation



Parameter estimation
• A typical problem in statistics: Given a parametric model, estimate some 

or all parameters of the model based on data.


• Maximum likelihood estimation [today]


• Method of moments [one of the group projects]


• Do not assume that the model accurately fits the data -> hypothesis 
testing [next time for discrete exponential families]




Parameter estimation
Def: Let  be a parametric statistical model. Suppose we want to estimate a fixed parameter . An 
estimator of  is a function  from the state space to  that is used to infer the value of .


Example: Consider the family of binomial distributions 


.


Let  be i.i.d. samples from a distribution  in this family. Let  be the vector of 

counts, i.e. . Then  is an estimator of the parameter .


Def: The estimator  is consistent if  converges to  in probability as the sample size tends to infinity, i.e.


 for all .

ℳΘ θ
θ ̂θ ℝ θ

Bin(2,θ)

{(θ2,2θ(1 − θ), (1 − θ)2) : θ ∈ [0,1]}
X(1), …, X(n) pθ u = (u0, u1, u2)

uj = #{i : X(i) = j}
u0

n
θ

̂θ ̂θ θ

lim
n→∞

P(∥ ̂θn − θ∥2 > ϵ) = 0 ϵ > 0



Maximum likelihood estimation
• Let  be data from some model with parameter space .


• Likelihood function (discrete case):  - the probability of 
observing the data  given the parameter 


• Likelihood function (continuous case):  - the value of the density 
function evaluated at the data


• The maximum likelihood estimate  is the maximizer of the likelihood function:


.

D = {X(1), X(2), …, X(n)} Θ

L(θ |D) := pθ(D)
D θ

L(θ |D) := fθ(D)

̂θ

̂θ = argmaxθ∈ΘL(θ |D)



Maximum likelihood estimation
I.i.d. sampling: 


• Likelihood function (discrete case): 


• Let  be the vector of counts, i.e. : 


• Example for : 


• Likelihood function (continuous case): 

L(θ |D) =
n

∏
i=1

L(θ |X(i))

L(θ |D) =
n

∏
i=1

pθ(X(i))

u ∈ ℕr uj = #{i : X(i) = j} L(θ |D) =
n

∏
i=1

pθ(X(i)) =
r

∏
j=1

pθ( j)uj

{(θ2,2θ(1 − θ), (1 − θ)2) : θ ∈ [0,1]} L(θ |D) = (θ2)u0 ⋅ (2θ(1 − θ))u1 ⋅ ((1 − θ)2)u2

L(θ |D) =
n

∏
i=1

fθ(X(i))



Log-likelihood function
• The log-likelihood function is





• I.i.d. data: turns a product into a sum


• Example: 


• 


• 


• The likelihood and log-likelihood function have the same maximizer, because logarithm is 
a monotone function

l(θ |D) = log L(θ |D)

L(θ |D) = (θ2)u0 ⋅ (2θ(1 − θ))u1 ⋅ ((1 − θ)2)u2

l(θ |D) = u0 log(θ2) + u1 log(2θ(1 − θ)) + u2 log((1 − θ)2)



Breakout rooms



Score equations

Let  be an open full-dimensional parameter set.


Def: The score equations or critical equations of the model  are the 
equations obtained by setting the gradient of the log-likelihood function to 
zero:


.

Θ ⊆ ℝd

ℳΘ

∂
∂θi

l(θ |D) = 0, i = 1,…, d



Score equations example
 and 


Log-likelihood function: 


                                  


Score equations:





ℳX⊥⊥Y = {p = (p11 p12
p21 p22) ∈ Δ3 : pij = αiβj, (α, β) ∈ Δ1 × Δ1} u = (19 141

17 149)
l(α, β |u) = 160 log α1 + 166 log α2 + 36 log β1 + 290 log β2

= 160 log α1 + 166 log(1 − α1) + 36 log β1 + 290 log(1 − β1)

∂l(α, β |u)
∂α1

=
160
α1

−
166

1 − α1
= 0

∂l(α, β |u)
∂β1

=
36
β1

−
290

1 − β1
= 0



Score equations

• Since  is open, the maximum likelihood estimate might not exist.


• If  were closed, then the maximum likelihood estimate might not be a 
solution to the score equations.

Θ

Θ



Discrete setup
• A parametric model given by a rational map 


• I.i.d. samples  such that each  for some unknown distribution 


• The vector of counts , given by 


• Log-likelihood function 


• Score equations 

p : Θ → Δr−1

X(1), …, X(n) X(i) ∼ p p

u ∈ ℕr uj = #{i : X(i) = j}

l(θ |u) =
r

∑
j=1

uj log pj

r

∑
j=1

uj

pj

∂pj

∂θi
= 0



ML degree

Theorem: Let  be a statistical model. For generic data, the 
number of solutions to the score equations is independent of .


Generic = data is outside a variety


Def: The number of solutions to the score equations for generic  is called 
the maximum likelihood degree (ML degree) of the parametric discrete 
statistical model .

ℳΘ ⊆ Δr−1
u

u

ℳΘ



Implicit models



Implicit models
• Implicit models are given as the intersection of the interior of the 

probability simplex  and the variety , where . 


• Let us denote it by . Given a vector of counts , 
we would like to maximize the log-likelihood function 





over .

int(Δr−1) V(I) I = ⟨g1, …, gk⟩

Vint(Δ)(I) u = (u1, …, ur)

l(p |u) =
r

∑
i=1

ui log pi

Vint(Δ)(I)



Implicit models example

•  and 




• Want to maximize 
 over 

.


• The constraints are  and .

ℳX⊥⊥Y = {P = (p11 p12
p21 p22) ∈ Δ3 : p11p22 − p12p21 = 0}

u = (19 141
17 149)

l(p |u) = 19 log p11 + 141 log p12 + 17 log p21 + 149 log p22
ℳX⊥⊥Y

p11 + p12 + p21 + p22 = 1 p11p22 − p12p21 = 0



Lagrange multipliers
• Recall that the method of Lagrange multipliers is used to solve the following 

constrained optimization problem:





subject to 


• The Lagrangian of this optimization problem is


.


• Example: 

max f(x)

gi(x) = 0 for i = 1,…, k

L(x, λ) = f(x) −
k

∑
i=1

λigi(x)

L(x, λ) = l(p |u) − λ1(p11 + p12 + p21 + p22 − 1) − λ2(p11p22 − p12p21)



Lagrange multipliers

The constrained critical points of  are among the unconstrained critical 
points of . Hence one has to solve


, , , 


, , 

f
L

g1 = 0 … gk = 0

∂f
∂x1

−
k

∑
i=1

λi
∂gi

∂x1
= 0 …

∂f
∂xm

−
k

∑
i=1

λi
∂gi

∂xr
= 0



Lagrange multipliers

The gradient of the log-likelihood function is . Hence:


, , , 


, , 

( u1

p1
…

ur

pr )
g1 = 0 … gs = 0

u1

p1
−

k

∑
i=1

λi
∂gi

∂p1
= 0 …

ur

pr
−

k

∑
i=1

λi
∂gi

∂pr
= 0



Lagrange multipliers

• Clearing the denominators gives a system of polynomial equations:


, , , 


, , 


• When clearing the denominators, one might introduce new solutions 
where one of the  is zero (but this happens only if one of  is zero)

g1 = 0 … gs = 0

u1 − p1

k

∑
i=1

λi
∂gi

∂p1
= 0 … ur − pr

k

∑
i=1

λi
∂gi

∂pr
= 0

pi ui



Lagrange multipliers
• In the statistical setting, one constraint is . Set .


• Then , ,  is equivalent to  being in the 

row span of the augmented Jacobian matrix


.

p1 + … + pr = 1 g0 = p1 + … + pr − 1

u1 − p1

k

∑
i=0

λi
∂gi

∂p1
= 0 … ur − pr

k

∑
i=0

λi
∂gi

∂pr
= 0 u

J′ =

p1 p2 … pr

p1
∂g1

∂p1
p2

∂g1

∂p2
… pr

∂g1

∂pr

⋮ ⋮ ⋱ ⋮

p1
∂gk

∂p1
p2

∂gk

∂p2
… pr

∂gk

∂pr



Lagrange multipliers

• Example: 



•  is a critical point of  if  is in the row span of the matrix 

L(x, λ) = l(p |u) − λ1(p11 + p12 + p21 + p22 − 1) − λ2(p11p22 − p12p21)

p ∈ V(I) l(p |u) u

( p11 p12 p21 p22
p11p22 −p12p21 −p12p21 p11p22)



Lagrange multipliers
• Consider the ideal  generated by: ,

.


• Whether the variety of the ideal is finite, can be checked with the command 
dim( ): dim=0 means that the system has finitely many solutions.


• If there are finitely many solutions, then the number of solutions can be computed 
with degree( ).


• The solutions can be found for example with the solve command in Mathematica.

Il g1, …, gs

u1 − p1

k

∑
i=0

λi
∂gi

∂p1
, …, ur − pr

k

∑
i=0

λi
∂gi

∂pr

Il

Il



Exponential families



Concave functions

Def: A set  is convex if for all , also .


Def: Let  be a convex set. 


• A function  is convex if  for all 
.


• A function  is concave if  for all 
.

S ⊆ ℝd x, y ∈ S (x + y)/2 ∈ S

S

f : S → ℝ f((x + y)/2) ≤ ( f(x) + f(y))/2
x, y, ∈ S

f : S → ℝ f((x + y)/2) ≥ ( f(x) + f(y))/2
x, y, ∈ S



Concave functions

Prop: Let  be a closed convex set and  be a concave function. 
Then the set  where  attains its maximum value is a convex set. If  is 
strictly concave, i.e.  for all , then  has 
a unique global maximum, if a maximum exists.

S f : S → ℝ
U ⊆ S f f

f((x + y)/2) > ( f(x) + f(y))/2 x ≠ y f



Exponential families

The canonical form of an exponential family is 


• statistic , 


• function , and 


• function .

fη(x) = h(x)eηtT(x)−A(η)

T : 𝒳 → ℝk

h : 𝒳 → ℝ>0

A : H → ℝ



Exponential families

Prop: Let  be an exponential family with minimal sufficient statistics  
and natural parameter , with density . Then the 
likelihood function is strictly concave. Furthermore, the maximum likelihood 
estimate, if it exists, is the solution to 


,


where  denotes the data vector.

ℳ T(x)
η fη(x) = h(x)eηtT(x)−A(η)

T(x) = 𝔼η[T(X)]

x



I.i.d. samples
I.i.d. samples  yield a new exponential family with the same 
parameter , the sufficient statistic


 


and with 


.

X(1), …, X(n)

η

Tn(X(1), …, X(n)) =
n

∑
i=1

T(X)(i)

hn(X(1), …, X(n)) =
n

∏
i=1

h(X(i))



Discrete exponential families

Cor: Let  such that , let , and let  be the 
vector of counts from  i.i.d. samples. Then the maximum likelihood 
estimate in the log-linear model  given the data  is the unique 
solution, if it exists, to the equations


.

A ⊆ ℤk×r 1 ∈ rowspan(A) h ∈ ℝr
>0 u

n
ℳA,h u

Au = nAp and p ∈ ℳA,h



Gaussian exponential families
Cor: Let  be a linear space in  such that  is not empty, 
and let  be the corresponding parameter space of the Gaussian 
exponential family. Let  be i.i.d. samples and let  and  
be the corresponding sample mean and sample covariance matrix. Then the 
maximum likelihood estimate for  is , where  is 
the unique solution, if it exists, to the equations 


 and ,


where  denotes the orthogonal projection onto .

L ℝm(m+1)/2 L ∩ PDm
ℝm × ℳL−1

X(1), …, X(n) ∈ ℝm X̄ S

(μ, Σ) ∈ ℝm × ℳL−1 (X̄, ̂S) ̂S

π(S) = π( ̂S) ̂S ∈ ℳL−1

π L



Next time

• Hypothesis testing for discrete exponential families


• Reading task based on “Algebraic algorithms for sampling from 
conditional distributions” by Diaconis and Sturmfels


