Likelihood inference

Kaie Kubjas, 14.10.2020

- Send me preferences for group work topics today.
- From Homework 3, one can resubmit only problems for which there was an attempt at the original submission.
- Period II: Matrix Theory course by Vanni Noferini
- Hourly-based teacher positions for spring 2021 (deadline November 5)

Agenda

- Gaussian exponential families
- Parameter estimation
- Maximum likelihood estimation
- Implicit models
- Exponential families

Gaussian exponential families

Exponential families

- Let X be a random variable taking values in a set \mathscr{X}.
- An exponential family is the set of probability distributions whose probability mass function or density function can be expressed as

$$
f_{\theta}(x)=h(x) e^{\eta(\theta)^{t} T(x)-A(\theta)}
$$

for a given statistic $T: \mathscr{X} \rightarrow \mathbb{R}^{k}$, natural parameter $\eta: \Theta \rightarrow \mathbb{R}^{k}$, and functions $h: \mathscr{X} \rightarrow \mathbb{R}_{>0}$ and $A: \Theta \rightarrow \mathbb{R}$.

Multivariate normal distribution

. $f_{\mu, \Sigma}(x)=\frac{1}{(2 \pi)^{m / 2}|\Sigma|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-\mu)^{)^{\Sigma} \Sigma^{-1}(x-\mu)}\right\}$

- $T: X \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{m(m+1) / 2}$ given by

$$
T(x)=\left(x_{1}, \ldots, x_{m},-x_{1}^{2} / 2, \ldots,-x_{m}^{2} / 2,-x_{1} x_{2}, \ldots,-x_{m-1} x_{m}\right)^{t}
$$

- $h(x)=(2 \pi)^{m / 2}$ for all $x \in \mathbb{R}^{m}$
- $\eta(\theta)=\left(\Sigma^{-1} \mu, \Sigma^{-1}\right)$
- $A(\theta)=\frac{1}{2} \mu^{t} \Sigma^{-1} \mu+\frac{1}{2} \log |\Sigma|$

Gaussian exponential families

- Choose a statistic $T(x)$ that maps $x \in \mathbb{R}^{m}$ to a vector of degree 2 polynomials with no constant term.
- Example: Let $m=3$ and

$$
T(x)=\left(x_{1}, x_{2}, x_{3},-x_{1}^{2} / 2,-x_{2}^{2} / 2,-x_{3}^{2} / 2,-x_{2} x_{3}\right)^{t} .
$$

- Equivalently take a linear subspace L of the parameter space $\mathbb{R}^{m} \times P D_{m}$ of the regular exponential family.
- Example: Let $m=3$ and $L=\mathbb{R}^{3} \times\left\{K \in P D_{3}: k_{12}=0, k_{13}=0\right\}$.

Inverse linear space

- We focus on the cases $\{0\} \times L$ or $\mathbb{R}^{m} \times L$. Then exponential subfamily is determined by a linear space in the space of concentration matrices.
- One is often interested in describing Gaussian exponential subfamilies in the space of covariance matrices.

Def: Let $L \subseteq \mathbb{R}^{(m+1) m / 2}$ be a linear space such that $L \cap P D_{m}$ is nonempty. The inverse linear space L^{-1} is the set of positive definite matrices

$$
L^{-1}=\left\{K^{-1}: K \in L \cap P D_{m}\right\} .
$$

Gaussian exponential families

- The vanishing ideal of L^{-1} is a subset of $\mathbb{R}[\sigma]:=\mathbb{R}\left[\sigma_{i j}: 1 \leq i \leq j \leq m\right]$.
- Gaussian exponential subfamilies have interesting ideals in $\mathbb{R}[\sigma]$.

Gaussian exponential families

Prop: If K is a concentration matrix for a Gaussian random vector, a zero entry $k_{i j}=0$ is equivalent to a conditional independence statement $i \Perp j \mid[m] \backslash\{i, j\}$.

- The Cl ideals that arise from zeros in the concentration matrix might not be primary.
- The linear space L in the concentration coordinators is irreducible and this allows us to parametrize the main component of the CI ideal.

Gaussian exponential families

- Let $m=3$. Consider the Gaussian exponential family defined by the linear space of concentration matrices $L=\left\{K \in P D_{3}: k_{12}=0, k_{13}=0\right\}$.
- This corresponds to CI statements $1 \Perp 2 \mid 3$ and $1 \Perp 3 \mid 2$.
- $J_{\mathscr{C}}=\left\langle\sigma_{12} \sigma_{33}-\sigma_{13} \sigma_{23}, \sigma_{13} \sigma_{22}-\sigma_{12} \sigma_{23}\right\rangle$
- The intersection axiom implies $1 \Perp\{2,3\}$, but no linear polynomials in $J_{\mathscr{C}}$. One option is to compute a primary decomposition of $J_{\mathscr{C}}$.
- Alternatively, we can use the parametrization of the Gaussian exponential model to compute the vanishing ideal.

restart
$R=Q Q[k 11, k 22, k 23, k 33, s 11, s 12, s 13, s 22, s 23, s 33]$ $\mathrm{K}=$ matrix $\{\{\mathrm{k} 11,0,0\},\{0, \mathrm{k} 22, \mathrm{k} 23\},\{0, \mathrm{k} 23, \mathrm{k} 33\}\}$
$\mathrm{S}=$ matrix $\{\{\mathrm{s} 11, \mathrm{~s} 12, \mathrm{~s} 13\},\{\mathrm{s} 12, \mathrm{~s} 22, \mathrm{~s} 23\},\{\mathrm{s} 13, \mathrm{~s} 23, \mathrm{~s} 33\}\}$
I $=$ ideal (K*S - identity (1))
$\mathrm{J}=$ eliminate (\{k11,k22,k23,k33\},I)
-
-:-- lecture5.m2 All L7 (Macaulay2)
i1 : $R=Q Q[k 11, k 22, k 23, k 33, s 11, s 12, s 13, s 22, s 23, s 33]$
$01=R$
01 : PolynomialRing
i2 : K = matrix $\{\{\mathbf{k} 11,0,0\},\{0, \mathrm{k} 22, \mathrm{k} 23\},\{0, \mathrm{k} 23, \mathrm{k} 33\}\}$
$02=\left|\begin{array}{lll}\text { k11 } & 0 & 0 \\ 0 & \text { k22 } & \text { 223 } \\ 0 & \text { k23 } & \text { k33 }\end{array}\right|$
02 : Matrix $\mathrm{R}^{3}<--\mathrm{R}^{3}$
i3 : $\mathrm{S}=$ matrix $\{\{\mathrm{s} 11, \mathrm{~s} 12, \mathrm{~s} 13\},\{\mathrm{s} 12, \mathrm{~s} 22, \mathrm{~s} 23\},\{\mathrm{s} 13, \mathrm{~s} 23, \mathrm{~s} 33\}\}$
$03=\left|\begin{array}{lll}\mathrm{s} 11 & \mathrm{~s} 12 & \mathrm{~s} 13 \\ \mathrm{~s} 12 & \mathrm{~s} 22 & \mathrm{~s} 23 \\ \mathrm{~s} 13 & \mathrm{~s} 23 & \mathrm{~s} 33\end{array}\right|$

03 : Matrix $\mathrm{R}^{3}<--R^{3}$
i4 : I = ideal (K*S - identity(1))
$04=$ ideal (k11*s11 - 1, k22*s12 $+\mathrm{k} 23 * \mathrm{~s} 13, \mathrm{k} 23 * \mathrm{~s} 12+\mathrm{k} 33 * \mathrm{~s} 13, \mathrm{k} 11 * \mathrm{~s} 12, \mathrm{k} 22 * \mathrm{~s} 22$
$+\mathrm{k} 23 * \mathrm{~s} 23-1, \mathrm{k} 23 * \mathrm{~s} 22+\mathrm{k} 33 * \mathrm{~s} 23, \mathrm{k} 11 * \mathrm{~s} 13, \mathrm{k} 22 * \mathrm{~s} 23+\mathrm{k} 23 * \mathrm{~s} 33, \mathrm{k} 23 * \mathrm{~s} 23+$
$\mathrm{k} 33 * \mathrm{~s} 33-1$)
04 : Ideal of R
i5 : J = eliminate (\{k11,k22,k23,k33\}, I)
05 = ideal (s13, s12)
05 : Ideal of R
i6 :]
U:**- *M2* Bot L58 (Macaulay2 Interaction:run)

Parameter estimation

Parameter estimation

- A typical problem in statistics: Given a parametric model, estimate some or all parameters of the model based on data.
- Maximum likelihood estimation [today]
- Method of moments [one of the group projects]
- Do not assume that the model accurately fits the data -> hypothesis testing [next time for discrete exponential families]

Parameter estimation

Def: Let \mathscr{M}_{Θ} be a parametric statistical model. Suppose we want to estimate a fixed parameter θ. An estimator of θ is a function $\hat{\theta}$ from the state space to \mathbb{R} that is used to infer the value of θ.

Example: Consider the family of binomial distributions $\operatorname{Bin}(2, \theta)$

$$
\left\{\left(\theta^{2}, 2 \theta(1-\theta),(1-\theta)^{2}\right): \theta \in[0,1]\right\}
$$

Let $X^{(1)}, \ldots, X^{(n)}$ be i.i.d. samples from a distribution p_{θ} in this family. Let $u=\left(u_{0}, u_{1}, u_{2}\right)$ be the vector of counts, i.e. $u_{j}=\#\left\{i: X^{(i)}=j\right\}$. Then $\sqrt{\frac{u_{0}}{n}}$ is an estimator of the parameter θ.

Def: The estimator $\hat{\theta}$ is consistent if $\hat{\theta}$ converges to θ in probability as the sample size tends to infinity, i.e.

$$
\lim _{n \rightarrow \infty} P\left(\left\|\hat{\theta}_{n}-\theta\right\|_{2}>\epsilon\right)=0 \text { for all } \epsilon>0
$$

Maximum likelihood estimation

- Let $D=\left\{X^{(1)}, X^{(2)}, \ldots, X^{(n)}\right\}$ be data from some model with parameter space Θ.
- Likelihood function (discrete case): $L(\theta \mid D):=p_{\theta}(D)$ - the probability of observing the data D given the parameter θ
- Likelihood function (continuous case): $L(\theta \mid D):=f_{\theta}(D)$ - the value of the density function evaluated at the data
- The maximum likelihood estimate $\hat{\theta}$ is the maximizer of the likelihood function:

$$
\hat{\theta}=\operatorname{argmax}_{\theta \in \Theta} L(\theta \mid D)
$$

Maximum likelihood estimation

I.i.d. sampling: $L(\theta \mid D)=\prod_{i=1}^{n} L\left(\theta \mid X^{(i)}\right)$

- Likelihood function (discrete case): $L(\theta \mid D)=\prod_{i=1}^{n} p_{\theta}\left(X^{(i)}\right)$
- Let $u \in \mathbb{N}^{r}$ be the vector of counts, i.e. $u_{j}=\#\left\{i: X^{(i)}=j\right\}: L(\theta \mid D)=\prod_{i=1}^{n} p_{\theta}\left(X^{(i)}\right)=\prod_{j=1}^{r} p_{\theta}(j)^{u_{j}}$
- Example for $\left\{\left(\theta^{2}, 2 \theta(1-\theta),(1-\theta)^{2}\right): \theta \in[0,1]\right\}: L(\theta \mid D)=\left(\theta^{2}\right)^{u_{0}} \cdot(2 \theta(1-\theta))^{u_{1}} \cdot\left((1-\theta)^{2}\right)^{u_{2}}$
- Likelihood function (continuous case): $L(\theta \mid D)=\prod_{i=1}^{n} f_{\theta}\left(X^{(i)}\right)$

Log-likelihood function

- The log-likelihood function is

$$
l(\theta \mid D)=\log L(\theta \mid D)
$$

- I.i.d. data: turns a product into a sum
- Example:
- $L(\theta \mid D)=\left(\theta^{2}\right)^{u_{0}} \cdot(2 \theta(1-\theta))^{u_{1}} \cdot\left((1-\theta)^{2}\right)^{u_{2}}$
- $l(\theta \mid D)=u_{0} \log \left(\theta^{2}\right)+u_{1} \log (2 \theta(1-\theta))+u_{2} \log \left((1-\theta)^{2}\right)$
- The likelihood and log-likelihood function have the same maximizer, because logarithm is a monotone function

Breakout rooms

Score equations

Let $\Theta \subseteq \mathbb{R}^{d}$ be an open full-dimensional parameter set.

Def: The score equations or critical equations of the model \mathscr{M}_{Θ} are the equations obtained by setting the gradient of the log-likelihood function to zero:

$$
\frac{\partial}{\partial \theta_{i}} l(\theta \mid D)=0, \quad i=1, \ldots, d
$$

Score equations example

$$
\mathscr{M}_{X \Perp Y}=\left\{p=\left(\begin{array}{ll}
p_{11} & p_{12} \\
p_{21} & p_{22}
\end{array}\right) \in \Delta_{3}: p_{i j}=\alpha_{i} \beta_{j},(\alpha, \beta) \in \Delta_{1} \times \Delta_{1}\right\} \text { and } u=\left(\begin{array}{cc}
19 & 141 \\
17 & 149
\end{array}\right)
$$

Log-likelihood function: $l(\alpha, \beta \mid u)=160 \log \alpha_{1}+166 \log \alpha_{2}+36 \log \beta_{1}+290 \log \beta_{2}$

$$
=160 \log \alpha_{1}+166 \log \left(1-\alpha_{1}\right)+36 \log \beta_{1}+290 \log \left(1-\beta_{1}\right)
$$

Score equations:

$$
\begin{aligned}
& \frac{\partial l(\alpha, \beta \mid u)}{\partial \alpha_{1}}=\frac{160}{\alpha_{1}}-\frac{166}{1-\alpha_{1}}=0 \\
& \frac{\partial l(\alpha, \beta \mid u)}{\partial \beta_{1}}=\frac{36}{\beta_{1}}-\frac{290}{1-\beta_{1}}=0
\end{aligned}
$$

Score equations

- Since Θ is open, the maximum likelihood estimate might not exist.
- If Θ were closed, then the maximum likelihood estimate might not be a solution to the score equations.

Discrete setup

- A parametric model given by a rational map $p: \Theta \rightarrow \Delta_{r-1}$
- I.i.d. samples $X^{(1)}, \ldots, X^{(n)}$ such that each $X^{(i)} \sim p$ for some unknown distribution p
- The vector of counts $u \in \mathbb{N}^{r}$, given by $u_{j}=\#\left\{i: X^{(i)}=j\right\}$
- Log-likelihood function $l(\theta \mid u)=\sum_{j=1}^{r} u_{j} \log p_{j}$
- Score equations $\sum_{j=1}^{r} \frac{u_{j}}{p_{j}} \frac{\partial p_{j}}{\partial \theta_{i}}=0$

ML degree

Theorem: Let $\mathscr{M}_{\Theta} \subseteq \Delta_{r-1}$ be a statistical model. For generic data, the number of solutions to the score equations is independent of u.

Generic = data is outside a variety
Def: The number of solutions to the score equations for generic u is called the maximum likelihood degree (ML degree) of the parametric discrete statistical model \mathscr{M}_{Θ}.

Implicit models

Implicit models

- Implicit models are given as the intersection of the interior of the probability simplex $\operatorname{int}\left(\Delta_{r-1}\right)$ and the variety $V(I)$, where $I=\left\langle g_{1}, \ldots, g_{k}\right\rangle$.
- Let us denote it by $V_{\operatorname{int}(\Delta)}(I)$. Given a vector of counts $u=\left(u_{1}, \ldots, u_{r}\right)$, we would like to maximize the log-likelihood function

$$
l(p \mid u)=\sum_{i=1}^{r} u_{i} \log p_{i}
$$

over $V_{\operatorname{int}(\Delta)}(I)$.

Implicit models example

- $\mathscr{M}_{X \Perp Y}=\left\{P=\left(\begin{array}{ll}p_{11} & p_{12} \\ p_{21} & p_{22}\end{array}\right) \in \Delta_{3}: p_{11} p_{22}-p_{12} p_{21}=0\right\}$ and

$$
u=\left(\begin{array}{ll}
19 & 141 \\
17 & 149
\end{array}\right)
$$

- Want to maximize $l(p \mid u)=19 \log p_{11}+141 \log p_{12}+17 \log p_{21}+149 \log p_{22}$ over $\mathscr{M}_{\chi \Perp Y}$.
- The constraints are $p_{11}+p_{12}+p_{21}+p_{22}=1$ and $p_{11} p_{22}-p_{12} p_{21}=0$.

Lagrange multipliers

- Recall that the method of Lagrange multipliers is used to solve the following constrained optimization problem:

$$
\begin{gathered}
\max f(x) \\
\text { subject to } g_{i}(x)=0 \text { for } i=1, \ldots, k
\end{gathered}
$$

- The Lagrangian of this optimization problem is

$$
L(x, \lambda)=f(x)-\sum_{i=1}^{k} \lambda_{i} g_{i}(x)
$$

- Example: $L(x, \lambda)=l(p \mid u)-\lambda_{1}\left(p_{11}+p_{12}+p_{21}+p_{22}-1\right)-\lambda_{2}\left(p_{11} p_{22}-p_{12} p_{21}\right)$

Lagrange multipliers

The constrained critical points of f are among the unconstrained critical points of L. Hence one has to solve

$$
\begin{aligned}
g_{1} & =0, \ldots, g_{k}=0 \\
\frac{\partial f}{\partial x_{1}}-\sum_{i=1}^{k} \lambda_{i} \frac{\partial g_{i}}{\partial x_{1}} & =0, \ldots, \frac{\partial f}{\partial x_{m}}-\sum_{i=1}^{k} \lambda_{i} \frac{\partial g_{i}}{\partial x_{r}}=0
\end{aligned}
$$

Lagrange multipliers

The gradient of the log-likelihood function is $\left(\begin{array}{lll}\frac{u_{1}}{p_{1}} & \ldots & \frac{u_{r}}{p_{r}}\end{array}\right)$. Hence:

$$
\begin{aligned}
g_{1} & =0, \ldots, g_{s}=0 \\
\frac{u_{1}}{p_{1}}-\sum_{i=1}^{k} \lambda_{i} \frac{\partial g_{i}}{\partial p_{1}} & =0, \ldots, \frac{u_{r}}{p_{r}}-\sum_{i=1}^{k} \lambda_{i} \frac{\partial g_{i}}{\partial p_{r}}=0
\end{aligned}
$$

Lagrange multipliers

- Clearing the denominators gives a system of polynomial equations:

$$
\begin{aligned}
g_{1} & =0, \ldots, g_{s}=0 \\
u_{1}-p_{1} \sum_{i=1}^{k} \lambda_{i} \frac{\partial g_{i}}{\partial p_{1}} & =0, \ldots, u_{r}-p_{r} \sum_{i=1}^{k} \lambda_{i} \frac{\partial g_{i}}{\partial p_{r}}=0
\end{aligned}
$$

- When clearing the denominators, one might introduce new solutions where one of the p_{i} is zero (but this happens only if one of u_{i} is zero)

Lagrange multipliers

- In the statistical setting, one constraint is $p_{1}+\ldots+p_{r}=1$. Set $g_{0}=p_{1}+\ldots+p_{r}-1$.
- Then $u_{1}-p_{1} \sum_{i=0}^{k} \lambda_{i} \frac{\partial g_{i}}{\partial p_{1}}=0, \ldots, u_{r}-p_{r} \sum_{i=0}^{k} \lambda_{i} \frac{\partial g_{i}}{\partial p_{r}}=0$ is equivalent to u being in the row span of the augmented Jacobian matrix

$$
J^{\prime}=\left(\begin{array}{cccc}
p_{1} & p_{2} & \cdots & p_{r} \\
p_{1} \frac{\partial g_{1}}{\partial p_{1}} & p_{2} \frac{\partial g_{1}}{\partial p_{2}} & \cdots & p_{r} \frac{\partial g_{1}}{\partial p_{r}} \\
\vdots & \vdots & \ddots & \vdots \\
p_{1} \frac{\partial g_{k}}{\partial p_{1}} & p_{2} \frac{\partial g_{k}}{\partial p_{2}} & \cdots & p_{r} \frac{\partial g_{k}}{\partial p_{r}}
\end{array}\right) .
$$

Lagrange multipliers

- Example:

$$
L(x, \lambda)=l(p \mid u)-\lambda_{1}\left(p_{11}+p_{12}+p_{21}+p_{22}-1\right)-\lambda_{2}\left(p_{11} p_{22}-p_{12} p_{21}\right)
$$

- $p \in V(I)$ is a critical point of $l(p \mid u)$ if u is in the row span of the matrix

$$
\left(\begin{array}{cccc}
p_{11} & p_{12} & p_{21} & p_{22} \\
p_{11} p_{22} & -p_{12} p_{21} & -p_{12} p_{21} & p_{11} p_{22}
\end{array}\right)
$$

Lagrange multipliers

- Consider the ideal I_{l} generated by: g_{1}, \ldots, g_{s},

$$
u_{1}-p_{1} \sum_{i=0}^{k} \lambda_{i} \frac{\partial g_{i}}{\partial p_{1}}, \ldots, u_{r}-p_{r} \sum_{i=0}^{k} \lambda_{i} \frac{\partial g_{i}}{\partial p_{r}}
$$

- Whether the variety of the ideal is finite, can be checked with the command $\operatorname{dim}\left(I_{l}\right)$: $\operatorname{dim}=0$ means that the system has finitely many solutions.
- If there are finitely many solutions, then the number of solutions can be computed with degree $\left(I_{j}\right)$.
- The solutions can be found for example with the solve command in Mathematica.

Exponential families

Concave functions

Def: A set $S \subseteq \mathbb{R}^{d}$ is convex if for all $x, y \in S$, also $(x+y) / 2 \in S$.
Def: Let S be a convex set.

- A function $f: S \rightarrow \mathbb{R}$ is convex if $f((x+y) / 2) \leq(f(x)+f(y)) / 2$ for all $x, y, \in S$.
- A function $f: S \rightarrow \mathbb{R}$ is concave if $f((x+y) / 2) \geq(f(x)+f(y)) / 2$ for all $x, y, \in S$.

Concave functions

Prop: Let S be a closed convex set and $f: S \rightarrow \mathbb{R}$ be a concave function. Then the set $U \subseteq S$ where f attains its maximum value is a convex set. If f is strictly concave, i.e. $f((x+y) / 2)>(f(x)+f(y)) / 2$ for all $x \neq y$, then f has a unique global maximum, if a maximum exists.

Exponential families

The canonical form of an exponential family is $f_{\eta}(x)=h(x) e^{\eta^{t} T(x)-A(\eta)}$

- statistic $T: X \rightarrow \mathbb{R}^{k}$,
- function $h: \mathscr{X} \rightarrow \mathbb{R}_{>0}$, and
- function $A: H \rightarrow \mathbb{R}$.

Exponential families

Prop: Let \mathscr{M} be an exponential family with minimal sufficient statistics $T(x)$ and natural parameter η, with density $f_{\eta}(x)=h(x) e^{\eta^{t} T(x)-A(\eta)}$. Then the likelihood function is strictly concave. Furthermore, the maximum likelihood estimate, if it exists, is the solution to

$$
T(x)=\mathbb{E}_{\eta}[T(X)],
$$

where x denotes the data vector.

l.i.d. samples

I.i.d. samples $X^{(1)}, \ldots, X^{(n)}$ yield a new exponential family with the same parameter η, the sufficient statistic

$$
T_{n}\left(X^{(1)}, \ldots, X^{(n)}\right)=\sum_{i=1}^{n} T(X)^{(i)}
$$

and with

$$
h_{n}\left(X^{(1)}, \ldots, X^{(n)}\right)=\prod_{i=1}^{n} h\left(X^{(i)}\right) .
$$

Discrete exponential families

Cor: Let $A \subseteq \mathbb{Z}^{k \times r}$ such that $\mathbb{1} \in$ rowspan($\left.\mathbf{A}\right)$, let $h \in \mathbb{R}_{>0}^{r}$, and let u be the vector of counts from n i.i.d. samples. Then the maximum likelihood estimate in the log-linear model $\mathscr{M}_{A, h}$ given the data u is the unique solution, if it exists, to the equations

$$
A u=n A p \text { and } p \in \mathscr{M}_{A, h} .
$$

Gaussian exponential families

Cor: Let L be a linear space in $\mathbb{R}^{m(m+1) / 2}$ such that $L \cap P D_{m}$ is not empty, and let $\mathbb{R}^{m} \times \mathscr{M}_{L^{-1}}$ be the corresponding parameter space of the Gaussian exponential family. Let $X^{(1)}, \ldots, X^{(n)} \in \mathbb{R}^{m}$ be i.i.d. samples and let \bar{X} and S be the corresponding sample mean and sample covariance matrix. Then the maximum likelihood estimate for $(\mu, \Sigma) \in \mathbb{R}^{m} \times \mathscr{M}_{L^{-1}}$ is (\bar{X}, \hat{S}), where \hat{S} is the unique solution, if it exists, to the equations

$$
\pi(S)=\pi(\hat{S}) \text { and } \hat{S} \in \mathscr{M}_{L^{-1}}
$$

where π denotes the orthogonal projection onto L.

Next time

- Hypothesis testing for discrete exponential families
- Reading task based on "Algebraic algorithms for sampling from conditional distributions" by Diaconis and Sturmfels

