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Machine Learning is Optimization
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unsupervised ML

https://www.donkeycar.com/

reinforcement Learning
of optimal policy for steering



Reinforcement 
Learning

https://www.knoepfe.de/Zierknopf-Matroschka-Babuschka-in-Bunt

Machine Learning

Optimization



“weights”/”parameters” of your model

“loss”/”error” 
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Convex Optimization
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Objective/Loss Functions in Deep Learning

https://www.cs.umd.edu/~tomg/projects/landscapes/



Loss Functions in Reinforcement Learning 

“try out” 
weight = -5

loss = 1000000

“try out” 
weight = -4 loss = 0 



A Particular Problem

Given on-board camera 
snapshot, what is best steering 
angle?



label y=30 degreeson-board camera 
snapshot x 

supervised learning problem: learn predictor h(x) for
optimal steering angle y 



Labeled Data (by Pasi Keski-Nisula)
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Learn Predictor by Min. Squared Error
•objective function
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•predictor ℎ(&) depends on weights w  
•can probe objective function for all choices of w !!!
•gradient descent
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Going Down with Gradient Descent
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Online Gradient Descent
•objective function unfolds over time
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do gradient descent in real-time
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Supervising Learning for DonkeyCar

•requires true labels y ! 

•optimization of fully known function 

•can evaluate loss for all choices of w

•getting (accurate) labels might be difficult



Reinforcement Learning 
–
Without Labeled Data!



•tune weights of steering predictor  ℎ ! (𝑥)

•do not use any labeled snapshots 

•only use “reward” 𝑟(#) as feedback

•reward might reflect if car is “on track”



Upgrading Online Gradient Descent 
•use reward as function value 𝑓(!) 𝑤(!) = −𝑟(!)

• cannot compute gradient since we only know few 
function values of 𝑓(!)but not entire function!

• IDEA: try out small perturbations of 𝑤(!)and 
approximate gradient with differences



Estimating Gradients by Differences
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Toy Example
•two actions 

• a=1 (+5 degrees) 

• a=2 (-5 degrees)

•choose action a=1 with probability

𝑃 𝑎 = 1 ≜
1
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A Reinforcement Learning Algorithm 

for each time step t: 

- draw unit-norm random vector 𝒖

- evaluate ℎ(") 𝒙($) for 𝒘 = 𝒘($) + 𝛿𝒖

- observe reward 𝑟($)

- gradient step 𝒘($%&) = 𝒘($) + 𝜂 𝑟($) 𝒖/𝛿



Mirror Descent for Reinforcement Learning

• simple GD uses local linear approximations of objective

• linear approximations only based on current weights 

• information in earlier iterations is “forgotten”

•mirror descent adds “regularization” to GD

• variants of MD differ in precise choice for regularizer



𝑤("#$) = 𝑤(") − 𝜂"𝑔(") with ∇𝑓(") 𝑤(")

can be rewritten as 

online GD

𝑤("#$) = argmin
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.
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𝑤5𝑔(2) + 𝑅(𝑤)

with regularization function 𝑅 𝑤 = 𝑤 6

different MD algorithms obtained by different R



MD Optimal for MAB



MD for Multi—Agent RL
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MD for Multi—Agent RL



Deep Learning as Multi-Agent RL
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Final Slide

RL=optimize unknown objective function

need to estimate gradients of objective

RL algorithms obtained by GD variants 


