
Optimization Methods
in
Reinforcement Learning

A. Jung, Aalto University
Helsinki, October 2020

Machine Learning is Optimization

feature x

la
be

l y

supervised ML
x1

x2

unsupervised ML

https://www.donkeycar.com/

reinforcement Learning
of optimal policy for steering

Reinforcement
Learning

https://www.knoepfe.de/Zierknopf-Matroschka-Babuschka-in-Bunt

Machine Learning

Optimization

“weights”/”parameters” of your model

“loss”/”error”
f(w)

Convex Optimization

-5

evaluate (“try out”) f(-5)

-4

f(-4)

Objective/Loss Functions in Deep Learning

https://www.cs.umd.edu/~tomg/projects/landscapes/

Loss Functions in Reinforcement Learning

“try out”
weight = -5

loss = 1000000

“try out”
weight = -4 loss = 0

A Particular Problem

Given on-board camera
snapshot, what is best steering
angle?

label y=30 degreeson-board camera
snapshot x

supervised learning problem: learn predictor h(x) for
optimal steering angle y

Labeled Data (by Pasi Keski-Nisula)

𝒙("), 𝑦(") 𝒙($), 𝑦($)
𝒙(%), 𝑦(%)

Learn Predictor by Min. Squared Error
•objective function

𝑓 𝑤 =$
!"#

$

𝑦(!) − ℎ(') 𝑥(!)
(

•predictor ℎ(&) depends on weights w
•can probe objective function for all choices of w !!!
•gradient descent

𝑤("#$) = 𝑤(") − 𝜂∇𝑓 𝑤(")

Going Down with Gradient Descent

𝑤(")𝑤("$%)

∇𝑓 𝑤(")

Online Gradient Descent
•objective function unfolds over time

𝑓 𝑤 =*
"&%

'

𝑓 " 𝑤

with
𝑓 " 𝑤 = 𝑦(") − ℎ(() 𝑥(")

)

do gradient descent in real-time
𝑤('(") = 𝑤(') − 𝜂'∇𝑓(') 𝑤(')

Supervising Learning for DonkeyCar

•requires true labels y !

•optimization of fully known function

•can evaluate loss for all choices of w

•getting (accurate) labels might be difficult

Reinforcement Learning
–
Without Labeled Data!

•tune weights of steering predictor ℎ ! (𝑥)

•do not use any labeled snapshots

•only use “reward” 𝑟(#) as feedback

•reward might reflect if car is “on track”

Upgrading Online Gradient Descent
•use reward as function value 𝑓(!) 𝑤(!) = −𝑟(!)

• cannot compute gradient since we only know few
function values of 𝑓(!)but not entire function!

• IDEA: try out small perturbations of 𝑤(!)and
approximate gradient with differences

Estimating Gradients by Differences

𝑤(")𝑤("$%)

∇𝑓 𝑤(")

𝑤(") + 𝜀

𝑓 𝑤(") + 𝜀 - 𝑓 𝑤(")

Toy Example
•two actions

• a=1 (+5 degrees)

• a=2 (-5 degrees)

•choose action a=1 with probability

𝑃 𝑎 = 1 ≜
1

1 + 𝑒!"($)

A Reinforcement Learning Algorithm

for each time step t:

- draw unit-norm random vector 𝒖

- evaluate ℎ(") 𝒙($) for 𝒘 = 𝒘($) + 𝛿𝒖

- observe reward 𝑟($)

- gradient step 𝒘($%&) = 𝒘($) + 𝜂 𝑟($) 𝒖/𝛿

Mirror Descent for Reinforcement Learning

• simple GD uses local linear approximations of objective

• linear approximations only based on current weights

• information in earlier iterations is “forgotten”

•mirror descent adds “regularization” to GD

• variants of MD differ in precise choice for regularizer

𝑤("#$) = 𝑤(") − 𝜂"𝑔(") with ∇𝑓(") 𝑤(")

can be rewritten as

online GD

𝑤("#$) = argmin
1

.
234

"

𝑤5𝑔(2) + 𝑅(𝑤)

with regularization function 𝑅 𝑤 = 𝑤 6

different MD algorithms obtained by different R

MD Optimal for MAB

MD for Multi—Agent RL

𝒘[𝟏]
𝒘[𝟐]

𝒘[𝟑]

𝒘[𝟒]

𝒘[𝟓]

MD for Multi—Agent RL

Deep Learning as Multi-Agent RL

g(.)

g(.)

g(.) +𝑦

𝒘𝟏[𝟏]

𝒘𝟐[𝟏]

𝒘𝟑[𝟏]

𝒘[𝟐]

𝒘[𝟑]

Final Slide

RL=optimize unknown objective function

need to estimate gradients of objective

RL algorithms obtained by GD variants

