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Neural networks as models of the brain

Neural networks take inspiration from the

human brain, with artificial neurons as

computation units and edges between the

units model the synapses

• However, compared to artificial neural

networks, human brain has huge

number of neurons (1011) and

synapses (105)

• Each neuron is believed to operate a

’clock speed’ of only 100Hz whereas

computers work at clock speeds of a

few Gigaherz.

Source:

https://pulpbits.net/
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Multi-layer perceptrons



Multi-layer perceptrons

Multi-layer perceptron is a neural network that combines several

perceptrons to achieve non-linear modelling

• Multi-layer perceptrons implement a

layered network structure:

• input layer

• one or more hidden layers

• output layer

• Nodes in adjacent layers are

connected through weighted edges

• The output of each node is fed

through activation functions that is

typically non-linear
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Multilayer perceptron

The output of a two-layer MLP is computed as follows

• Input x, augmented by the constant

x0 = 1 is fed to the input layer

• The input values are fed to a

perceptron unit h in the hidden layer,

which computes the linear model wT
h x

• An activation function σh (e.g. the

logistic function) is then applied to

obtain the activation level of the

hidden unit

zh = σh(wT
h x) = 1

1+exp(−wT
h x)
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Multilayer perceptron

• The values zh from the hidden units

are fed to the output layer through

another linear model: vT
i z

• A activation function is again

computed yi = σi (vT
i z)

• Thus, as a whole, the output yi is the

value of the function

yi = σi (vT
i

(
σh(wT

h x)
)H
h=1

)
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Activation functions

Each neuron vh computes an activation function σ, which can be for

example:

• Linear function (used in the output layer for regression):

σ(wTx) = wTx

• The sign function:σ(wTx) = sgn
(
wTx

)
• A threshold function (also called the rectified linear unit, ReLU):

σ(wTx) =

{
wTx if wTx > 0

0 otherwise

• Logistic function: σ(wTx) = 1
1+exp(−wT x) ∈ [0, 1]

• Hyperbolic tangent (another sigmoid function that outputs values

between -1 and +1): σ(wTx) = tanh wTx = ewT x−e−wT x

ewT x+e−wT x
∈ [−1,+1]
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Why do we need non-linear activation functions?

• Consider having two layer network with first layer computing

zh =
∑

j whjxj and the second layer computing yi =
∑

j vihzh

• The total function is thus:

yi =
∑
h

vih
∑
j

whjxj =
∑
j

∑
h

vihwhjxj

• We can compute the same with a linear function:

yi =
∑
j

uijxj

where uij =
∑

h vihwhj

• Thus there is no real non-linearity in the model and our model

reduces to learning a linear hyperplane

To make the network structure useful, we need non-linear activation

functions
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Expressive power of neural

networks



Computing Boolean AND with the perceptron

• Perceptron can compute the Boolean AND function as follows

• Set the bias w0 = −1.5 and the weights w1 = w2 = 1

• Now the function w1x1 + w2x2 + w0 > 0 if and only if x1 = x2 = 1

• The function is a hyperplane (line) that linearly separates the point

(1, 1) from the other three possible input combinations
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Computing Boolean OR with the perceptron

• Boolean OR function can be computer similarly

• Set the bias w0 = −0.5 and the weights w1 = w2 = 1

• Now the function w1x1 + w2x2 + w0 > 0 if and only if x1 = 1 or

x2 = 1

• The function is a hyperplane separating the point (0, 0) from the

other input combinations
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Computing Boolean NOT with the perceptron

• Boolean NOT function is simple to

compute with a neuron with only one

input

• Set the bias w0 = 0.5 and the weight

to w1 = −1

• Now the function w1x1 + w0 > 0 if

and only if x1 = 0

• The function linearly separates 0 from

1
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XOR with perceptron

• The exclusive or, or XOR operator cannot be represented by the

perceptron

• This is because the output XOR function is not linearly separable:

there is no hyperplane that can separate (0, 0), (1, 1, ) from

(0, 1), (1, 0)
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XOR with MLP

XOR can be computed by a simple neural network consisting of three

neurons

XOR(x1, x2) = (x1 AND NOT(x2)) OR (NOT(x1) AND x2)

• The first layer computes two

hyperplanes:

• z1 = x1 − x2 − 0.5 > 0 if and only if

(x1 AND NOT(x2))

• z2 = −x1 + x2 − 0.5 > 0 if and only

if (NOT(x1) AND x2)

• The second layer computes a single

hyperplane implementing the OR

z1 + z2 − 0.5 > 0 if and only if z1 OR

z2 is true
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A historical note: XOR with perceptron

A historical note:

• The inability of perceptron to

compute the XOR was highlighted by

Marvin Minsky and Seymour Papert

in their book on Perceptrons

published in 1969

• This finding contributed to the

research on neural networks going out

of fashion in the 1970’s

• At the time, the representation power

of MLPs was not widely understood

• Also, good algorithms to train MLPs

were not known, so they were

dismissed by the research community

at the time
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Representing arbitrary boolean functions with neural nets

• Perceptron can represent all three basic logical operators AND, OR

and NOT

• All Boolean functions can be represented by combinations of these

basic operations

• Thus, MLPs can in principle represent arbitrary Boolean functions

• However, learning arbitrary Boolean functions may still require

prohibitive amount of data and time (e.g. the VC dimension of

arbitrary Boolean functions of d variables is 2d)
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Representing arbitrary boolean functions with neural nets

• In fact already a MLP with a single hidden layer can represent all

Boolean functions

• Construction of the network is simple: there is a hidden unit hi , for

each xi for which f (xi ) = 1, that will output 1 if the input equals xi
(the unit computes an AND over all input variables)

• The output layer outputs +1 if any of the hidden units outputs 1

(OR over the hidden units)
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Representing arbitrary boolean functions with neural nets

• The network described before is fully memorizing the Boolean

function, no learning or generalization is happening

• This network has exponential size in the number of variables

• Exponential size is not an artifact: one can prove that any network

structure that allows representing any Boolean function must have

exponential size in the input dimension (Shalev-Shwartz and

Ben-David, 2014)
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MLPs as universal approximators

• Besides the ability of represent arbitrary Boolean functions MLPs

can also approximate real valued functions that have bounded

gradients (called Lipschitz functions) with arbitrary precision

• Given a function f (x) the network will output value between

f (x)− ε and f (x) + ε, where ε > 0 is the desired precision.

• However, again the price to pay is the size of the network: it will

necessarily be of exponential size in the input dimension

(Shalev-Shwartz and Ben-David, 2014)

As a whole these results tell us that neural networks are extremely flexible

and thus are potentially prone to overfitting, unless there is sufficient

training data
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Geometric intuition

• A two layer network can represent

convex polytopes, through an

intersection of half-spaces defined by

hyperplanes (top picture)

• Each face of the polytope is defined

by a single neuron in the hidden

layer, the output layer computes an

AND of the hidden layer activations

• A three layer network can represent

disjunctions of convex polytopes: the

final layer computes an OR of the

second hidden layer outputs (bottom

picture)
(Source:

Shalev-Shwartz

and Ben-David,

2014) 17



Learning Multi-Layer Perceptrons



Hardness of training MLPs

Learning optimal weights for MLPs and other neural networks is

computationally hard (Shalev-Shwartz and Ben-David, 2014):

• It is NP-hard to find the parameters that minimizes the empirical

error, for a network with a single hidden layer that contains 4

neurons or more

• Even close-to-minimal error is NP-hard to achieve

• Changing the structure of the network is not likely to make learning

easier, since any function class that can represent intersections of

halfspaces is NP-hard under some cryptographic assumptions

Thus in practice we need to resort in heuristic optimization approaches

with no theoretical guarantees of optimality
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Stochastic Gradient Descent for MLPs

• Most training algorihms for MLPs are

variants of stochastic gradient decent

(SGD)

• Unlike with logistic regression and

SVM problems, MLP optimization is a

non-convex optimization problem

• SGD generally converges to a local

optimum

• No theoretical guarantees how close

to the global optimum we are

• In practise, SGD needs to be run many

times with different initializations to

find a good local optimum
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Stochastic Gradient Descent for MLPs

• SGD requires us to compute the

gradient of the loss function with

respect to a training example

• Unlike Logistic regression or SVM,

there is no analytical expression for

the gradient

• The expression for the gradient will be

in general a expression involving

nested sums and products

• The computation of the gradient and

the update of the weights needs to be

incrementally, layer by layer
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Stochastic Gradient Descent for MLPs

• Let us study a two-layer MLP for

regression

• There is one output neuron that has a

linear activation function

y = yi = vT z

• There are H hidden neurons with a

logistic activation function

zh = 1
1+exp(−wT

h x)

• Squared loss is used as the loss

function: L(y , r) = 1
2 (y − r)2
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Stochastic Gradient Descent for MLPs

We traverse the network backwards from the output layer, first taking the

hidden layer as fixed, considering zk of the hidden units as inputs

• The gradient of the loss function with

respect to the output layer weights is

∂

∂vih
L(r , yi ) =

∂

∂vih

1

2
(r −

H∑
h=0

vihzh)2

= (r −
H∑

h=0

vihzh)(−zh)

• The SGD update to the weight vih is a

step along the negative gradient

∆vih = η(r − yi )zh

22



Stochastic Gradient Descent for MLPs

• The update for the hidden layer weights whj is not as simple, as we

do not have a ”desired output” for hidden layer neurons and thus no

loss function either

• We can use the chain rule of differentiation

∂L(r , yi )

∂whj
=
∂L(r , yi )

∂yi

∂yi
∂zh

∂zh
∂whj

The derivatives of the three factors are

given by:

∂L(r , yi )

∂yi
=

∂

∂yi

1

2
(r − yi )

2 = −(r − yi )

∂yi
∂zh

=
∂

∂zh

H∑
h=1

vihzh = vih

∂zh
∂whj

=
∂

∂whj
σh(

I∑
k=0

whkxk)
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Stochastic Gradient Descent for MLPs

Using the logistic function as the activation function for the hidden layer

zh = σh(
∑d

k=0 whkxk) = 1
1+exp (−

∑d
k=0 whkxk )

we get:

∂zh
∂whj

=
∂

∂whj
σh(

d∑
k=0

whkxk)

= σh(
d∑

k=0

whkxk)(1− σh(
d∑

k=0

whkxk))xj

= zh(1− zh)xj
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Stochastic Gradient Descent for MLPs

Now we have all the factors of the derivative of he loss function:

∂L(ri , yi )

∂whj
=
∂L(ri , yi )

∂yi

∂yi
∂zh

∂zh
∂whj

= −(ri − yi )vihzh(1− zh)xj

Interpretation

• (ri − yi )vh can be seen as a error term

of hidden unit h

• This error is backpropagated from

the output layer to the hidden unit

• The larger the weight vh, the larger

”responsibility” of the error is given to

unit h
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Stochastic Gradient Descent for MLPs

∂L(ri , yi )

∂whj
=
∂L(ri , yi )

∂yi

∂yi
∂zh

∂zh
∂whj

= −(ri − yi )vihzh(1− zh)xj

The update for the weight is a step along the negative gradient

∆Whj = −η ∂L(ri , yi )

∂whj
= η(ri − yi )vihzh(1− zh)xj

• Note the update of the hidden layer

weight refers to the output layer

weight vih

• We should first update whj the hidden

layer weights using the old values of

vih, then update the output layer

weights
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Backpropagation training algorithm for two-layer MLP for re-

gression

Initialize all whj , vih randomly to range

[−0.01, 0.01]

repeat

Draw a training example (x, r) at random

Forward propagation of activation:

Set zh = σh(wT
h x) for h = 1, . . . ,H

y = vT z

Backpropagation of error:

∆v = η(r − y)z

∆wh = η(r − yi )vihzh(1− zh)x, for

h = 1, . . . ,H

Update weights:

v = v + ∆v

wh = wh + ∆wh

until stopping criterion is satisfied
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Backpropagation algorithm for classification tasks

The backpropagation algorithm described

can be adapted for classification tasks:

• For binary classification task we

change the output activation function

to sigmoid function, either logistic

(with 0/1 labels) or tanh (−1/+ 1

labels)

• Multiclass classification can be

implemented by using K output units

and applying a softmax-function

yi =
exp(vT

i z)∑
k exp(v

T
k z)
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Multiple hidden layers

• Adding hidden layers to the network

means that both forward propagation

of activation and the backward

propagation of error needs to be

iterated for more layers

• The error backpropagation then

involves a chain-rule over all hidden

layers
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Improving convergence

A few simple tricks can be used to speed up convergence:

• Momentum: The SGD update may cause oscillation; subsequent

update directions may be very different to each other. This can be

helped by computing a running average of the current negative

gradient direction and the previous update direction

∆w(t) = −η ∂L(rt , yt)

∂w
+ α∆w(t−1)

• Adaptive learning rate: the stepsize η can be changed based on

whether error on the training set has been decreasing during the last

few passes over the training data (epochs):

∆η =

{
+a if R̂(T ) < 1

p

∑p
k=1 R̂

(T−k)

−bη otherwise
,

where R̂(t) denotes the average loss over the training data on epoch

t
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Using GPUs

• The use of Graphical Processing Units (GPU) is widely spread in

neural network research

• GPUs can process especially matrix operations (esp. matrix

products) very efficiently

• The operations in the backpropagation algorithm can be written so

that the majority of computation is in the form of matrix products
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Avoiding overfitting

Due to their flexibility neural networks are prone to overfitting. This can

be alleviated by certain techniques

• Early stopping: the weights in the network tend to increase during

training and grdually overfitting becomes more likely. Stopping

training prior convergence can help.

• Dropout: during training, randomly fixing some weights during an

update stops the network adjusting to the noise too well. This

technique is widely used in current deep learning algorithms
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Other neural network architectures

Particular architectures of neural networks can be used for specific

purposes

• Convolutional Neural Networks are used e.g.

for image input. The instead of fully connected

layers, a local neighborhood is cross-connected,

but the neighborhoods can overlap

• Autoencoder networks have an ”hourglass”

structure, where a middle hidden layer is much

narrower than the input and output layers.

This is used for learning new representations

for data.

• Recurrent networks are used for data that

has variable length e.g. speech and natural

language
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Summary

• Neural networks are a model family inspired by the human brain

• Multi-layer perceptrons can represent and approximate remarkably

complex functions

• Large training data is generally needed to avoid overfitting

• Finding optimal weights for a neural network is generally NP-hard

problem

• Variants of stochastic gradient descent are generally used to train

neural networks

The Course CS-E4890 - Deep Learning (Spring 2021)

https://mycourses.aalto.fi/course/view.php?id=28212 is

recommmended to those who wish to learning more about neural

networks
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