
CS-E4710 Machine Learning: Supervised

Methods

Lecture 7: Neural networks

Juho Rousu

27. October, 2020

Department of Computer Science

Aalto University



Neural networks as models of the brain

Neural networks take inspiration from the

human brain, with artificial neurons as

computation units and edges between the

units model the synapses

• However, compared to artificial neural

networks, human brain has huge

number of neurons (1011) and

synapses (105)

• Each neuron is believed to operate a

’clock speed’ of only 100Hz whereas

computers work at clock speeds of a

few Gigaherz.

Source:

https://pulpbits.net/

1



Multi-layer perceptrons



Multi-layer perceptrons

Multi-layer perceptron is a neural network that combines several

perceptrons to achieve non-linear modelling

• Multi-layer perceptrons implement a

layered network structure:

• input layer

• one or more hidden layers

• output layer

• Nodes in adjacent layers are

connected through weighted edges

• The output of each node is fed

through activation functions that is

typically non-linear

2



Multilayer perceptron

The output of a two-layer MLP is computed as follows

• Input x, augmented by the constant

x0 = 1 is fed to the input layer

• The input values are fed to a

perceptron unit h in the hidden layer,

which computes the linear model wT
h x

• An activation function σh (e.g. the

logistic function) is then applied to

obtain the activation level of the

hidden unit

zh = σh(wT
h x) = 1

1+exp(−wT
h x)

3



Multilayer perceptron

• The values zh from the hidden units

are fed to the output layer through

another linear model: vT
i z

• A activation function is again

computed yi = σi (vT
i z)

• Thus, as a whole, the output yi is the

value of the function

yi = σi (vT
i

(
σh(wT

h x)
)H
h=1

)

4



Activation functions

Each neuron vh computes an activation function σ, which can be for

example:

• Linear function (used in the output layer for regression):

σ(wTx) = wTx

• The sign function:σ(wTx) = sgn
(
wTx

)
• A threshold function (also called the rectified linear unit, ReLU):

σ(wTx) =

{
wTx if wTx > 0

0 otherwise

• Logistic function: σ(wTx) = 1
1+exp(−wT x) ∈ [0, 1]

• Hyperbolic tangent (another sigmoid function that outputs values

between -1 and +1): σ(wTx) = tanh wTx = ewT x−e−wT x

ewT x+e−wT x
∈ [−1,+1]

5



Why do we need non-linear activation functions?

• Consider having two layer network with first layer computing

zh =
∑

j whjxj and the second layer computing yi =
∑

j vihzh

• The total function is thus:

yi =
∑
h

vih
∑
j

whjxj =
∑
j

∑
h

vihwhjxj

• We can compute the same with a linear function:

yi =
∑
j

uijxj

where uij =
∑

h vihwhj

• Thus there is no real non-linearity in the model and our model

reduces to learning a linear hyperplane

To make the network structure useful, we need non-linear activation

functions

6



Expressive power of neural

networks



Computing Boolean AND with the perceptron

• Perceptron can compute the Boolean AND function as follows

• Set the bias w0 = −1.5 and the weights w1 = w2 = 1

• Now the function w1x1 + w2x2 + w0 > 0 if and only if x1 = x2 = 1

• The function is a hyperplane (line) that linearly separates the point

(1, 1) from the other three possible input combinations

7



Computing Boolean OR with the perceptron

• Boolean OR function can be computer similarly

• Set the bias w0 = −0.5 and the weights w1 = w2 = 1

• Now the function w1x1 + w2x2 + w0 > 0 if and only if x1 = 1 or

x2 = 1

• The function is a hyperplane separating the point (0, 0) from the

other input combinations

8



Computing Boolean NOT with the perceptron

• Boolean NOT function is simple to

compute with a neuron with only one

input

• Set the bias w0 = 0.5 and the weight

to w1 = −1

• Now the function w1x1 + w0 > 0 if

and only if x1 = 0

• The function linearly separates 0 from

1

9



XOR with perceptron

• The exclusive or, or XOR operator cannot be represented by the

perceptron

• This is because the output XOR function is not linearly separable:

there is no hyperplane that can separate (0, 0), (1, 1, ) from

(0, 1), (1, 0)

10



XOR with MLP

XOR can be computed by a simple neural network consisting of three

neurons

XOR(x1, x2) = (x1 AND NOT(x2)) OR (NOT(x1) AND x2)

• The first layer computes two

hyperplanes:

• z1 = x1 − x2 − 0.5 > 0 if and only if

(x1 AND NOT(x2))

• z2 = −x1 + x2 − 0.5 > 0 if and only

if (NOT(x1) AND x2)

• The second layer computes a single

hyperplane implementing the OR

z1 + z2 − 0.5 > 0 if and only if z1 OR

z2 is true

11



A historical note: XOR with perceptron

A historical note:

• The inability of perceptron to

compute the XOR was highlighted by

Marvin Minsky and Seymour Papert

in their book on Perceptrons

published in 1969

• This finding contributed to the

research on neural networks going out

of fashion in the 1970’s

• At the time, the representation power

of MLPs was not widely understood

• Also, good algorithms to train MLPs

were not known, so they were

dismissed by the research community

at the time

12



Representing arbitrary boolean functions with neural nets

• Perceptron can represent all three basic logical operators AND, OR

and NOT

• All Boolean functions can be represented by combinations of these

basic operations

• Thus, MLPs can in principle represent arbitrary Boolean functions

• However, learning arbitrary Boolean functions may still require

prohibitive amount of data and time (e.g. the VC dimension of

arbitrary Boolean functions of d variables is 2d)

13



Representing arbitrary boolean functions with neural nets

• In fact already a MLP with a single hidden layer can represent all

Boolean functions

• Construction of the network is simple: there is a hidden unit hi , for

each xi for which f (xi ) = 1, that will output 1 if the input equals xi
(the unit computes an AND over all input variables)

• The output layer outputs +1 if any of the hidden units outputs 1

(OR over the hidden units)

14



Representing arbitrary boolean functions with neural nets

• The network described before is fully memorizing the Boolean

function, no learning or generalization is happening

• This network has exponential size in the number of variables

• Exponential size is not an artifact: one can prove that any network

structure that allows representing any Boolean function must have

exponential size in the input dimension (Shalev-Shwartz and

Ben-David, 2014)

15



MLPs as universal approximators

• Besides the ability of represent arbitrary Boolean functions MLPs

can also approximate real valued functions that have bounded

gradients (called Lipschitz functions) with arbitrary precision

• Given a function f (x) the network will output value between

f (x)− ε and f (x) + ε, where ε > 0 is the desired precision.

• However, again the price to pay is the size of the network: it will

necessarily be of exponential size in the input dimension

(Shalev-Shwartz and Ben-David, 2014)

As a whole these results tell us that neural networks are extremely flexible

and thus are potentially prone to overfitting, unless there is sufficient

training data

16



Geometric intuition

• A two layer network can represent

convex polytopes, through an

intersection of half-spaces defined by

hyperplanes (top picture)

• Each face of the polytope is defined

by a single neuron in the hidden

layer, the output layer computes an

AND of the hidden layer activations

• A three layer network can represent

disjunctions of convex polytopes: the

final layer computes an OR of the

second hidden layer outputs (bottom

picture)
(Source:

Shalev-Shwartz

and Ben-David,

2014) 17



Learning Multi-Layer Perceptrons



Hardness of training MLPs

Learning optimal weights for MLPs and other neural networks is

computationally hard (Shalev-Shwartz and Ben-David, 2014):

• It is NP-hard to find the parameters that minimizes the empirical

error, for a network with a single hidden layer that contains 4

neurons or more

• Even close-to-minimal error is NP-hard to achieve

• Changing the structure of the network is not likely to make learning

easier, since any function class that can represent intersections of

halfspaces is NP-hard under some cryptographic assumptions

Thus in practice we need to resort in heuristic optimization approaches

with no theoretical guarantees of optimality

18



Stochastic Gradient Descent for MLPs

• Most training algorihms for MLPs are

variants of stochastic gradient decent

(SGD)

• Unlike with logistic regression and

SVM problems, MLP optimization is a

non-convex optimization problem

• SGD generally converges to a local

optimum

• No theoretical guarantees how close

to the global optimum we are

• In practise, SGD needs to be run many

times with different initializations to

find a good local optimum

19



Stochastic Gradient Descent for MLPs

• SGD requires us to compute the

gradient of the loss function with

respect to a training example

• Unlike Logistic regression or SVM,

there is no analytical expression for

the gradient

• The expression for the gradient will be

in general a expression involving

nested sums and products

• The computation of the gradient and

the update of the weights needs to be

incrementally, layer by layer

20



Stochastic Gradient Descent for MLPs

• Let us study a two-layer MLP for

regression

• There is one output neuron that has a

linear activation function

y = yi = vT z

• There are H hidden neurons with a

logistic activation function

zh = 1
1+exp(−wT

h x)

• Squared loss is used as the loss

function: L(y , r) = 1
2 (y − r)2

21



Stochastic Gradient Descent for MLPs

We traverse the network backwards from the output layer, first taking the

hidden layer as fixed, considering zk of the hidden units as inputs

• The gradient of the loss function with

respect to the output layer weights is

∂

∂vih
L(r , yi ) =

∂

∂vih

1

2
(r −

H∑
h=0

vihzh)2

= (r −
H∑

h=0

vihzh)(−zh)

• The SGD update to the weight vih is a

step along the negative gradient

∆vih = η(r − yi )zh

22



Stochastic Gradient Descent for MLPs

• The update for the hidden layer weights whj is not as simple, as we

do not have a ”desired output” for hidden layer neurons and thus no

loss function either

• We can use the chain rule of differentiation

∂L(r , yi )

∂whj
=
∂L(r , yi )

∂yi

∂yi
∂zh

∂zh
∂whj

The derivatives of the three factors are

given by:

∂L(r , yi )

∂yi
=

∂

∂yi

1

2
(r − yi )

2 = −(r − yi )

∂yi
∂zh

=
∂

∂zh

H∑
h=1

vihzh = vih

∂zh
∂whj

=
∂

∂whj
σh(

I∑
k=0

whkxk)

23



Stochastic Gradient Descent for MLPs

Using the logistic function as the activation function for the hidden layer

zh = σh(
∑d

k=0 whkxk) = 1
1+exp (−

∑d
k=0 whkxk )

we get:

∂zh
∂whj

=
∂

∂whj
σh(

d∑
k=0

whkxk)

= σh(
d∑

k=0

whkxk)(1− σh(
d∑

k=0

whkxk))xj

= zh(1− zh)xj

24



Stochastic Gradient Descent for MLPs

Now we have all the factors of the derivative of he loss function:

∂L(ri , yi )

∂whj
=
∂L(ri , yi )

∂yi

∂yi
∂zh

∂zh
∂whj

= −(ri − yi )vihzh(1− zh)xj

Interpretation

• (ri − yi )vh can be seen as a error term

of hidden unit h

• This error is backpropagated from

the output layer to the hidden unit

• The larger the weight vh, the larger

”responsibility” of the error is given to

unit h

25



Stochastic Gradient Descent for MLPs

∂L(ri , yi )

∂whj
=
∂L(ri , yi )

∂yi

∂yi
∂zh

∂zh
∂whj

= −(ri − yi )vihzh(1− zh)xj

The update for the weight is a step along the negative gradient

∆Whj = −η ∂L(ri , yi )

∂whj
= η(ri − yi )vihzh(1− zh)xj

• Note the update of the hidden layer

weight refers to the output layer

weight vih

• We should first update whj the hidden

layer weights using the old values of

vih, then update the output layer

weights
26



Backpropagation training algorithm for two-layer MLP for re-

gression

Initialize all whj , vih randomly to range

[−0.01, 0.01]

repeat

Draw a training example (x, r) at random

Forward propagation of activation:

Set zh = σh(wT
h x) for h = 1, . . . ,H

y = vT z

Backpropagation of error:

∆v = η(r − y)z

∆wh = η(r − yi )vihzh(1− zh)x, for

h = 1, . . . ,H

Update weights:

v = v + ∆v

wh = wh + ∆wh

until stopping criterion is satisfied
27



Backpropagation algorithm for classification tasks

The backpropagation algorithm described

can be adapted for classification tasks:

• For binary classification task we

change the output activation function

to sigmoid function, either logistic

(with 0/1 labels) or tanh (−1/+ 1

labels)

• Multiclass classification can be

implemented by using K output units

and applying a softmax-function

yi =
exp(vT

i z)∑
k exp(v

T
k z)

28



Multiple hidden layers

• Adding hidden layers to the network

means that both forward propagation

of activation and the backward

propagation of error needs to be

iterated for more layers

• The error backpropagation then

involves a chain-rule over all hidden

layers

29



Improving convergence

A few simple tricks can be used to speed up convergence:

• Momentum: The SGD update may cause oscillation; subsequent

update directions may be very different to each other. This can be

helped by computing a running average of the current negative

gradient direction and the previous update direction

∆w(t) = −η ∂L(rt , yt)

∂w
+ α∆w(t−1)

• Adaptive learning rate: the stepsize η can be changed based on

whether error on the training set has been decreasing during the last

few passes over the training data (epochs):

∆η =

{
+a if R̂(T ) < 1

p

∑p
k=1 R̂

(T−k)

−bη otherwise
,

where R̂(t) denotes the average loss over the training data on epoch

t

30



Using GPUs

• The use of Graphical Processing Units (GPU) is widely spread in

neural network research

• GPUs can process especially matrix operations (esp. matrix

products) very efficiently

• The operations in the backpropagation algorithm can be written so

that the majority of computation is in the form of matrix products

31



Avoiding overfitting

Due to their flexibility neural networks are prone to overfitting. This can

be alleviated by certain techniques

• Early stopping: the weights in the network tend to increase during

training and grdually overfitting becomes more likely. Stopping

training prior convergence can help.

• Dropout: during training, randomly fixing some weights during an

update stops the network adjusting to the noise too well. This

technique is widely used in current deep learning algorithms

32



Other neural network architectures

Particular architectures of neural networks can be used for specific

purposes

• Convolutional Neural Networks are used e.g.

for image input. The instead of fully connected

layers, a local neighborhood is cross-connected,

but the neighborhoods can overlap

• Autoencoder networks have an ”hourglass”

structure, where a middle hidden layer is much

narrower than the input and output layers.

This is used for learning new representations

for data.

• Recurrent networks are used for data that

has variable length e.g. speech and natural

language

33



Summary

• Neural networks are a model family inspired by the human brain

• Multi-layer perceptrons can represent and approximate remarkably

complex functions

• Large training data is generally needed to avoid overfitting

• Finding optimal weights for a neural network is generally NP-hard

problem

• Variants of stochastic gradient descent are generally used to train

neural networks

The Course CS-E4890 - Deep Learning (Spring 2021)

https://mycourses.aalto.fi/course/view.php?id=28212 is

recommmended to those who wish to learning more about neural

networks

34

https://mycourses.aalto.fi/course/view.php?id=28212

	Multi-layer perceptrons
	Expressive power of neural networks
	Learning Multi-Layer Perceptrons

