Timeline In the course

Meetings Thursdays or  Home exercises Project work

Wednesdays Fridays status
Week1 Speech features Classification Feature classifier Literature study
Oct 28-30 _entry test Meet tutors Oct 28
Week2 Phoneme modeling Recognition Word recognizer Work plan

Meet tutors Nov 4

Wee exicon and language anguage model Text predictor Analysis
Nov 11-13 Meet tutors Nov 11
Week4 Continuous speech LVCSR Speech recognizer Experimentation
Nov 18-20 advanced search Meet tutors Nov 18
Week5 End-to-end ASR End-to-end End-to-end recognizer Preparing reports
Nov 25-27 Meet tutors Nov 25
Week6 Projects1 Projects?2 Presentations
Dec 2-4
Week7 Projects3 Projects4 Report submissiol
Dec 9-11 Conclusion
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Content today

= 1.Preprocessing, features, GMM
2.Phonemes
3.HMM

4.Home exercise 2: Build a GMM-HMM system to
recognize spoken words
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Review: computation of MFCC

Power spectrum Mel-Scale Filter Bank

f,(n)

==t (N

Energy from each filter Log-Energy y k s
Discrete
log(o) Cosine [
Transform Il
y = wavread ('yksi.wav'); Compression & i
Decorrelation
s = spectrogram(y,hamming (400) ,240) ; 1
spec = sqrt(abs(s)); -
mfcc = D*log(l+M*spec) ; R f
y k s i
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Review: speech recognition

-from beginning to end

Today:

Speech Feature Acoustlc Decod ar Recognized
signal extractlon modelmg text

Language
modeling
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Content today

1.Preprocessing, features, GMM
= 2.Phonemes
3.HMM

4.Home exercise 2: Build a GMM-HMM system to
recognize spoken words
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Description of speech sounds

* Speech can be written down using abstract units called
phonemes

* Phonemes describe the sounds by the way they are
produced by human

e Main classes:

- vowels: air flow is not obstructed
- consonants: air flow is partially or totally obstructed

* There are different writing systems, e.g. IPA (International
Phonetic Alphabet)

* The phoneme sets differ depending on language
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Production of speech sounds

Tooth-ridge(alveolar): MNasal Cavity

hack part "_.,.f-" ’

front-part e : Hard Palate
"
Upper Teeth el
,_r"".-'- Veluirm
Upper Lip T — Nasal Passage
. \ |
_ L
Lower Lip Tongue:
L st T back
[ ower Testh = middle
B front
Jaw 1 3 tip
Vocal Cords :‘
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IPA symbols for US English

PHONEME EXAMPLE PHONEME EXAMPLE PHONEME EXAMPLE

[/ beat /s/ see S/ wet
/1) bit Jsf she Jtf red
ferf bait it fee Vv let
et bet /67 thief v/ yet
e/ bat /z/ z /m/ meet
Ja/ Bob lz/ Gigi /n/ neat
Faf hought S/ v /n/ Sing
/af but 10/ thee /e/ church
fov/ boat /p/ pea [i/ judge
Jof book Jt/ tea /h/ heat
bl boot Jk/ key

& Ji Burt /b bee

fav/ hite /d/ Dee

/v Boyd Ja/ geese

fax/ bout

/[af about
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CMU Sphinx ASR system symbols

Phone | Example | Phone | Example | Phone | Example
AR odd EY ate P pee
AE at F fee PD lip
AH hut G green R readaq

I -.., S5
AD ougnt GD bag S sea
AW COoOw HH he SH she
AX abide IH e T tea
AXR user IX acid TD 1Lit
= S S = SR
AY hide 1Y eat TH theta
B be JH gee TS bits
BD Dub K key UH hood
CH cheese KD 11ge UW two
D dee L lee v vea
AT, I, S
DD dud M me W we
DH thee N note Y Yield
DX matter NG ping Z zee
EH ed oW ocat ZH seizure
==. = .
ER hurt oY Loy SIL (silance)
= L
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Acoustic model of speech

* Discussion: What speech units would suit for ASR?
* (how long, how many, language-dependence)
* (is the linguistic phoneme definition optimal?)

Why these discussions?
Learning happens, when:

+ brains are active and alert
+ new knowledge contradicts
your old believes
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In ASR: Context-dependent

phonemes

* Context independent model, Monophone /X/
- Example: three =>th +r + 1y

- does a phoneme sound the same in all contexts ?

* Context dependent model, Triphone /Left-X+Right/
- Example: three => sil-th+r + th-r+iy + r-iy+sil

- 25 phonemes => 25*25*25 = 15 625 triphones
- do all the contexts exist ?
- do all the contexts sound different ?

- can we share parts of the model between some
contexts, e.g. beginning, center, middle part?
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Content today

1.Preprocessing and features, GMM
2.Phonemes
= 3.Hidden Markov Model

4.Home exercise 2: Build a GMM-HMM system to
recognize spoken words
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Test what you remember from week 1

Individual test for everyone, now:
1. Go to https://kahoot.it with your phone/laptop
. Type in the ID number you see on the screen (also in chat)

2

3. Give your REAL (sur)name

4. Answer the questions by selecting only one of the options
- There may be several right (or wrong) answers, but just pick one
- About 1 min time per question

5. 1 activity points for everyone + 0.2 per correct answer in time
- Kahoot score is just for fun, only the correct answers matter
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Results of GMM classification?

* This is not yet speech recognition, not even phoneme
recognition!

* How to utilize this in phoneme recognition?

ttptpppptkkppkkkkkkykoooooooouoooooooooalllililiacimmmmmmmmmmmmmmiiieeeeyy

2020 Mikko Kurimo Speech recognition course 14 /55



How to model a sequence of frames

or phonemes?

SPEECH
//N
S {P x“ CH_lEHﬂ
2
SSSHPPTEIINIYIYESHCH
f R S O R |

0, 0, 0O, 04 05 0Of 0O
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Hidden Markov model

1.HMM is a system that ¢,
has a set of operational .

states

2.From state / it moves to
state j by probability a(ij)
3.Each state emits a
characteristic sound signal
4.

5.
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Hidden Markov model

3.

4.Signals are measured
by feature vectors

5.The system's internal
state is hidden, only the
feature vectors are

measured (SS SHPPTE)
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How to model a sequence of frames

or phonemes?

SPEECH
// \\b
S P || IY || CH J\‘
e ’ L 1
?
® O

0, 0, 0O, 04 05 0Of 0O
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HMM as a phoneme mode|

SPEECH
// N
‘ S P IY CH
4—-""'-',_‘# g“f ‘L\‘ ‘"“—-&_______\*

P

0, 0, 0y 0, 05 0Of O4

(SSSHPPT) o= O



HMM as a phoneme model

* After segmenting each g,
word sample into sounds,
we find the set of feature
vectors that represent a
certain state

* These feature vectors are
used to model the outputs
in the state (by GMM e.g.)
* After modeling the states
the HMM is ready for ASR

{S-S—SHPPTET
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GMM-HMM system

*Each state emits
sounds according to

its GMM model

* This generative

model can be used for
text-to-speech, too
*The higher a(ii), the-—"
longer is the duration =

N
.
L
S,
.
ot

bo)  blo) b
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GMM-HMM system

* Each state emits
sounds according to
its GMM model

* This generative
model can be used for
text-to-speech, too

e
i

A
et

*Sample 1
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GMM-HMM system

* Each state emits
sounds according to
its GMM model

* This generative
model can be used for
text-to-speech, too

-,
[
‘.H"'l-\.
by,

e
i

A
et

Sample 2

b, (O,r ) b, (Os )
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GMM-HMM system

* Each state emits
sounds according to
its GMM model

* This generative
model can be used for
text-to-speech, too

-,
[
‘.H"'l-\.
by,

e
i

A
et

Sample 3

b, (O,r ) b, (Os )
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Basic operations with HMMs

1. Scoring: - How to compute the probability of the
observation sequence for a model?

2. Decoding: - How to compute the best state sequence
for the observations?

3. Training: - How to set the model parameters to
maximize the probability of the training samples?
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GMM-HMM parameters

* Transition probability matrix a
- Transition probability between state i and j is a(i,))

* Observation probability function b of feature x is b(x),
for example GMM:

M
fx)=> w,N,(xu,,Z,)

m=l

- m____ iy gy T o
; (zﬁ_)u . |2m ‘]f'Z exp 2 (Jf /um) m (x um )_
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Basic operations with HMMs

1. Scoring: - How to compute the probability of the
observation sequence for a model?

2. Decoding: - How to compute the best state sequence
for the observations?

3. Training: - How to set the model parameters to
maximize the probability of the training samples?

Article: Rabiner (1989), Tutorial on hidden Markov
models and selected applications
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1. Scoring

® Given an observation sequence,
0=1{0,,0,,,07}
" Want to compute probability of generating it:

P(O| 1)

B Let’s assume a particular sequence of #tates,

q={4,.9,- . q;)

2020 Mikko Kurimo Speech recognition course Picture by B.Pelfonp>5



Scoring directly

" Probability of the observation sequence given
the state sequence,

T
PO|q.2) =] ] po,1q,.2)
i=1

=b,(0,):b, (0,):--b, (OT)‘

" Probability of the state sequence,

P(g|A) =7, (aqlgz)-(aqﬂ})---(a%_ﬁf)
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Scoring directly?

® Using the chain rule,

P(O|4)=> P(O|q,2)P(gq]| )
all q
~ Z ﬁﬁ’l bfj’l (Dl)ﬂf-}l@z bfj’z (03) - .ﬂ{ff—lgf bfi’:r (DT)

allq

" This is not practical to compute. For N states, T
observations, the number of state sequences is:

OQRT*N)
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Using induction in a search network

1.Map words into phonemes and states
2.Construct a search network for all the states

2020 Mikko Kurimo Picture by S.ReHal$5



Forward algorithm

)

(Probability of seeing observations o, to o, and
ending at state /i given HMM 1)

Definition: «, (i) =/F(0,0,...0,,q, =i

1. Initialization (i) =7,

- -
2. Induction a,..(j)= Zg;(f)ag bj (0,,1)
| i=1 _

3. Termination

P(O

)= Z o, (i)

2020 Mikko Kurimo Picture by B.Pellom
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Forward step 2: Induction

a,(N) o 9y .
N
time t time t+1 O *N°))
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Forward example

® Given the above HMM with discrete observations “A” and

“B”, what is the probability of generating the sequence
“O={AAB}"?

" In other words, find P( O={A,A,B} | A ]\
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Exercise1: Forward algorithm

_ A _ A _ B _
=0 L00bo(a) =1 00%b0(A) t=2 200*b0(B) =3

wl: 1. [ 1. [ ]

35



Exercise1: Forward algorithm

_ A _ A _ B _
5o =0 000 =1 000(a) t=2 200*b0(B) t=3
| 10 | o603 J 0.48 | 7 J 2 | 2 J ?
201*b1(A)0.4*0.3  a01*b1(A)— ? a01*b1(B) 2
S1 _ _
| 00 | 1.003 0.12 | 2 2 | 2 ?
a11*b1(A) a11'b1(A) a11*b1(B)
Answer:

?
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Exercise1: Forward algorithm

_ A _ A _ B _
5o =0 000 =1 000(a) t=2 200*H0(B) t=3
[ 10 ] o608 | o048 | 0608 | o023 |- K
201°b1(A) 0403  a01*b1(A)— 0.4°0.3 a01"b1(B) 2
S1 _ _
| 00 | 1.003 0.12 | 1.0°0.3 009 | - ?

a11*b1(A) a11*b1(A) a11*b1(B)

Answer:
?
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Exercise1: Forward algorithm

_ A _ A _ B _
=0 000 =1 00b0(a) t=2 200"b0(B) =3

s'0| 1.0 | 0608 >|0-48 | 0608 >I 023 | 0602 >| 0.03

a01b1(A) 04703  a01*b1(A) 04703  a01b1(B) —0.4°0.7
S1 : _
| 00 | 1003 012 | 1.003 009 | 1007 0.13
al1"b1(A) a11"b1(A) a11"b(B)
Answer:

?

38



Exercise1: Forward algorithm

_ A _ A _ B _
=0 000 =1 00b0(a) t=2 200"b0(B) =3

s'0| 1.0 | 0608 >|0-48 | 0608 >I 023 | 0602 >| 0.03

a01*b1(A) - 0.4%0.3 ao1M 801*M
$1| 00 | 1003 012 | 1003 009 | 1007 0.13
a11"b1(A) a11*b1(A) a11°b1(B)
Answer:
P(O|L)=
0.03+0.13

=0.16
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2. Decoding

® Given an observation sequence,
0=1{0,.0,.:.0]

" Find the single best sequence of states,

q = {%:‘fz:”':QT}

® Which maximizes,
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Viterbi algorithm

1. Initialization 51 (7) =;?r‘,.bj (01) w, (i) =0

- 0,(j) =max[d, ,())a,]b,(o,)
2. Recursion I<I<N .

v, (j)=argmax[o,_ (i)a,]
1IN

3. Termination p* :max[ﬁr(;{)] q; — arglllax[fir(f)]
I<i<N 1<i<N

4. Path Backtrace ¢ =y (')

202! Picture by B.Pellor?>




Viterbi step 2: Recursion

bf(2) o - T {?Hl(.j):
max{[o,()ay b, (0,.,)
Bed time t+1
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Exercise2: Viterbi search

= A = A - B =
=0 L00bo(A) =1 00tbo(a) t=2 a00"b0(B) t=3

ol. (o l. [ 1. [

43



Exercise2: Viterbi search

_ A _ A _ B _
<o =0 L0obo(A) =1 00%b0(A) =2 00'0(B) =3
10 0608 | 048 [ I E K
201°b1(ATN0.403  a01"b1(AT~2 201°b1 (B2
S1 _ _
| 00 | 1003 012 | 2 2 | 2 ?
a11b1(A) a11b1(A) a11*b1(B)
Answer:

?

44



Exercise2: Viterbi search

_ A _ A _ B _
<o =0 L0obo(A) =1 L00b0(A) =2 00'0(B) =3
10  0.6°0.8 048 0608 | 023 |2 I
201°b1(ATSNND.40.3  a01*b1(AIN0.40.3 201*b 71 (B)?
S1 _ _
| 00 | 1003 012 | 1.0°0.3 006 | 2 ? |
a11*b1(A) a11"b1(A) a11*b1(B)
Answer:

?

45



Exercise2: Viterbi search

_ A _ A _ B _
<o =0 L00bo(A) =1 a00b0(A) =2 L0008 =3
10 0608 0.48  0.6°0.8 023 0602 0.03
201" b1 (ATSNQ.4°0.3  a01*b1(AIQ.4°0.3 201"b1 (B)~Q.4"0.7
S1 - _
| 00 | 1003 012 | 1003 006 | 1007 0.06
a11b1(A) a11*b1(A) a11*b1(B)
Answer:

?

46



Exercise2: Viterbi search

- A - A — B —
<o =0 L00bo(A) =1 a00b0(A) =2 L0008 =3
10 0608 048 0608 023 _og02 ,| 003
a01°b1(A) - 0.4°0.3  a01'b1(A) 0403  a01b1(B)~~Q4"0.7
s1 : _
| 00 | 1003 012 | 1003 006 | 1007 0.06
al1"b1(A) al1"b1(A) at1'b1(8)
Answer:

S0-S0-S1

47



3. Training

* Forward-Backward algorithm (a.k.a. Baum-Welch):

- 1. Initialize the model parameters (a,b)

- 2. Use the model and Forward (or Backward) algorithm
to compute the probability matrix P(state=i,time=t |a,b)
for each sample

- 3. Use P to enhance the model parameters:

* a(ij) . expected number of transitions from j to
* b_i(o) : expected pdf of features in state i (weighted by P)

- 4. Iterate from 2.
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Viterbi training

* Like Forward-Backward algorithm, but substitutes the
sum operation by_max

* |nstead of summing probabilities over all HMM paths,
only use the best path for each sample

* Like Viterbi decoding, but only the best alignment
(segmentation) between the speech and text needed

* Simpler than F-B, but converges likewise to the (local)
optimum

* “Hard alignment”in V, but “soft alignment” in F-B
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Context-dependent HMM

* Monophone HMM = context-independent phoneme
- three=>th +r +1y
* Triphone HMM = context-dependent phonemes
- three => sil-th+r + th-r+iy + r-iy+sil
* Difficult decisions needed in HMM design:
- How many models, states and Gaussians?
- Share models between some triphones?
- Share states or Gaussians between models?
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HMM assumptions

1.The HMM topology is usually fixed, e.g. left-to-right
2.The state duration is exponentially distributed

3.The transition between states is independent of time
and state history: - It only depends on the current state

4.The observations are independent of time and each
other: - They only depend on the current state
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Feedback

Now: Go to MyCourses > Lectures and fill in the feedback form.

Some of the feedback from the previous week:

+ interactive and interesting lecture

+ kahoot, audio samples and example calculations

- more details on features

- kahoot took too much time

If possible, the microphone of the lecturer could be better.
| would like to choose my own project topic!

Thanks for all the valuable feedback!
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Summary of today

* Phonemes
e« GMM and HMM

* Next meeting: Thu 10.15 - 12 or Fri 14.15 — 16: Speech
recognition by HTK toolkit

- check http.//htk.eng.cam.ac.uk/docs/docs.shtml
- This exercises is useful for most project works!
* Next week: Language models and lexicon
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Project work receipt

1.Form a group (3 persons)

2.Get a topic

3.Get reading material from Mycourses or your group tutor

4 1st meetlng SpeC|fy the topic, start literature study (DL Nov 8)

6 3rd 5t meetlngs Perform analysis, experiments, and write a repoﬂ

7.Book your presentation time for weeks 6 - 7 (DL Nov 27)
8.Prepare and keep your 20 min presentation
9.Return the report (DL Dec 11)

Check MyCourses > Projects to see your group, topic and tutor
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Final project report

ﬂ1 .Abstract: (your working plan)

‘2. Introduction: (your literature review)
- Remember to cite every article you read

3.Experiments: Describe what you did
4.Results: Describe the results you got
5.Conclusion: Your conclusion of the work
6.References: (list of articles that you read)
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