Reinforcement Learning
Project work

November 9, 2020

1 Introduction

The project work for the course is about implementing a reinforcement learning agent that can
play the game of Pong from pixels (see Figure[I). In this environment, the agent controls one
paddle and can take one of three actions: moving up or down, or staying in place.

The assignment is supposed to be done in groups of 2 students. If you need to find a partner
for the project, please join the project-groups channel on Slack and advertise yourself :). Each
group can give a name to their agent (anything you like, keep it civil).

To get familiar with Pong and reinforcement learning from pixels, you can read the blogpost
by Andrej Karpathy: |http://karpathy.github.io/2016/05/31/rl/.

You are allowed to get inspiration from other sources, as long as you reference them and
clearly state which parts you used, why, and how they work.

2 Report

Your report should be structured as follows:

Introduction (motivation and problem statement),
Review of external sources you used,

Design of the agent architecture,

Training methodology,

Evaluation of results,

S N

. Conclusions.

The report should be submitted as a PDF file. For more details, refer to Section

A,, Aalto University

http://karpathy.github.io/2016/05/31/rl/

Figure 1: The Pong environment

3 Technical requirements

Your agent has to be trained using some kind of reinforcement learning method. Hard-

coded algorithms or other machine learning techniques (such as supervised learning) will not be

accepted.

3.1 The Pong game

Components:

* wimblepong.py: Contains the implementation of the pong game. It provides the follow-
ing public methods: step(actions), reset(), render(), set_names(name player 1, name
player2). An example implementation of how these functions are used can be found in
test_pong_simple_ai.py, which demonstrates an implementation for 2 simple hard-coded
Al players,

simple_ai.py: A simple hard-coded pong agent,

test_pong_ai.py: This file contains an example implementation of two simple Al agents
playing against each other,

test_agent.py: This file tests your agent against Simple Al or against another agent (and
can also be used to verify that your agent meets the interface requirements),

mass_test_simple_ai.py: Tests all agents in the given directory against simple Al,

epic_battle_royale.py: Tests all agents in the given directory against each other.

A' Aalto University
[|

3.2 Interfacing with the pong game

Your agent should be contained in a separate file called agent.py, and defined as a separate class
called Agent. The Agent class must implement the following interface:

® load_model():void - a method that loads the saved model from a file,

® reset():void - a function that takes no arguments and resets the agent’s state after an
episode is finished,

® get action(frame:np.array):int - a function that takes a raw frame from Pong (as a numpy

array), and returns an action (integer),

® get_name():str - a function that returns the name of the groups agent (max 16 characters,
ASCII only).

The agent has to be able to run both on the CPU and the GPU, depending on what is available
(you can use torch.cuda.is_available() to check if a GPU is available). To test it, you can run
the script with CUDA_VISIBLE_DEVICES="" to hide the GPU from Python. The model loading should
work both with and without a GPU; you can use map_location="cpu" when calling torch.load to
map CUDA tensors to the CPU.

You can make sure that your class interface works with our test scripts, for example

test_agent.py.

4 Grading

The grading will be based on the following criteria:

1. Approach, together with a thorough explanation of the reasoning behind all de-
sign choices - 25%

2. Analysis of the whole system and its performance - 25%

3. Performance against the baseline Al included in the environment (based on the winrate) -
20%

4. Performance in the competitive phase - 20%

5. Report quality - 10%

The expected method for the reinforcement learning algorithm is to process the pixels of
the pong environment frame as input. Thus, the input to the machine learning model
that you use should be in the form of a pixel array. The array can be preprocessed e.g. by
color transformations, stacking multiple frames together, or by an unsupervised representation

A,, Aalto University

learning model, but extracting the positions of elements (e.g. by color or by a supervised model)
is not allowed. Approaches that do not take directly the pixels of each frame as the sole
input, will not participate in the competitive phase. Furthermore, the design choice will
be graded up to 15% instead of 25%. The maximum grade for the approaches that do not make
this consideration is up to 65% of the total course project. If you're in doubt, please ask the
TAs about your approach.

When describing the method, provide the details of the learning algorithm, network structure
and training procedure. Make sure to justify each design choice — for example, if you used a
DQN, describe why you think the method is suitable for the application, and what its benefits
are over other methods you considered. A thorough justification will significantly improve your
grade, as this shows how well you understand different reinforcement learning concepts and
algorithms.

When describing the performance of the algorithm, include your training plots and report
performance against SimpleAl. If one of the approaches failed to learn, include the training plots
as well and try to justify why it didn’t perform as expected. Report all of your hyperparameter
values (the cleanest way is to put them in a table).

During the competitive phase, the agents submitted by all groups will be evaluated against
each other. The final score for this part will be based on the number of encounters won by each
group.

The best four agents will fight against each other and compete for extra bonus points in the
final stage, which will take place after the deadline. The exact time and place will be announced
in early December.

5 Hints

Several hints that may help you to keep the ball bouncing :)

5.1 Computational power for training — Google Colab

Step-by-step guide:

—

. Log-in into your gmail or Aalto account for using Google Drive and Google Colab.
2. Create a folder in your Google Drive to store the files for the project (the wimplepong folder).

3. Go to https://colab.research.google.com/|and create a new notebook for Python 3.

N

. Paste the following code into the notebook you have created:

A Aalto University

https://colab.research.google.com/

5.2

import sys

import gym

from google.colab import drive
drive.mount(’/content/drive’)
sys.path.append("/content/drive/My Drive/RL_Course")
import wimblepong

N O O W N

env = gym.make("WimblepongSimpleAI-v0")

If this is your first time using Google Colab you will be asked for going into a Google
account URL and enter an authorization code. Allow the permissions and paste the

authorization code.

To activate the GPU, go to Runtime — Change runtime type and set Hardware accelerator
to GPU.

That’s it! Now you can run the Wimblepong code.

Computational power for training — Maari

You can train your models on the computers in the Maari building. In order to connect remotely,
first use SSH to log in to kosh.aalto.fi or lyta.aalto.fi, and from there use the ssh command

to connect to one of the CS computers.

The machine available for students are:

1. Maari-A: albatrossi, broileri, dodo, drontti, emu, fasaani, flamingo, iibis, kakadu, kalkkuna,

karakara, kasuaari, kiuru, kiwi, kolibri, kondori, kookaburra, koskelo, kuukkeli, lunni,
moa, pelikaani, pitohui, pulu, ruokki, siira, strutsi, suula, tavi, tukaani, undulaatti

Maari-C: akaatti, akvamariini, ametisti, baryytti, berylli, fluoriitti, granaatti, hypersteeni,
jade, jaspis, karneoli, korundi, kuukivi, malakiitti, meripihka, opaali, peridootti, rubiini,
safiiri, sitriini, smaragdi, spektroliitti, spinelli, timantti, topaasi, turkoosi, turmaliini,

vuorikide, zirkoni

Paniikki: brainfuck, deadfish, bogo, befunge, bit, smurf, piet, emo, entropy, false, frac-
tran, fugue, glass, haifu, headache, intercal, malbolge, numberwang, haifu, ook, regexpl,
remorse, rename, shakespeare, smith, spaghetti, thue, unlambda, wake, whenever, whites-

pace, zombie

Remember that there might be other people working on these machines - please check the
usage with htop and nvidia-smi before running heavy training.

Also, don’t run your programs directly on Kosh or Lyta - those servers were not designed to

handle heavy workloads, and are meant to be used as gateways to access other Aalto machines.

A' Aalto University
[|

5.3 Training over multiple days

In order to leave your processes running in the background after you've closed your SSH
connection or left the machine, you can use the screen command. When you start screen, it will
open a new terminal, in which you can start your lengthy process. When you want to log out of
the machine (or close the SSH session), you can detach your screen terminal by pressing Ctrl+a
and d (one after another). Doing so will close the terminal and leave your processes running in
the background.

To reconnect to an existing screen session, use screen -Rd.

5.4 Some techniques to try out

A (very) brief overview of machine learning techniques and neural networks architectures that
can help you achieve good results:

* Convolutional neural networks — neural networks with fewer weights, aimed at process-
ing spatially structured data (such as images),

® Variatonal autoencoders — a way of performing unsupervised feature learning (and
reducing the dimensionality of your data; example use in RL in [1f]),

* Spatial soft-argmax layers — extracting coordinates of points-of-interest from the im-
age [2],

To make your models perform better (or train faster) you can also use one of the "fancier"
reinforcement learning algorithms. Things you can check out:

* Deep Q Networks (DQN) — a lot of improvements over the ’basic’ Q-learning we had in
the exercises [3],

* Trust-region policy optimization (TRPO) — applying additional constraints to policy
gradient policy updates [[4],

* Proximal policy optimization (PPO) — similar idea to TRPO with simplified mathematical
formulation [5],

* Actor-critic with experience replay (ACER) — reuse past experience when doing policy
updates [6]],

If you use an on-policy algorithm, such as PG, A2C, TRPO or PPO, you will likely find [7]
to be quite helpful when implementing your algorithm and choosing hyperparameter values.
While the paper focuses on continuous control tasks, quite a lot of findings are also applicable
for discrete action spaces and image inputs.

Additionally, the parallel environment wrapper from Exercise 6 will stabilize and significantly
speed up your training.

A’ Aalto University
[|

6 Submission

The submission deadline for the project work is the 5th of December 2020, 23:55. The
project should be submitted through MyCourses (via TurnltIn) by one of the group members.
During the project show on 8.12.2020 (during the usual lecture time), the best four agents will
compete for extra bonus points.

Your submission should include:

1. The code used for training the agent.

2. The agent itself (in a separate .py file, meeting the interface specifications listed in
section [3).

3. A trained model of the agent, named model.mdl in the same directory as agent.py.

4. Any other Python files must be prefixed with the name of your agent, e.g., if you
agent’s name is Pippo, and it’s using some functions from utils.py, the file should be
named pippo_utils.py.

5. The PDF report (details in Section [2).

References

[1] D. Ha and J. Schmidhuber, “World models,” CoRR, vol. abs/1803.10122, 2018. [Online].
Available: http:/arxiv.org/abs/1803.10122

[2] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor policies,”
CoRR, vol. abs/1504.00702, 2015. [Online]. Available: http://arxiv.org/abs/1504.00702

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A.
Riedmiller, “Playing atari with deep reinforcement learning,” CoRR, vol. abs/1312.5602,
2013. [Online]. Available: http://arxiv.org/abs/1312.5602

[4] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust region
policy optimization,” CoRR, vol. abs/1502.05477, 2015. [Online]. Available: http:
//arxiv.org/abs/1502.05477

[6] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” CoRR, vol. abs/1707.06347, 2017. [Online]. Available:
http://arxiv.org/abs/1707.06347

[6] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas,
“Sample efficient actor-critic with experience replay,” CoRR, vol. abs/1611.01224, 2016.
[Online]. Available: http://arxiv.org/abs/1611.01224

A Aalto University

http://arxiv.org/abs/1803.10122
http://arxiv.org/abs/1504.00702
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1502.05477
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1611.01224

[7] M. Andrychowicz, A. Raichuk, P. Stanczyk, M. Orsini, S. Girgin, R. Marinier, L. Hussenot,
M. Geist, O. Pietquin, M. Michalski, S. Gelly, and O. Bachem, “What matters in on-policy
reinforcement learning? a large-scale empirical study,” 2020.

Aalto University Reinforcement Learning course staff
School of Electrical Intelligent Robotics Group
|

Engineering aalto.fi, irobotics.aalto.fi

	Introduction
	Report
	Technical requirements
	The Pong game
	Interfacing with the pong game

	Grading
	Hints
	Computational power for training — Google Colab
	Computational power for training — Maari
	Training over multiple days
	Some techniques to try out

	Submission

