
Lecture 7:
Collisions and Transport



Today’s menu: weakly ionized gases

• Mean-free-path and collision frequency
• Mobility and diffusion
• Fick’s law
• Sources & sinks: ionization & recombination
• Ambipolarity
• Decay times and steady-states
• Random walk and diffusion
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Leaking out …

• In real world, every vessel leaks
• So far we have assumed perfect confinement and infinite plasma
• In reality, plasma is finiteè it has to have gradients
• Nature does not like gradients
è diffusion from high to low density

What drives diffusion?

Collisions
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Collisions in weakly ionized plasma
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Weakly ionized plasmas – but why?

In fully ionized plasmas, collisions are non-linear
effects
èMathematically complicated
èLet’s start with an easier case:
è Study collisions in weakly ionized plasma
è Charged particles suffer head-on collisions with neutral

particles

Example: ionospheric plasma, ௡௘

௡೙
~10ି଺ − 10ିଷ
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Effect of collisions on flux

Flux ߁ passes through a dense gasè ′߁
• Dense gas consists of scattering centers = atoms
• Probability of colliding (= scattering of the flux) given by the

cross section which ,ߪ is the ’effective size’ of an atom
• # of scatterers in a slab: ܰ = ݊௡ ⋅ ܣ ⋅ ݔ݀

• Scatterers cover the fractional area ஺ೞ
஺

= ே⋅ఙ
஺

= ݊௡ݔ݀ߪ

è ′߁ = ߁ − ߁ ⋅ ேఙ
஺

= 1)߁ − ݊௡ݔ݀ߪ)
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’Freedom’ parameters for plasma particles
′߁ − ߁ = → ݔ݀ߪ௡݊߁− ௗ௰

ௗ௫
= −݊௡߁ߪ

߁ ݔ = ଴݁ି௡೙ఙ௫߁ ≡ ଴݁ି௫/ఒ೘೑೛߁

Here, ௠௙௣ߣ ≡ 1/݊௡ߪ is called the mean-free path for collisions

A related quantity is the mean time between collisions: ߬ = ఒ೘೑೛
௩

But:
• plasma particles have a distribution of velocities
• Typically ߪ = (࢜)ߪ

ècollision frequency: ௖௢௟௟ߥ = ଵ
ఛ

= ௩
ఒ೘೑೛

= ݊௡ < ݒߪ >
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è < ݒߪ > = ∫  ݒଷ݀(࢜)݂(࢜)ߪݒ
 



Plasma motion due to collisions
Collisions cause frictionè have to be included in the EoM:

݉݊
߲࢜
ݐ߲

+ ࢜ ⋅ ߘ ࢜ = ࡱ݊ݍ − ݌ߘ − ࢜௖௢௟௟ߥ݊݉

Want to study effect of collisions onlyè simplify other stuff away:
1. Steady state
2. Low flow = assume friction dominates
3. Isothermal, ܶ = ݐݏ݊݋ܿ

è ࢜ = ࡱ݊ݍ − ݊ߘܶ ௖௢௟௟ߥ݊݉/  = ௤
௠ఔ೎೚೗೗

ࡱ − ்
௠ఔ೎೚೗೗

ఇ௡
௡
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Diffusion in weakly ionized plasma

26.10.2020
9



Our first transport coefficients …

è In the presence of collisions with neutrals, our plasma fluid
moves according to the density gradient and electric field:

௝߁ = ௝࢜݊ = ࡱ௝݊ߤ± − ݊ߘ௝ܦ
where

௝ߤ ≡ ௤ೕ
௠ೕఔ೎೚೗೗

is called the mobility of the plasma

௝ܦ ≡ ்ೕ
௠ೕఔ೎೚೗೗

is the diffusion coefficient
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Important observations:

1. The flux is thus driven by gradients, as initially assumed:

௝ࢣ = ߶ߘ௝݊ߤ∓ − ݊ߘ௝ܦ

2. Collisions result into diffusion and diffusion in the presence of
collisions means transport
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Fick’s law
For diffusion in regular gases the Fick’s law applies

ࢣ = ݊ߘܦ−
The physics of Fick’s law:
• Nature likes to flatten out gradients

or, to put it in another way,
• Gradients drive fluxes.
A weakly ionized plasma thus obeys Fick’s law ࡱ) = 0):

௝߁ = ݊ߘ௝ܦ−
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What is the time scale of flattening?
Fluids obey continuity equation:

߲ ௝݊

ݐ߲
+ ߘ ⋅ ୨ࢣ = 0

Quasineutralityè ݊௜ ≈ ݊௘ ≈ ݊ è ߘ ⋅ ௘ࢣ ≈ ߘ ⋅ ௜ࢣ

How about the individual fluxes?
Assume ௘ࢣ ≠ ௜ࢣ
è charge imbalance
è electric field sufficient to retard electrons & accelerate ions to make ௘ࢣ = ௜ࢣ .
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Ambipolar stuff …
Find the magnitude of this ambipolar electric field:

௘ࢣ = ௜ࢣ → ࡱ௜݊ߤ − ݊ߘ௜ܦ = ࡱ௘݊ߤ− − ݊ߘ௘ܦ

è ࡱ = ஽೔ି஽೐
ఓ೔ାఓ೐

ఇ௡
௡

è The flux of the plasma is given by

߁ = ௜߁ = ௜ߤ
஽೔ି஽೐
ఓ೔ାఓ೐

݊ߘ − ݊ߘ௜ܦ = − ఓ೐஽೔ାఓ೔஽೐
ఓ೔ାఓ೐

݊ߘ ; Fick’s law again!

We have ambipolar fluxes driven by ambipolar diffusion coefficient

௔ܦ ≡
௜ܦ௘ߤ − ௘ܦ௜ߤ

௜ߤ + ௘ߤ
≈ ௜ܦ +

௜ߤ

௘ߤ
௘ܦ ≈ ௜ܦ + ௘ܶ

௜ܶ
௜ܦ = ௜(1ܦ + ௘ܶ

௜ܶ
)
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Decay time of weakly ionized plasma

Now we have continuity equation for the plasma:
߲݊
ݐ߲

+ ߘ ⋅ ࢣ =
߲݊
ݐ߲

− ଶ݊ߘ௔ܦ = 0

Recall Schrödinger eqnè separation of variables: ,࢘)݊ (ݐ = ܺ ࢘ (ݐ)ܶ

Let’s try to solve this in two simple geometries:
1. 1D case, i.e., slab geometry
2. 2D case, i.e., cylindrical geometry

26.10.2020
15



Plasma decay time in slab geometry
Substitute trial fct to 1D continuity equation: ܺ ݔ ௗ்

ௗ௧
− ௔ܶܦ ௗమ௑

ௗ௫మ = 0

è
ଵ
்

ௗ்
ௗ௧

= ஽ೌ
௑

ௗమ௑
ௗ௫మ = ݐݏ݊݋ܿ ≡ − ଵ

த

è ܶ ݐ = ݊଴݁ି௧/ఛ

è ௗమ௑
ௗ௫మ + ଵ

஽ೌఛ
ܺ = 0 → ܺ ݔ = ܣ sin ݔ݇ + ܤ cos where ,ݔ݇ ݇ଶ ≡ ଵ

஽ೌఛ

Plasma is bounded. Let boundaries be at ݔ = ܮ± → ݇ = ܮ2/ߨ݈
è ݊ ,ݔ ݐ = ݊଴݁ି௧/ఛ cos గ௫

ଶ௅
 , why only ݈ = 1? ? ?

è the decay time is given by the diffusion coefficient: ߬ = ଶ௅
గ

ଶ ଵ
஽ೌ
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Sanity checks …
Observations on ߬ :

• ߬ increases with the box size L
• ߬ decreases with increasing diffusion

Makes sense. J
Also the shape of the solution, the lowest diffusion
mode, looks reasonable, peaking at the center.
è

Weakly ionized plasma decays exponentially at rate
determined by its size and the diffusion coefficient
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The decay process
Start with an abitrary initial shape

FTè ݊ ,ݔ 0 = ݊଴ ܽ଴ + ∑ ܽ௟ cos
௟ାభ

మ గ௫

௅
+ ∑ ܾ௠ sin ௠గ௫

௅
 
 

 
 

è Trial solution:

݊ ,ݔ ݐ = ݊଴ ܽ଴݁ି௧/ఛబ + ෍ ܽ௟ cos
݈ + 1

2 ݔߨ

ܮ ݁ି௧/ఛ೗ + ෍ ܾ௠ sin
ݔߨ݉

ܮ

 

 

 

 

݁ି௧/ఛ೘

Substitute to the diffusion equationè 1/߬௟ = ௔ܦ ݈ + ଵ
ଶ

ܮ/ߨ
ଶ

è ߬௟ = (݈ + ଵ
ଶ
ܮ/ߨ(

ିଶ
௔ܦ/1 è finest structures decay fastest!
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Getting more realistic:
Decay of a cylindrical plasma
Assume cylindrical symmetryè ଶߘ = డమ

డ௥మ + ଵ
௥

డ
డ௥

Separate variablesè ௗమ௑
ௗ௥మ + ଵ

௥
ௗ௑
ௗ௥

+ ଵ
஽ఛ

ܺ = 0

In cylindrical geometry, the volume increase in r makes density
drop fasterè could expect something like decaying cosine
Indeed, solutions are Bessel functions! Here, J0(ݎ) !

B.C’s at ݎ = 0, ݎ = ܽè ௔
஽ೌఛ = 2.4 (first zero of J0)è ߬ = ௔

ଶ.ସ

ଶ ଵ
஽ೌ
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How to get steady-state plasma…

… if plasma unavoidably decays due to inter-particle interactions?

Need a particle source, ܵା(࢘) !!

Ways to ’feed’ a plasma:
• Injection of particles
• Puffing of particles
• (recycling of particles – more about this later)
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Simple steady-state cases:
1. local sources
1-D case: a plane source at ݔ = 0: ܵା ݔ = ܵାߜ 0

èFor ݔ ≠ 0: డమ௡
డ௫మ = 0 → ݊ ݔ = ݊଴(1 − |௫|

௅
)

2-D case: cylindrical plasma, line source at ݎ = 0.
• (e.g., beam of energetic electrons causing ionization along the axis)

For r≠ 0: ଵ
௥

డ
డ௥

ݎ డ௡
డ௥

= 0 → ݊ ݎ = ݊଴ log ௔
௥

, where ݊ ܽ = 0 was used
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Simple steady-state cases:
2. ionization source
Plasma can be fuelled also by a heat source (in cold plasmas):
electrons in the hot Maxwellian tail keep ionizing the gas neutrals

a ’continuous’ source (around heat source): ܵା ∝ ݊ .

Let’s write then ܵା ࢘ = where ,(࢘)ܼ݊ ܼ ≠ (࢘)ܼ is the ionization fct

è ଶ݊ߘ = − ௓
஽

݊

But this is formally the same as the eqn for è(ݎ)ܺ ݊ ݎ =J0(ݎ)
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How about sinks?

We just had ionization as a source.
The reverse process, recombination, is a sink, ܵି .
Recombination requires both electrons and ionsè ܵି ∝ ݊௜݊௘.
Study the effect of recombination alone = neglect diffusion

è
డ௡
డ௧

= ଶ, where݊ߙ− ߙ is the recombination coefficient, ߙ ≠ (݊)ߙ

Non-linear equation!è separation of variables not possible

è solution by ’eye-balling’: ଵ
௡(௥,௧)

= ଵ
௡బ(௥)

+ ݐߙ (HW: just show)
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New processes can change the character of
the solutions
At high density, recombination (∝ ݊ଶ)
typically dominates

è ݊ ,ݎ ݐ ∝ ଵ
ఈ௧

and the density falls reciprocally in time,
not exponentially!
As the density drops, diffusion takes over
è exponential decay
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Until now, we have been studying ’freely floating’ plasmas

But mostly we are interested in magnetized plasmas!

How does the plasma decay when it is imbedded in a confining
magnetic field?

Like fusion or atmospheric or solar plasmas…
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What does the magnetic field do in weakly
ionized plasmas?
In direction parallel to magnetic ,࡮ field has no say
è same physics as before
What is interesting is the transport perpendicular to .࡮
These particles are glued to the fieldlines.
… But we can have cross-field drifts! ࡮࢞ࡱ & Co!
Luckily drifts can be aligned so that they are parallel
to walls (laboratory plasmas)
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Analyze fluid equations ⊥ ࡮ = ොࢠ଴ܤ
Same simplifying assumptions as beforeè

Motion ⊥ ࡮ : ݉݊ ௗ఼࢜
ௗ௧

≈ 0 ≈ ݍ݊ ࡱ + ࢜ × ࡮ − ݊ߘܶ − ୄ࢜௖௢௟௟ߥ݊݉

௫ݒ = ௫ܧߤ± −
ܦ
݊

߲݊
ݔ߲

±
Ω

௖௢௟௟ߥ
௬ݒ

௬ݒ = ௬ܧߤ∓ −
ܦ
݊

߲݊
ݕ߲

∓
Ω

௖௢௟௟ߥ
௫ݒ

è HW: ୄ࢜ = ࡱୄߤ± − ୄܦ
ఇ఼௡

௡
+ ౚ౟౗࢜ಶ×ಳା࢜

ଵାఔ೎೚೗೗
మ /ஐమ ,

where ୄߤ ≡ ߤ (1 + Ωଶ߬௖௢௟௟
ଶ )⁄ and ୄܦ ≡ ܦ (1 + Ωଶ߬௖௢௟௟

ଶ )⁄
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Physics of ୄ࢜

1. Familiar magnetic drifts perpendicular to their respective
gradients (࢜ா×஻∝ ,߶ߘ ௗ௜௔࢜ ∝ but ,(݊ߘ slowed down by collisions
with neutrals by the drag factor 1 + ௖௢௟௟ߥ

ଶ /Ωଶ.
• Increase magnetic field and/or reduce neutral densityè good old drifts!

2. Mobility drift parallel to ࡱ and diffusion drift parallel to ,݊ߘ
obtained in the absence of ࡮ are now slowed down by the factor
1 + Ωଶ߬௖௢௟௟

ଶ

• This is not the same as the drag factor but works the opposite way (as it
should): increase magnetic field and/or reduce neutral densityèmobility
and diffusion drifts vanish
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More on physics of ୄ࢜ -- random walk …
Ω߬௖௢௟௟ ≪ 1è B-field has little effect on diffusion
Ω߬௖௢௟௟ ≫ 1è B-field reduces diffusion across ࡮
The physics of ’magnetic’ slowing down of diffusion:
In the presence of strong ࡮ the diffusion coefficient becomes

ୄܦ →
ܶ

௖௢௟௟ߥ݉

1
Ωଶ߬௖௢௟௟

ଶ =
ܶ

݉Ωଶ ௖௢௟௟ߥ

We then realize: ்
௠ஐమ ~ ௩೟೓

మ

ஐమ = ௅ݎ
ଶ → ௅ݎ ~ୄܦ

ଶ ߥ௖௢௟௟~ ݁ݖ݅ݏ݌݁ݐݏଶ/ܿ݁݉݅ݐ݈݈݋

è the effect of ࡮ is to reduce the step size from mean-free-path to
Larmor radius!

26.10.2020
29



Differences to ’free-floating’ plasma
No field-࡮ (or parallel to it): collisions retard the motion
è ܦ ∝ ௖௢௟௟ߥ/1

Across the field; collisions-࡮ are needed for particles to jump from
one Larmor orbit to another
è ܦ ∝ ௖௢௟௟ߥ

Also the role of particle mass is reversed:
• No ࡮ (or ∥ :(࡮ ܦ ∝ 1/ ݉ ; light electrons move faster along ࡮
• ⊥ :࡮ ܦ ∝ ݉  ; ions have larger Larmor radius = step size
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