

Lecture 7: Collisions and Transport

Today's menu: weakly ionized gases

- Mean-free-path and collision frequency
- Mobility and diffusion
- Fick's law
- Sources & sinks: ionization & recombination
- Ambipolarity
- Decay times and steady-states
- Random walk and diffusion

Leaking out ...

- In real world, every vessel leaks
- So far we have assumed perfect confinement and infinite plasma
- In reality, plasma is finite
 it has to have gradients
- Nature does not like gradients
 - → diffusion from high to low density

What drives diffusion?

Collisions

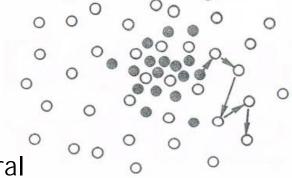
Collisions in weakly ionized plasma

Weakly ionized plasmas – but why?

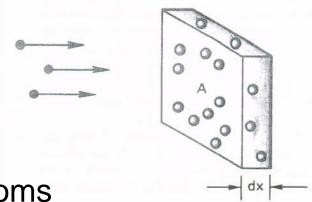
In fully ionized plasmas, collisions are *non-linear* effects

- → Mathematically complicated
- → Let's start with an easier case:
 - → Study collisions in weakly ionized plasma
 - → Charged particles suffer head-on collisions with neutral particles

Example: ionospheric plasma, $\frac{n_e}{n_n} \sim 10^{-6} - 10^{-3}$



Effect of collisions on flux



Flux Γ passes through a dense gas $\rightarrow \Gamma'$

- Dense gas consists of scattering centers = atoms
- Probability of colliding (= scattering of the flux) given by the cross section σ , which is the 'effective size' of an atom
- # of scatterers in a slab: $N = n_n \cdot A \cdot dx$
- Scatterers cover the fractional area $\frac{A_S}{A} = \frac{N \cdot \sigma}{A} = n_n \sigma dx$

'Freedom' parameters for plasma particles

$$\Gamma' - \Gamma = -\Gamma n_n \sigma dx \rightarrow \frac{d\Gamma}{dx} = -n_n \sigma \Gamma$$
$$\Gamma(x) = \Gamma_0 e^{-n_n \sigma x} \equiv \Gamma_0 e^{-x/\lambda_{mfp}}$$

Here, $\lambda_{mfp} \equiv 1/n_n \sigma$ is called the *mean-free path* for collisions

A related quantity is the *mean time* between collisions: $\tau = \frac{\lambda_{mfp}}{v}$

But:

• plasma particles have a distribution of velocities

$$\rightarrow$$
 $< \sigma v > = \int v \sigma(v) f(v) d^3 v$

• Typically $\sigma = \sigma(v)$

$$ightharpoonup$$
 collision frequency: $v_{coll} = \frac{1}{\tau} = \frac{v}{\lambda_{mfp}} = n_n < \sigma v > 0$

Plasma motion due to collisions

Collisions cause friction \rightarrow have to be included in the EoM:

$$mn\left[\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla)\boldsymbol{v}\right] = qn\boldsymbol{E} - \nabla p - mnv_{coll}\boldsymbol{v}$$

Want to study effect of collisions *only* → simplify other stuff away:

- Steady state
- 2. Low flow = assume friction dominates
- 3. Isothermal, T = const

$$\Rightarrow v = (qnE - T\nabla n) / mnv_{coll} = \frac{q}{mv_{coll}}E - \frac{T}{mv_{coll}}\frac{\nabla n}{n}$$

Diffusion in weakly ionized plasma

Our first transport coefficients ...

→ In the presence of collisions with *neutrals*, our plasma fluid moves according to the *density gradient* and *electric field*:

$$\Gamma_j = n \boldsymbol{v}_j = \pm \mu_j n \boldsymbol{E} - D_j \nabla n$$

where

$$\mu_j \equiv \frac{q_j}{m_j \nu_{coll}}$$
 is called the *mobility* of the plasma

$$D_j \equiv \frac{T_j}{m_i \nu_{coll}}$$
 is the diffusion coefficient

Important observations:

1. The flux is thus driven by *gradients*, as initially assumed:

$$\boldsymbol{\Gamma}_j = \mp \mu_j n \nabla \phi - D_j \nabla n$$

2. Collisions result into *diffusion* and diffusion in the presence of collisions means *transport*

Fick's law

For diffusion in regular gases the Fick's law applies

$$\Gamma = -D\nabla n$$

The physics of Fick's law:

Nature likes to flatten out gradients

or, to put it in another way,

Gradients drive fluxes.

A weakly ionized plasma thus obeys Fick's law (E = 0):

$$\Gamma_j = -D_j \nabla n$$

What is the time scale of flattening?

Fluids obey continuity equation:

$$\frac{\partial n_j}{\partial t} + \nabla \cdot \boldsymbol{\Gamma}_{j} = 0$$

Quasineutrality $\rightarrow n_i \approx n_e \approx n \rightarrow \nabla \cdot \Gamma_e \approx \nabla \cdot \Gamma_i$

How about the individual fluxes?

Assume $\Gamma_e \neq \Gamma_i$

- → charge imbalance
- \rightarrow electric field sufficient to retard electrons & accelerate ions to make $\Gamma_e = \Gamma_i$.

Ambipolar stuff ...

Find the magnitude of this ambipolar electric field:

$$\boldsymbol{\Gamma}_e = \boldsymbol{\Gamma}_i \rightarrow \mu_i n \boldsymbol{E} - D_i \nabla n = -\mu_e n \boldsymbol{E} - D_e \nabla n$$

→ The flux of the *plasma* is given by

$$\Gamma = \Gamma_i = \mu_i \frac{D_i - D_e}{\mu_i + \mu_e} \nabla n - D_i \nabla n = -\frac{\mu_e D_i + \mu_i D_e}{\mu_i + \mu_e} \nabla n$$
 ; Fick's law again!

We have ambipolar fluxes driven by ambipolar diffusion coefficient

$$D_{a} \equiv \frac{\mu_{e}D_{i} - \mu_{i}D_{e}}{\mu_{i} + \mu_{e}} \approx D_{i} + \frac{\mu_{i}}{\mu_{e}} D_{e} \approx D_{i} + \frac{T_{e}}{T_{i}} D_{i} = D_{i} (1 + \frac{T_{e}}{T_{i}})$$

Decay time of weakly ionized plasma

Now we have continuity equation for *the plasma*:

$$\frac{\partial n}{\partial t} + \nabla \cdot \mathbf{\Gamma} = \frac{\partial n}{\partial t} - D_a \nabla^2 n = 0$$

Recall Schrödinger eqn \rightarrow separation of variables: $n(\mathbf{r},t) = X(\mathbf{r})T(t)$

Let's try to solve this in two simple geometries:

- 1. 1D case, i.e., slab geometry
- 2. 2D case, i.e., cylindrical geometry

Plasma decay time in slab geometry

Substitute trial fct to 1D continuity equation: $X(x) \frac{dT}{dt} - D_a T \frac{d^2 X}{dx^2} = 0$

$$\rightarrow T(t) = n_0 e^{-t/\tau}$$

Plasma is bounded. Let boundaries be at $x = \pm L \rightarrow k = l\pi/2L$

$$\rightarrow n(x,t) = n_0 e^{-t/\tau} \cos \frac{\pi x}{2L}$$
, why only $l = 1???$

 \rightarrow the decay time is given by the diffusion coefficient: $\tau = \left(\frac{2L}{\pi}\right)^2 \frac{1}{D_a}$

Sanity checks ...

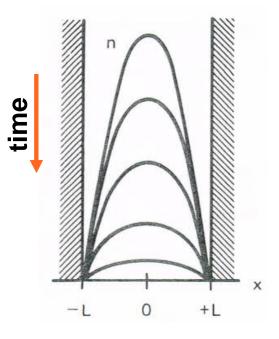
Observations on τ :

- τ increases with the box size L
- τ decreases with increasing diffusion

Makes sense. ©

Also the shape of the solution, the *lowest diffusion* mode, looks reasonable, peaking at the center.

Weakly ionized plasma decays exponentially at rate determined by its size and the diffusion coefficient



The decay process

Start with an abitrary initial shape

FT
$$\rightarrow n(x,0) = n_0 \left[a_0 + \sum a_l \cos \frac{\left(l + \frac{1}{2}\right)\pi x}{L} + \sum b_m \sin \frac{m\pi x}{L} \right]$$

→ Trial solution:

al solution:
$$n(x,t) = n_0 \left[a_0 e^{-t/\tau_0} + \sum a_l \cos \frac{\left(l + \frac{1}{2}\right)\pi x}{L} e^{-t/\tau_l} + \sum b_m \sin \frac{m\pi x}{L} e^{-t/\tau_m} \right]$$

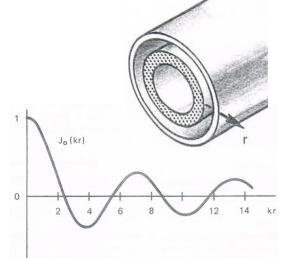
Substitute to the diffusion equation $\rightarrow 1/\tau_l = D_a \left[\left(l + \frac{1}{2} \right) \pi / L \right]^2$

$$\rightarrow \tau_l = \left[(l + \frac{1}{2})\pi/L \right]^{-2} 1/D_a$$
 \rightarrow finest structures decay fastest!

Getting more realistic: Decay of a cylindrical plasma

Assume cylindrical symmetry $\rightarrow \nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r}$

Separate variables
$$\Rightarrow \frac{d^2X}{dr^2} + \frac{1}{r}\frac{dX}{dr} + \frac{1}{D\tau}X = 0$$



In cylindrical geometry, the volume increase in r make's density drop faster \rightarrow could expect something like decaying cosine Indeed, solutions are *Bessel functions!* Here, $J_0(r)$!

B.C's at
$$r = 0$$
, $r = a \Rightarrow \frac{a}{\sqrt{D_a \tau}} = 2.4$ (first zero of J_0) $\Rightarrow \tau = \left(\frac{a}{2.4}\right)^2 \frac{1}{D_a}$

How to get steady-state plasma...

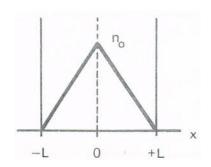
... if plasma unavoidably decays due to inter-particle interactions?

Need a particle source, $S_+(r)$!!

Ways to 'feed' a plasma:

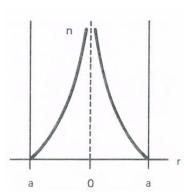
- Injection of particles
- Puffing of particles
- (recycling of particles more about this later)

Simple steady-state cases: 1. local sources



1-D case: a plane source at x = 0: $S_+(x) = S_+\delta(0)$

$$\rightarrow \text{For } x \neq 0: \frac{\partial^2 n}{\partial x^2} = 0 \rightarrow n(x) = n_0 (1 - \frac{|x|}{L})$$



2-D case: cylindrical plasma, line source at r = 0.

• (e.g., beam of energetic electrons causing ionization along the axis)

For
$$r \neq 0$$
: $\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial n}{\partial r} = 0 \rightarrow n(r) = n_0 \log \frac{a}{r}$, where $n(a) = 0$ was used

Simple steady-state cases: 2. ionization source

Plasma can be fuelled also by a *heat* source (in cold plasmas): electrons in the hot Maxwellian tail keep ionizing the gas neutrals a 'continuous' source (around heat source): $S_+ \propto n$.

Let's write then $S_{+}(\mathbf{r}) = Zn(\mathbf{r})$, where $Z \neq Z(\mathbf{r})$ is the *ionization* fct

But this is formally the same as the eqn for $X(r) \rightarrow n(r) = J_0(r)$

How about sinks?

We just had *ionization* as a source.

The reverse process, *recombination*, is a sink, S_{-} .

Recombination requires both electrons and ions $\Rightarrow S_- \propto n_i n_e$.

Study the effect of recombination alone = neglect diffusion

 $\Rightarrow \frac{\partial n}{\partial t} = -\alpha n^2$, where α is the recombination coefficient, $\alpha \neq \alpha(n)$

Non-linear equation! → separation of variables not possible

$$\rightarrow$$
 solution by 'eye-balling': $\frac{1}{n(r,t)} = \frac{1}{n_0(r)} + \alpha t$ (HW: just show)

New processes can change the character of the solutions

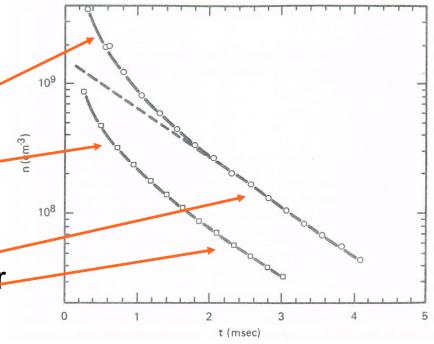
At high density, recombination ($\propto n^2$) typically dominates

$$\rightarrow n(r,t) \propto \frac{1}{\alpha t}$$

and the density falls *reciprocally* in time, *not* exponentially!

As the density drops, diffusion takes over

→ exponential decay



Until now, we have been studying 'freely floating' plasmas

But mostly we are interested in magnetized plasmas!

How does the plasma decay when it is imbedded in a confining magnetic field?

Like fusion or atmospheric or solar plasmas...

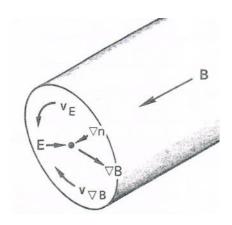
What does the magnetic field do in weakly ionized plasmas?

In direction parallel to \boldsymbol{B} , magnetic field has no say

→ same physics as before

What is interesting is the transport *perpendicular* to *B*. These particles are glued to the fieldlines.

... But we can have cross-field drifts! *ExB & Co*! Luckily drifts can be aligned so that they are parallel to walls (laboratory plasmas)



Analyze fluid equations $\perp \mathbf{B} = B_0 \hat{\mathbf{z}}$

Same simplifying assumptions as before ->

Motion
$$\perp \mathbf{B} : mn \frac{dv_{\perp}}{dt} \approx 0 \approx nq(\mathbf{E} + \mathbf{v} \times \mathbf{B}) - T\nabla n - mnv_{coll}\mathbf{v}_{\perp}$$

$$v_{x} = \pm \mu E_{x} - \frac{D}{n} \frac{\partial n}{\partial x} \pm \frac{\Omega}{v_{coll}} v_{y}$$

$$v_{y} = \mp \mu E_{y} - \frac{D}{n} \frac{\partial n}{\partial y} \mp \frac{\Omega}{v_{coll}} v_{x}$$

$$ightharpoonup$$
 HW: $v_{\perp} = \pm \mu_{\perp} E - D_{\perp} \frac{\overline{v_{\perp}} n}{n} + \frac{v_{E \times B} + v_{\text{dia}}}{1 + v_{coll}^2 / \Omega^2}$,

where $\mu_{\perp} \equiv \mu/(1 + \Omega^2 \tau_{coll}^2)$ and $D_{\perp} \equiv D/(1 + \Omega^2 \tau_{coll}^2)$

Physics of v_{\perp}

- 1. Familiar magnetic drifts perpendicular to their respective gradients ($v_{E\times B} \propto \nabla \phi$, $v_{dia} \propto \nabla n$), but slowed down by collisions with neutrals by the *drag factor* 1 + v_{coll}^2/Ω^2 .
 - Increase magnetic field and/or reduce neutral density → good old drifts!
- 2. Mobility drift parallel to E and diffusion drift parallel to ∇n , obtained in the absence of B are now slowed down by the factor

$$1 + \Omega^2 \tau_{coll}^2$$

 This is not the same as the drag factor but works the opposite way (as it should): increase magnetic field and/or reduce neutral density → mobility and diffusion drifts vanish

More on physics of v_{\perp} -- random walk ...

 $\Omega \tau_{coll} \ll 1$ B-field has little effect on diffusion

 $\Omega \tau_{coll} \gg 1$ B-field reduces diffusion across **B**

The physics of 'magnetic' slowing down of diffusion:

In the presence of strong B the diffusion coefficient becomes

$$D_{\perp} \to \frac{T}{m \nu_{coll}} \frac{1}{\Omega^2 \tau_{coll}^2} = \frac{T}{m \Omega^2} \nu_{coll}$$

We then realize: $\frac{T}{m\Omega^2} \sim \frac{v_{th}^2}{\Omega^2} = r_L^2 \rightarrow D_\perp \sim r_L^2 \ v_{coll} \sim stepsize^2/colltime$

 \rightarrow the effect of B is to reduce the step size from mean-free-path to Larmor radius!

Differences to 'free-floating' plasma

No **B**-field (or parallel to it): collisions *retard* the motion

$$\rightarrow$$
 $D \propto 1/v_{coll}$

Across the **B**-field; collisions are *needed* for particles to jump from one Larmor orbit to another

$$\rightarrow$$
 $D \propto v_{coll}$

Also the role of particle mass is reversed:

- No **B** (or $\parallel \mathbf{B}$): $D \propto 1/\sqrt{m}$; light electrons move faster along **B**
- $\perp B$: $D \propto \sqrt{m}$; ions have larger Larmor radius = step size