
Fisher’s Exact Test
Kaie Kubjas, 28.10.2020



Agenda
• Last time: Maximum likelihood estimation


• This time: Hypothesis testing


• Does the unknown distribution, for which we have i.i.d. data, belong to a 
given model?


• Discrete exponential families


• Diaconis and Sturmfels (1998): “Algebraic algorithms for sampling from 
conditional distributions” - the beginning of algebraic statistics



Murder accusations in Florida
The following contingency table presents a classification of 326 murder accusations in Florida in the 
1970s:


We would like to know whether the charge of death penalty was independent of the race. [Poll]


NB! We switch between contingency tables and vectors of counts as convenient.

race\death 
penalty yes no total

white 19 141 160

black 17 149 166

total 36 290 326



Murder accusations in Florida
• Two discrete random variables: 


•  for defendant's race


•  for death penalty 


• They both have two possible outcomes:


• {white, black}


• {yes,no}

X

Y



Discrete exponential families
Fix  and .


Def: The discrete exponential family  consists of distributions


 where .


The monomials  correspond to columns of the matrix .


Example: Let  and . Then 


 where .
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Murder accusations in Florida
Poll: What is the matrix  and the vector  for the independence model of two binary 
random variables?


• Recall that a the parametrization of the independence model is given by 


,


where  and  are independent parameters.


Answer:  and 

A h

pij = αiβj

i ∈ [2], j ∈ [2] αi, βj

A =

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

h =

1
1
1
1



Hypothesis testing

• A discrete exponential family 


• I.i.d. data  from a distribution 


• We would like to test the hypothesis


 

ℳA,h ⊆ Δr−1

X(1), …, X(n) ∈ [r] p ∈ int(Δr−1)

H0 : p ∈ ℳA,h versus H1 : p ∉ ℳA,h



Hypothesis testing
• We would like to test the hypothesis


 


• Hypothesis tests often use -values


• -value is the probability of obtaining a dataset that is at least as extreme 
as the observed dataset assuming that the null hypothesis  is correct


• If -value is small (e.g. less than 0.05), then the null hypothesis is rejected

H0 : p ∈ ℳA,h versus H1 : p ∉ ℳA,h

p

p
H0

p



Pearson’s  statisticX2

Def: Let  be a random vector taking values in a set . A statistic is a 
function from  to  for some .


• Let  be a statistic which is zero if and only if  and 
increases away from 


• -value:  where .

X 𝒳
𝒳 ℝk k ∈ ℕ

T : ℕr → ℝ u/n ∈ ℳA,h
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Pearson’s  statisticχ2

• Pearson’s  statistic: , where  is the MLE 

of counts


• Pearson’s  statistic converges to chi-square distribution with 
 degrees of freedom


• If the sample size is small, it is not reasonable to consider sample size 
tending to infinity

χ2 X2
n(u) =

r

∑
j=1

(uj − ̂uj)2

̂uj
̂u = n ̂p

χ2

df = r − 1 − dim ℳA,h



Question 1

• Question 1: For which datasets are results of this paper useful?


• Answer:


• I.i.d. samples from a discrete distribution


• Small sample sizes: some of the entries of the contingency table are 
smaller than 5



Main idea

•
 and 


• We consider all  such that 


• Likelihood functions give a distribution on all such v


• What is the probability of observing a dataset as extreme as ?

A =

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

u =

19
141
17

290

v ∈ ℕ4 Av = Au

u



Fibers
Def: Let  and let . The set of tables


 


is called the fiber of a contingency table  with respect to .


Poll: Let  and . Which of the following vectors 

belong to the fiber ?

A ∈ ℤk×r u ∈ ℕr

ℱ(u) = {v ∈ ℕr : Av = Au}

u A

A =

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

u =

1
1
1
1

ℱ(u)



Question 2

• Question 2: What is the set  in the case of the independence model?


• Answer: It consists of all the contingency tables that have the same row 
and column sums as .

ℱ(u)

u



Likelihood function

• The likelihood function: ,


where  is the multinomial coefficient.


•
The likelihood function: 

L(v |θ) = (n
v) hvθAvZ(θ)−n

(n
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Statistic
Def: For a parametric statistical model , a statistic  is sufficient if the 
probability density function or probability mass function factorizes as 

.


Equivalently, a statistic  is sufficient if


.


A statistic  is minimal sufficient if every other sufficient statistics is a 
function of .
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T
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Maximum likelihood

 


The vector  is the minimal sufficient statistic for the model .


All the terms involving  cancel out, because  for all :
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Distribution on the fiber

• The resulting distribution on the fiber  where  is 

called the generalized hypergeometric distribution


• To compute the -value, we have to compute or approximate the sum


 

ℱ(u) P(v) ∝ (n
v) hv

p
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Murder accusations in Florida
• The fiber of the death penalty versus race table consists of 37 contingency tables


.


• The distribution on the fibers:  


• Since , then 


•

( 0 160
36 130), …, (18 142

18 148), (19 141
17 149), (20 140

16 150), …, (36 124
0 166)

P(v) ∝ (n
v) hv

h = 1 P(v) ∝ (n
v)



Markov bases



Markov bases

• In general, even enumerating the fiber is too difficult


• Alternative: Generate random samples from the fiber  to get an 
estimate of the -value

ℱ(u)
p



Markov basis

Def: Let . Let  be the integer kernel 
of . A finite subset  is a Markov basis for  if for all  
and all  there exists a sequence  such that


 


The elements of the Markov basis are called moves.

A ∈ ℤk×r kerℤ(A) = {v ∈ ℤr : Av = 0}
A ℬ ⊂ kerℤ(A) A u ∈ ℕn

u′ ∈ ℱ(u) v1, …, vL ∈ ℬ

u′ = u +
L

∑
k=1

vk and u +
L

∑
k=1

vk ≥ 0 for all l = 1,…, L .



Graph interpretation



Markov basis example

Poll: What is a Markov basis for ?A =

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1



Metropolis-Hastings
• Input: A contingency table  and a Markov basis  for .


• Output: A sequence of tables .


• Step 1: Initialize .


• Step 2: For  repeat the following steps:


• Select uniformly at random a move .


• If , then set , else set 


 


where .


• Output the sequence .

u ∈ ℕr ℬ A

u1, u2, … ∈ ℱ(u)

u1 = u

t = 1,2,…

vt ∈ ± ℬ

min(ut + vt) < 0 ut+1 = ut

ut+1 = {ut + vt
ut

 with probability  {q
1 − q

q = min {1,
p(ut + vt)

p(ut) }
u1, u2, …



Metropolis-Hastings

• The sequence of tables produced by Metropolis-Hastings eventually 
converges to a random sample from the desired distribution .


• These samples can be used to compute the -value.


• A major unsolved research problem: When is a sample closed to the 
desired distribution?


• algstat package in R

p

p



How to find a Markov basis?



Monomial parametrization map
Def: Let  and . The monomial map associated to this data is the 
rational map


, where .


NB! The normalizing constant  is removed.


Example: Let . The monomial map is  is given by


.
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Toric ideal

Def: Let  and . The ideal


 


is called the toric ideal associated to the pair  and .


• If , then we denote .


• Generators for the ideal  are obtained from generators of the ideal .

A ∈ ℤk×r h ∈ ℝr
>0

IA,h := I(ϕA,h(ℝk)) ⊆ ℝ[p]

A h

h = 1 IA := IA,1

IA,h IA



Toric ideal
Prop: Let  and . Then


.


Example: Let . The monomial map is  is given by


.


The toric ideal is


.

A ∈ ℤk×r h ∈ ℝr
>0

IA = ⟨pu − pu′ : u, v ∈ ℕr and Au = Au′ ⟩

A = (0 1 2 3
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Toric ideal
• Toric ideal is related to 


•  can be written as 


• 


• 


• To  associate 


• Conversely, if , then .

kerℤ(A) = {v ∈ ℤr : Av = 0}

v ∈ kerℤ(A) v = v+ − v−

v+
j = max(vj,0)

v−
j = − max(−vj,0)

v ∈ kerℤ(A) pv+ − pv− ∈ IA

pu − pu′ ∈ IA u − u′ ∈ kerℤ(A)



Fundamental theorem of Markov bases

Theorem: A subset  of  is a Markov basis if and only if the 
corresponding set of binomials  generates the toric 
ideal .


• Markov bases exist.


• An algebraic method for computing Markov bases.

ℬ kerℤ(A)
{pb+ − pb− : b ∈ ℬ}

IA





Question 3

• Question 3: Do you recognize the ideal in Theorem 3.1 from lectures?


• Answer: It is the toric ideal .IA,h := I(ϕA,h(ℝk)) ⊆ ℝ[p]



Conclusion
• Hypothesis testing for discrete exponential families


• We want to compute the p-value


• Focus on small sample size


• We can compute the p-value on the fiber


• Markov bases together with Metropolis-Hastings allow to sample from a 
fiber


• Algebraic geometry is used for computing Markov bases



Group work

• No lectures during the next three weeks


• First two weeks: Make a presentation with the first group


• Third week: Present in a new group


• Exercise sessions / office hours take place as usual


• The last two lectures will be on graphical models


