#### **Fisher's Exact Test** Kaie Kubjas, 28.10.2020

#### Agenda

- Last time: Maximum likelihood estimation
- This time: Hypothesis testing
- given model?
- Discrete exponential families
- conditional distributions" - the beginning of algebraic statistics

#### Does the unknown distribution, for which we have i.i.d. data, belong to a

#### Diaconis and Sturmfels (1998): "Algebraic algorithms for sampling from

## Murder accusations in Florida

The following contingency table presents a classification of 326 murder accusations in Florida in the 1970s:

| race\death<br>penalty | yes | no  | total |
|-----------------------|-----|-----|-------|
| white                 | 19  | 141 | 160   |
| black                 | 17  | 149 | 166   |
| total                 | 36  | 290 | 326   |

We would like to know whether the charge of death penalty was independent of the race. [Poll]

NB! We switch between contingency tables and vectors of counts as convenient.

## Murder accusations in Florida

- Two discrete random variables:
  - X for defendant's race
  - Y for death penalty
- They both have two possible outcomes:
  - {white, black}
  - {yes,no}

#### **Discrete exponential families**

Fix 
$$A = (a_{jx})_{j \in [k], x \in [r]} \in \mathbb{Z}^{k \times r}$$
 and  $h \in \mathbb{R}^{r}_{>0}$ .

<u>Def:</u> The discrete exponential family  $\mathcal{M}_{A,h}$  consists of distributions

$$p_{\theta}(x) = \frac{1}{Z(\theta)} h_x \prod_j \theta_j^{a_{jx}} \text{ where } Z(\theta) = \sum_{x \in \mathcal{X}} h_x \prod_j \theta_j^{a_{jx}}.$$

The monomials  $\prod_{j} \theta_{j}^{a_{jx}}$  correspond to columns of the matrix A.

Example: Let 
$$A = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{pmatrix}$$
 and  $h = 1$ . Then  

$$p_{\theta} = \frac{1}{Z(\theta)} \left(\theta_2^3, \theta_1 \theta_2^2, \theta_1^2 \theta_2, \theta_1^3\right) \text{ where } Z(\theta) = \theta_2^3 + \theta_1 \theta_2^2 + \theta_1^2 \theta_2 + \theta_1^3.$$

## Murder accusations in Florida

<u>Poll</u>: What is the matrix A and the vector h for the independence model of two binary random variables?

• Recall that a the parametrization of the independence model is given by

where  $i \in [2], j \in [2]$  and  $\alpha_i, \beta_j$  are independent parameters. Answer:  $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$  and  $h = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ 

- $p_{ii} = \alpha_i \beta_i,$

# Hypothesis testing

- A discrete exponential family  $\mathcal{M}_A$
- I.i.d. data  $X^{(1)}, \dots, X^{(n)} \in [r]$  from a distribution  $p \in int(\Delta_{r-1})$
- We would like to test the hypothesis

$$H_0: p \in \mathcal{M}_{A,h}$$

$$_{,h} \subseteq \Delta_{r-1}$$

versus  $H_1: p \notin \mathcal{M}_{A,h}$ 

# Hypothesis testing

• We would like to test the hypothesis

$$H_0: p \in \mathcal{M}_{A,h}$$

- Hypothesis tests often use *p*-values

#### versus $H_1: p \notin \mathcal{M}_{A,h}$

• p-value is the probability of obtaining a dataset that is at least as extreme as the observed dataset assuming that the null hypothesis  $H_0$  is correct

• If <u>p-value is small</u> (e.g. less than 0.05), then the <u>null hypothesis is rejected</u>

# Pearson's $X^2$ statistic

<u>Def:</u> Let X be a random vector taking values in a set  $\mathcal{X}$ . A statistic is a function from  $\mathscr{X}$  to  $\mathbb{R}^k$  for some  $k \in \mathbb{N}$ .

- Let  $T: \mathbb{N}^r \to \mathbb{R}$  be a statistic which is zero if and only if  $u/n \in \mathcal{M}_{A,h}$  and increases away from  $\mathcal{M}_{A,h}$
- *p*-value:  $Pr[T(v) > T(u) | H_0]$  where  $v \in \mathbb{N}^r, ||v|| = n$ .

#### Pearson's

- Pearson's  $\chi^2$  statistic:  $X_n^2(u) = \sum_{j=1}^{n} \sum_$
- Pearson's  $\chi^2$  statistic converges to chi-square distribution with  $df = r 1 \dim \mathcal{M}_{A,h}$  degrees of freedom
- If the sample size is small, it is not reasonable to consider sample size tending to infinity

$$\sum_{j=1}^{r} \frac{(u_j - \hat{u}_j)^2}{\hat{u}_j}, \text{ where } \hat{u} = n\hat{p} \text{ is the MLE}$$

#### Question 1

- Question 1: For which datasets are results of this paper useful?
- Answer:
  - I.i.d. samples from a discrete distribution
  - smaller than 5

Small sample sizes: some of the entries of the contingency table are

# Main idea

# $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} \text{ and } u = \begin{pmatrix} 19 \\ 141 \\ 17 \\ 290 \end{pmatrix}$

- We consider all  $v \in \mathbb{N}^4$  such that Av = Au
- Likelihood functions give a distribution on all such v
- What is the probability of observing a dataset as extreme as u?

#### <u>Def:</u> Let $A \in \mathbb{Z}^{k \times r}$ and let $u \in \mathbb{N}^r$ . The set of tables $\mathcal{F}(u) = \{v\}$

is called the fiber of a contingency table u with respect to A.

Poll: Let 
$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$
 and  $u$  belong to the fiber  $\mathcal{F}(u)$ ?

#### Fibers

$$\in \mathbb{N}^r : Av = Au$$



#### Question 2

- Question 2: What is the set  $\mathcal{F}(u)$  in the case of the independence model? Answer: It consists of all the contingency tables that have the same row and column sums as u.

#### Likelihood function

where 
$$\binom{n}{u} = \frac{n!}{u_1! \cdots u_r!}$$
 is the m

The likelihood function:  $L(v | v \in$ 

• The likelihood function:  $L(v | \theta) = \binom{n}{v} h^v \theta^{Av} Z(\theta)^{-n}$ ,

#### ultinomial coefficient.

$$\mathcal{F}(u),\theta) = \frac{\binom{n}{v}h^{v}\theta^{Av}Z(\theta)^{-n}}{\sum_{v\in\mathcal{F}(u)}\binom{n}{v}h^{v}\theta^{Av}Z(\theta)^{-n}}$$

#### Statistic

<u>Def</u>: For a parametric statistical model  $\mathcal{M}_{\Theta}$ , a statistic T is sufficient if the probability density function or probability mass function factorizes as  $f_{\theta}(x) = h(x)g(T(x), \theta).$ 

Equivalently, a statistic T is sufficient if

 $P(X = x | T(X) = t, \theta) = P(X = x | T(X) = t).$ 

A statistic T is minimal sufficient if every other sufficient statistics is a function of T.

#### Maximum likelihood

#### $L(v \mid v \in \mathcal{F}(u), \theta) = ----$

#### The vector Au is the minimal sufficient statistic for the model $\mathcal{M}_{A,h}$ .

All the terms involving  $\theta$  cancel out, because Av = Au for all  $v \in \mathcal{F}(u)$ :

#### $L(v | v \in \mathcal{F}(u), \theta) = L(v)$

$$\binom{n}{v}h^{v}\theta^{Av}Z(\theta)^{-n}$$

$$\sum_{v \in \mathcal{F}(u)} \binom{n}{v} h^{v} \theta^{Av} Z(\theta)^{-n}$$

$$v \mid v \in \mathscr{F}(u)) = \frac{\binom{n}{v} h^{v}}{\sum_{v \in \mathscr{F}(u)} \binom{n}{v} h^{v}}$$

#### Distribution on the fiber

- called the generalized hypergeometric distribution

$$\frac{1}{\#\mathscr{F}(u)} \sum_{v \in \mathscr{F}(u)} 1$$

# • The resulting distribution on the fiber $\mathcal{F}(u)$ where $P(v) \propto \binom{n}{v} h^{v}$ is

To compute the p-value, we have to compute or approximate the sum

 $T(v) \ge T(u) L(v \mid v \in \mathcal{F}(u))$ 

### Murder accusations in Florida

$$\begin{pmatrix} 0 & 160 \\ 36 & 130 \end{pmatrix}, \dots, \begin{pmatrix} 18 & 142 \\ 18 & 148 \end{pmatrix}, \begin{pmatrix} 19 & 141 \\ 17 & 149 \end{pmatrix}, \begin{pmatrix} 20 & 140 \\ 16 & 150 \end{pmatrix}, \dots, \begin{pmatrix} 36 & 124 \\ 0 & 166 \end{pmatrix}.$$

The distribution on the fibers:  $P(v) \propto$ 

• Since 
$$h = 1$$
, then  $P(v) \propto \binom{n}{v}$ 

In[1]= Factorial[326] / (Factorial[19] \* Factorial[141] \* Factorial[17] \* Factorial[149]) Out[1]= 775 268 042 602 097 147 736 537 522 819 203 932 553 604 398 847 142 652 948 456 333 859 390 634 184 127 1 834 390 848 468 427 314 216 890 667 073 886 390 493 353 978 384 896 165 621 076 800 000

• The fiber of the death penalty versus race table consists of 37 contingency tables

$$\binom{n}{v}h^{v}$$

#### Markov bases

#### Markov bases

- In general, even enumerating the fiber is too difficult
- estimate of the *p*-value

• Alternative: Generate random samples from the fiber  $\mathcal{F}(u)$  to get an

#### Markov basis

<u>Def:</u> Let  $A \in \mathbb{Z}^{k \times r}$ . Let  $\ker_{\mathbb{Z}}(A) = \{v \in \mathbb{Z}^r : Av = 0\}$  be the integer kernel of A. A finite subset  $\mathscr{B} \subset \ker_{\mathbb{Z}}(A)$  is a Markov basis for A if for all  $u \in \mathbb{N}^n$ and all  $u' \in \mathscr{F}(u)$  there exists a sequence  $v_1, \dots, v_L \in \mathscr{B}$  such that

$$u' = u + \sum_{k=1}^{L} v_k$$
 and  $u + \sum_{k=1}^{L} v_k \ge 0$  for all  $l = 1, \dots, L$ .

The elements of the Markov basis are called moves.

#### Graph interpretation

#### Markov basis example

# Poll: What is a Markov basis for $A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$ ?

### Metropolis-Hastings

- Input: A contingency table  $u \in \mathbb{N}^r$  and a Markov basis  $\mathscr{B}$  for A.
- Output: A sequence of tables  $u_1, u_2, \ldots \in \mathcal{F}(u)$ .
- Step 1: Initialize  $u_1 = u$ .
- Step 2: For t = 1, 2, ... repeat the following steps:
  - Select uniformly at random a move  $v_t \in \pm \mathscr{B}$ .
  - If  $\min(u_t + v_t) < 0$ , then set  $u_{t+1} = u_t$ , else set

$$u_{t+1} = \begin{cases} u_t + v_t \\ u_t \end{cases} \text{ with probability } \begin{cases} q \\ 1 - q \end{cases}$$
  
where  $q = \min\left\{1, \frac{p(u_t + v_t)}{p(u_t)}\right\}.$ 

• Output the sequence  $u_1, u_2, \ldots$ 

# Metropolis-Hastings

- The sequence of tables produced by Metropolis-Hastings eventually converges to a random sample from the desired distribution *p*.
- These samples can be used to compute the *p*-value.
- A major unsolved research problem: When is a sample closed to the desired distribution?
- algstat package in R

### How to find a Markov basis?

### Monomial parametrization map

<u>Def</u>: Let  $A \in \mathbb{Z}^{k \times r}$  and  $h \in \mathbb{R}^{r}_{>0}$ . The monomial map associated to this data is the rational map

 $\phi^{A,h}: \mathbb{R}^k \to \mathbb{R}^r,$ 

NB! The normalizing constant  $Z(\theta)$  is removed.

Example: Let 
$$A = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{pmatrix}$$
. The r

where 
$$\phi_{j}^{A,h} = h_{j} \prod_{i=1}^{k} \theta_{i}^{a_{ij}}$$
.

monomial map is  $\phi^A : \mathbb{R}^2 \to \mathbb{R}^4$  is given by

 $(\theta_1, \theta_2) \mapsto (\theta_2^3, \theta_1 \theta_2^2, \theta_1^2 \theta_2, \theta_1^3).$ 

#### **Toric ideal**

# <u>Def:</u> Let $A \in \mathbb{Z}^{k \times r}$ and $h \in \mathbb{R}^{r}_{>0}$ . The ideal

is called the toric ideal associated to the pair A and h.

- If h = 1, then we denote  $I_A := I_{A,1}$ .

- $I_{A,h} := I(\phi^{A,h}(\mathbb{R}^k)) \subseteq \mathbb{R}[p]$

• Generators for the ideal  $I_{A,h}$  are obtained from generators of the ideal  $I_A$ .

#### **Toric ideal**

<u>Prop:</u> Let  $A \in \mathbb{Z}^{k \times r}$  and  $h \in \mathbb{R}^{r}_{>0}$ . Then  $I_A = \langle p^u - p^{u'} : u, v \in \mathbb{N}^r \text{ and } Au = Au' \rangle.$ Example: Let  $A = \begin{pmatrix} 0 & 1 & 2 & 3 \\ 3 & 2 & 1 & 0 \end{pmatrix}$ . The monomial map is  $\phi^A : \mathbb{R}^2 \to \mathbb{R}^4$  is given by  $(\theta_1, \theta_2) \mapsto (\theta_2^3, \theta_1 \theta_2^2, \theta_1^2, \theta_2, \theta_1^3).$ 

#### The toric ideal is

 $I_A = \langle p_1 p_3 - p_2^2, p_1 p_4 - p_2 p_3, p_2 p_4 - p_3^2 \rangle.$ 

#### Toric ideal

- Toric ideal is related to  $\ker_{\mathbb{Z}}(A) = \{v \in \mathbb{Z}^r : Av = 0\}$
- $v \in \ker_{\mathbb{Z}}(A)$  can be written as  $v = v^+ v^-$

• 
$$v_j^+ = \max(v_j, 0)$$

• 
$$v_j^- = -\max(-v_j, 0)$$

- To  $v \in \ker_{\mathbb{Z}}(A)$  associate  $p^{v^+} p^{v^-} \in I_A$
- Conversely, if  $p^{u} p^{u'} \in I_A$ , then  $u u' \in \ker_{\mathbb{Z}}(A)$ .

#### Fundamental theorem of Markov bases

- <u>Theorem</u>: A subset  $\mathscr{B}$  of  $\ker_{\mathbb{Z}}(A)$  is a Markov basis if and only if the ideal  $I_A$ .
- Markov bases exist.
- An algebraic method for computing Markov bases.

### corresponding set of binomials $\{p^{b^+} - p^{b^-} : b \in \mathscr{B}\}$ generates the toric

Macaulay2, version 1.16.0.2 -- storing configuration for package FourTiTwo in /home/m2user/.Macaulay2/init-FourTiTwo.m2 -- storing configuration for package Topcom in /home/m2user/.Macaulay2/init-Topcom with packages: ConwayPolynomials, Elimination, IntegralClosure, InverseSystems, LLLBases, MinimalPrir i1 : needsPackage "FourTiTwo" o1 = FourTiTwo o1 : Package i2 : A = matrix{{1,1,0,0}, {0,0,1,1}, {1,0,1,0}, {0,1,0,1}}  $o2 = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$ o2 : Matrix  $\mathbb{Z}^4 \leftarrow \mathbb{Z}^4$ i3 : B=toricMarkov A o3 = (1 -1 -1 1)o3 : Matrix  $\mathbb{Z}^1 \leftarrow \mathbb{Z}^4$ i4 : R=QQ[p1,p2,p3,p4] o4 = Ro4 : PolynomialRing i5 : I=toBinomial(B,R) o5 = ideal(-p2p3 + p1p4)o5 : Ideal of R

#### @ # @ ∎ !! copy to editor

#### Question 3

- Question 3: Do you recognize the ideal in Theorem 3.1 from lectures?
- Answer: It is the toric ideal  $I_{A,h} := I(\phi^{A,h}(\mathbb{R}^k)) \subseteq \mathbb{R}[p].$

#### Conclusion

- Hypothesis testing for discrete exponential families
- We want to compute the p-value
- Focus on small sample size
- We can compute the p-value on the fiber
- Markov bases together with Metropolis-Hastings allow to sample from a fiber
- Algebraic geometry is used for computing Markov bases

#### Group work

- No lectures during the next three weeks
- First two weeks: Make a presentation with the first group
- Third week: Present in a new group
- Exercise sessions / office hours take place as usual
- The last two lectures will be on graphical models