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Ensemble learning

• Ensemble learning encompasses a wide range of machine learning

frameworks which aim to construct high-performance predictive

models by combining simpler base models

• Ensemble model generally predicts by computing an average or a

majority vote over the base models, possibly weighted in some way

• Many approaches:

• Boosting (classification task): incrementally add base models which

focus on the mistakes made on the previous models by reweighing

training examples

• Bootstrap aggregation aka Bagging (classification or regression

tasks): draw random subsamples with replacement from the original

training data, train base classifer with each subsample, and combine

by voting or averaging.

• Gradient boosting (regression task): incrementally add base models

that focus on the residuals of the prediction error

1



Why can model combination work? A thought experiment

Assume the following setup:

• A target concept C : X 7→ {+1,−1} to be learned

• To predict C , we have trained a collection of base hypotheses,

binary classifiers h1, h2, . . . , hL, hj : X 7→ {−1,+1}
• We use a majority vote of the hypotheses as the prediction of the

ensemble: fmaj(x) = argmaxy∈Y
∑L

j=1 1hj (x)=y , i.e. predict the label

that agrees with the majority of the base hypotheses

• When L is even, both classes may have same number of votes, in

that case tie breaking is needed, e.g. by predicting a random label

• This is a so called majority voting ensemble
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Why can model combination work? A thought experiment

• Assume further that the base hypotheses have the same true risk ε

but that the probabilities P(hj(x) 6= C (x)) are independent between

hypotheses for all hi , hj :

P({hi (x) 6= C (x)} AND {hj(x) 6= C (x)})
= P(hi (x) 6= C (x)) · P(hj(x) 6= C (x)) = ε2

• Not a practical assumption, used here for illustrating a phenomenon

• Now the probability of the majority vote h(x) to be incorrect, i.e.

the true risk R(h) equals the probability of k > L/2 base hypotheses

being incorrect, when L is odd (no tie-breaking needed)

• This probability is given by the tail of the cumulative binomial

probability distribution:

R(h) = P(h(x) 6= C (x)) =
L∑

k=dL/2e

(
L

k

)
εk(1− ε)L−k
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Why can model combination work? A thought experiment

Table shows the behaviour of the true risk of the ensemble with different

values of L and ε

R(h) = P(h(x) 6= C (x)) =
L∑

k=dL/2e

(
L

k

)
εk(1− ε)L−k

• With low values of ε the risk

goes down quickly to zero

• Even with ε = 0.45 the risk is

low with large enough L

• With ε = 0.5 (i.e. random

guessing) the risk remains at

0.5 independent of L

L ε =0.1 0.33 0.45 0.5

5 0.0086 0.2050 0.4069 0.5000

11 0.0003 0.1171 0.3669 0.5000

101 0.0000 0.0002 0.1562 0.5000

501 0.0000 0.0000 0.0124 0.5000

4



Why can model combination work? A thought experiment

• Even if the the base classifers are weak, the combined classifer can

be made accurate

• However, the assumption of independent errors is not a realistic one;

in practise different classifiers trained on the same or similar data,

tend to have correlated errors

• In practice, similar kind of

effect can be realized as long

as the errors of the classifiers

are not perfectly correlated

• A key question in ensemble

learning is how to obtain

diverse base classifiers, those

that have different error

patterns

L ε =0.1 0.33 0.45 0.5

5 0.0086 0.2050 0.4069 0.5000

11 0.0003 0.1171 0.3669 0.5000

101 0.0000 0.0002 0.1562 0.5000

501 0.0000 0.0000 0.0124 0.5000
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Why can an ensemble work in practice?

Statistical reason (Dietterich, 2000):

• Consider learning as an optimization

problem whose goal is to find the best

h ∈ H in space of hypotheses H.

• When the available data are not

sufficient to identify the proper

hypothesis, there might be several

hypotheses with comparable accuracy.

• Averaging over all these hypotheses

can limit the effect of selecting a

suboptimal hypothesis.

By combining models, we aim to ”average out” some of the errors, as in

our thought experiment
Dietterich, Thomas G. ”Ensemble methods in machine learning.” International workshop on multiple classifier systems. Springer, Berlin,

Heidelberg, 2000.
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Why can an ensemble work in practice?

Computational reason (Dietterich, 2000):

• The objective function might have

several local minima to which the

algorithm may converge for

computational reasons (e.g. different

starting point)

• The different locally optimal

hypothesis would often make errors on

different examples

• Combining the predictions of such

suboptimal learners, can be beneficial

to reduce the effect of getting stuck in

a single local minimum
Dietterich, Thomas G. ”Ensemble methods in machine learning.” International workshop on multiple classifier systems. Springer, Berlin,

Heidelberg, 2000.
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Why can an ensemble work in practice?

Representational reason (Diettrich, 2000):

• The representational capacity of a

hypothesis space can be extended

beyond the search space by averaging

over several hypotheses.

• For example: combination of

hyperplanes let us represent sets of

convex polygons, which is more

general than sets of half-spaces,

represented by single hyperplanes

• Thus an ensemble can learn patterns

outside the original hypothesis class

H.
Dietterich, Thomas G. ”Ensemble methods in machine learning.” International workshop on multiple classifier systems. Springer, Berlin,

Heidelberg, 2000.
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Diverse learners

• To have an effective ensemble, it should consist of base hypotheses

that are diverse in the sense that they make errors on different

training examples

• Diversity among the hypotehesis can arise from different sourcest:

• Algorithms: One can combine models of different types (e.g., neural

networks, SVM’s).
• Hyperparameters:

• different numbers of hidden units or layers in a multilayer perceptron

• different kernel or regularization parameters in support vector

machines

• Input Data:

• data fusion, where the data from different sources or measurement

techniques are integrated (e.g. integrating natural light, infrared and

X-ray images in astronomical data)

• subsampling training data, by choosing random subsets from the

examples, or using different input features
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Diversity and model averaging

• Examine and ensemble for a regression task, generated by averaging

the predictions of the base models

favg (x) =
1

T

T∑
t=1

ht(x), ht(x) ∈ R, t = 1, . . . ,T

• We focus on its squared loss on a single example x that has true

label y ∈ R: Lsq(favg (x), y) = (favg (x)− y)2

• We compare its performance to the average squared loss of the base

models

L̄sq(x, y) =
1

T

T∑
t=1

Lsq(ht(x), y) =
1

T

T∑
t=1

(ht(x)− y)2

Brown, G. and Kuncheva, L.I., 2010, April. “Good” and “bad” diversity in majority vote ensembles. In International workshop on multiple

classifier systems (pp. 124-133). Springer, Berlin, Heidelberg.
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Diversity and model averaging

• The squared loss on the ensemble favg (x) on a single example x with

true label y satisfies (Brown and Kuncheva, 2010):

Lsq(favg (x), y) = L̄sq(x, y)− 1

T

T∑
t=1

(ht(x)− favg (x))2

• The first term on the right-hand side is the average loss of the base

models

• The second term represents the diversity of the base hypotheses in

terms of their variance around the ensemble

• As the variance is always non-negative, the ensemble error is always

as good as the average error of the base models

Conclusion: for the averaging model using squared loss, diversity among

the base models always helps

Brown, G. and Kuncheva, L.I., 2010, April. “Good” and “bad” diversity in majority vote ensembles. In International workshop on multiple

classifier systems (pp. 124-133). Springer, Berlin, Heidelberg.
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Diversity and majority voting

• Examine now a classification problems using a majority vote:

fmaj(x) = argmaxy

T∑
t=1

1hT (x)=y

• We focus on the zero-one loss of the ensemble on x with true label

y ∈ {−1,+1}:
L0/1(fmaj(x), y) = 1fmaj (x) 6=y

• We compare its loss to the average zero-one loss of the base models:

L̄0/1(x, y) =
1

T

T∑
t=1

L0/1(ft(x), y)

Brown, G. and Kuncheva, L.I., 2010, April. “Good” and “bad” diversity in majority vote ensembles. In International workshop on multiple

classifier systems (pp. 124-133). Springer, Berlin, Heidelberg.
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Diversity and majority voting

• Brown and Kuncheva (2010) showed that the loss of the majority

voting ensemble can be expressed as:

L0/1(fmaj(x), y) = L̄0/1(x)− yfmaj(x)
1

T

T∑
t=1

1ht(x) 6=fmaj (x)

• The first term is the average zero-one error of the base models

• The second term accounts for the disagreements between the

ensemble and the base models:

• When the ensemble is correct (y = fmaj(x)) disagreements reduce the

majority vote error

• When the ensemble is incorrect (y 6= fmaj(x)) disagreements increase

the majority vote error

Conclusion: For majority voting ensembles, diversity among the base

models has context-dependent effects on the accuracy
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Boosting



Boosting

• Boosting originally was proposed as an answer to a question raised

in Probably Approximately Correct (PAC) theory: Can weak

learners, whose accuracy is only slightly better than random

guessing, can be combined into a strong PAC learner?

• This question was answered positively by Rob Shapire in 1990, a

theoretical finding that led to the development of a very practical

AdaBoost (Adaptive Boosting) algorithm in 1996, and to the

prestigious Gödel prize to be awarded for Schapire and Yoav Freund

in 2003.

• AdaBoost creates diversity by re-weighting the training examples

during the algorithm, and conducts a weighted majority vote to

predict.
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Weak learning

A concept class C is weakly PAC-learnable if there exists an algorithm

A, γ > 0, such that

• for all δ > 0 for all c ∈ C and all distributions D,

PS∼D(R(hS) ≤ 1

2
− γ) ≥ 1− δ

• for a sample S of size m which is polynomial in 1/δ

Note: The definition differs from the PAC learnability by only requiring

the true risk to be slightly less than random, with high confidence
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Boosting theorem

Boosting Theorem (Schapire, 1990): A concept class C is weakly

PAC-learnable if and only if it is (strongly) PAC-learnable.

• This surprising result implies that learning is an all or nothing

phenomenon: if we can find an algorithm that achieves a low level of

accuracy in learning C , then there exists an algorithm that can do

the same with a high level of accuracy.

• AdaBoost algorithm described next is a practical algorithm that

achieves a (strong) PAC learner by linear combinations of weak

learners

Schapire, R.E., 1990. The strength of weak learnability. Machine learning, 5(2), pp.197-227.
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AdaBoost

AdaBoost algorithm iteratively combines weak learners to arrive a strong

classifier in the PAC sense

Inputs:

• A labeled training sample S = {(xi , yi )}mi=1, xi ∈ X , yi ∈ {−1,+1}
• A hypothesis class H where base hypotheses ht , t = 1, . . . ,T are

drawn

• A distribution Dt , t = 1, . . . ,T , that assigns a weight Dt(i) for the

i ’th training example for the t’th weak learner ht

Output: combined model as a non-negative (αt ≥ 0) combination of the

weak learners

fT (x) =
T∑
t=1

αtht(x)

Note the loose terminology: a weak learner is actually the algorithm outputting

the base model, but in boosting literature the base models ht are also called

weak learners
17



AdaBoost

• In each round t, the algorithm adds a new weak learner ht , one

minimizes the empirical error on a sample drawn from distribution

Dt (same as empirical errors weighted by Dt):

εt = min
h∈H

Pi∼Dt (h(xi ) 6= yi ) = min
h∈H

m∑
i=1

Dt(i)1h(xi ) 6=yi

• The weak learner ht is weighted by

αt =
1

2
log

1− εt
εt

which can be seen as log-odds probability of the weak learner being

correct. This value comes from minimization of a bound for the

empirical risk.

• If εt < 1/2 then 1−εt
εt

> 1 and αt > 0 thus weak learners that are

more accurate on training data than random guessing receive

positive weights.
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AdaBoost

For the round t + 1, the weights on the training examples are re-weighted:

Dt+1(i) = Dt(i) ·
e−αtyiht(xi )

Zt

• The term yiαtht(x) can be seen as a margin of example (weighted

by αt)

• Feeding the margin through an negative exponential causes an

exponential up-weighting of misclassified examples (those with

negative margin) and down-weighting of correctly classified examples

(positive margin)

• The factor: Zt =
∑m

i=1 Dt(i)e
−αtytht(xi ) = 2

√
εt(1− εt) is a

normalization factor ensuring that Dt sums up to 1.

The sequence of the re-weighting is that the weak learners for subsequent

rounds will focus on the examples that were misclassified ⇒ increases

diversity
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AdaBoost pseudo-code
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AdaBoost example

source : https : //www.csie.ntu.edu.tw/ mhyang/course/u0030/papers/schapire.pdf
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AdaBoost example

source: https : //www.csie.ntu.edu.tw/ mhyang/course/u0030/papers/schapire.pdf
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AdaBoost example

source: https : //www.csie.ntu.edu.tw/ mhyang/course/u0030/papers/schapire.pdf
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AdaBoost example

source: https : //www.csie.ntu.edu.tw/ mhyang/course/u0030/papers/schapire.pdf
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AdaBoost example

source: https : //www.csie.ntu.edu.tw/ mhyang/course/u0030/papers/schapire.pdf
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Empirical error of AdaBoost

Theorem: The empirical error of the classifier f returned by AdaBoost

verifies:

R̂S(f ) ≤ exp (−2
T∑
t=1

(
1

2
− εt)2

)
Furthermore, if for all t, γ ≤ ( 1

2 − εt), then

R̂S(f ) ≤ exp(−2γ2T )

Proof: See Mohri book

• The empirical error does down exponentially fast in T : given enough

weak learners, empirical error can be pushed arbitrarily low

• Above γ is the ”edge”, the amount by which the weak learners are

more accurate than random guessing: larger γ results in tighter

bound for the empirical error
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The loss function optimized by AdaBoost

It can be shown that AdaBoost is minimizing an upper bound on the

zero-one loss, given by the exponential function

Fexp(α) =
m∑
i=1

e−yi fT (xi ) =
m∑
i=1

e−yi
∑T

t=1 αtht(xi )

• Here the variables to be optimized are

the weights α = (αt), and the

collection of base learners are taken as

fixed

• Exponential loss penalizes

misclassified examples heavily, which

revels are weakness of AdaBoost: if

labels are noisy, AdaBoost will give

high weight on noisy labels with the

risk of overfitting
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The loss function optimized by AdaBoost

The viewpoint of loss function optimization suggest alternative boosting

algorithms by changing the loss function

• For example, LogitBoost (Friedman et

al. 2000) minimizes the logistic loss:

Flogit(α) =
m∑
i=1

log(1+e−yi
∑T

t=1 αtht(xi ))

• LogitBoost is closely related logistic

regression (LR): if we consider the

weak learners ht as the input features

and αt as the feature weights,

LogitBoost is essentially learning a

logistic regression model (modulo

some constants that differ from LR).
Friedman, J., Hastie, T., Tibshirani, R. (2000). ”Additive logistic regression: a statistical view of boosting”. Annals of Statistics. 28 (2):

337–407 28



VC-dimension of AdaBoost

• The hypothesis class of AdaBoost after T rounds is given by

FT =

{
sgn(

T∑
t=1

αtht) : αt > 0, ht ∈ H)

}

• The VC-dimension of FT can be bounded in terms of the

VC-dimension d of the weak learners:

VCdim(FT ) ≤ 2(d + 1)(T + 1) log2((T + 1)e)

which grows as O(dT logT )

• This suggests that AdaBoost could overfit when T grows large,

however empirically it has been observed not to be the case
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AdaBoost and generalization

Empirically AdaBoost has been observed not to overfit with large T

• Instead, the test accuracy continues

to go down with increasing T even

after the empirical error reaches zero

• This phenomenon has been explained

through margin-based analysis of

AdaBoost:

• AdaBoost can be shown to increase the margins of training examples

as T increases, which leads to better generalization

• However, AdaBoost is not strictly speaking optimizing the margins,

but can achieve substantial fraction of the maximum margin in

suitable conditions

• Boosting algorithms that aim to maximize margins have been

proposed, however, they do not empirically outperform AdaBoost
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Boosting in practice

• Boosting requires having an access to a weak learner, it is hard to

guarantee formally in real world situations

• However, empirically ”reasonable” classifiers generally outperform

random guessing on a real world data

• In general a weak learner that is unstable, that is, the chosen

hypothesis changes upon small modification of data, works the best

(due to introducing diversity to the ensemble)

• In practice, axis-paraller hyperplanes, also called ”decision stumps”

work well
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Other ensemble learning schemes



Bootstrap Aggregating (Bagging)

• Bootstrap aggregating Bagging is an ensemble method in which the

weak learners are built using T different bootstrap samples of the

original training data.

• Bootstrap sampling : drawing randomly with replacement from the

original training set (resampling with replacement) m instances,

where m is the size of the training data.

• The bootstrap samples are different from each other, which creates

diversity

• For classification, the ensemble prediction is given by majority voting

• Random forest is an effective ensemble learning methods that

combines randomized decision trees with bagging
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Gradient boosting

• Gradient boosting (GB) (Friedman, 2011) is an ensemble method

based on iteratively growing the ensemble according to the gradient

of the loss function

ft(x) = ft−1(x)− ηt
m∑
i=1

∇ft−1L(yi , ft−1(xi ))

• The partial derivatives composing the negative gradient −∇ft−1 are

called the pseudo-residuals

rit = −∂L(yi , ft−1(x))

∂ft−1

• In each iteration, a weak learner ht is trained to predict the

pseudo-residuals rit and added to the ensemble: with a step-size ηt
that is optimized for maximal descent

Friedman, J. (2001). Greedy boosting approximation: a gradient boosting machine. Ann. Stat. 29, 1189–1232. doi:

10.1214/aos/1013203451

33



Summary

• Ensemble methods are based on the idea of generating strong

predictive models by combining simpler, potentially weaker models

(weak learners)

• Diversity of the weak learners is the key for obtaining an accurate

ensemble

• Several mechanisms exist for obtaining diversity

• Boosting is a successful ensemble method that is based on

adaptively reweighting training examples
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