

Matrix Computations MS-A0001 Hakula/Mirka Problem Sheet 2, 2020

P

Note1

The due date is published on the course pages. Homework can be submitted only digitally. Instructions on labeling the "papers" can be found on the course pages.

1 Introductory Problems

INTRO 1 Solve the lower triangular system L c = b followed by U x = c. What is A in A x = b?

$$L = \begin{pmatrix} 1 & 0 \\ 4 & 1 \end{pmatrix}, \quad U = \begin{pmatrix} 2 & 4 \\ 0 & 1 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 11 \end{pmatrix}.$$

INTRO 2 Tridiagonal matrices are an important special case. Find the decomposition A=LU and the symmetric one $A=LDL^T$.

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \quad A = \begin{pmatrix} a & a & 0 \\ a & a+b & b \\ 0 & b & b+c \end{pmatrix}.$$

INTRO 3 Let A be a 3×3 orthogonal matrix, with elements:

$$\alpha_{11} = \frac{3}{7}$$
, $\alpha_{12} = -\frac{2}{7}$, $\alpha_{13} > 0$, $\alpha_{21} < 0$, $\alpha_{22} = \frac{6}{7}$.

Find A and A^{-1} .

INTRO 4 Show that if for the matrix A it holds that $A^{T} + A = O$ and the inverse of $(I + A)^{-1}$ exists, then the matrix $B = (I + A)^{-1}(I - A)$ is orthogonal.

¹Published on 2020-11-03 16:51:30+02:00.

2 Homework Problems

EXERCISE 1 Find the decomposition A = LU, given

$$A = \begin{pmatrix} -1 & 1 & -1 \\ 1 & 1 & 1 \\ -1 & 1 & 2 \end{pmatrix}.$$

EXERCISE 2 Find all decompositions PA = LU of

$$A = \left[\begin{array}{rrr} 1 & 2 & 0 \\ 3 & c & 1 \\ 0 & 1 & 1 \end{array} \right]$$

for all $c \in \mathbb{R}$.

EXERCISE 3 Choose any vector x and set $r = x^Tx$ and $u = x/\sqrt{r}$. Form $H = I - 2uu^T$ and its inverse H^{-1} . Is H either symmetric or orthogonal or both? Further, show that HH = I independent of x, and give a geometric interpretation of the related mapping.

EXERCISE 4 Find $M M^{-1}$, when

- 1. $M = I uv^{T}$ and $M^{-1} = I + uv^{T}/(1 v^{T}u)$.
- **2.** $M = A uv^{\mathsf{T}}$ and $M^{-1} = A^{-1} + A^{-1}uv^{\mathsf{T}}A^{-1}/(1 v^{\mathsf{T}}A^{-1}u)$.
- 3. M = I UV and $M^{-1} = I_n + U(I_m VU)^{-1}V$.
- **4.** $M = A UW^{-1}V$ and $M^{-1} = A^{-1} + A^{-1}U(W VA^{-1}U)^{-1}VA^{-1}$.

Is the notation M^{-1} justified in all cases? (Notice: These are valid and highly useful identities in real life situations!)