Statistical Mechanics
FO415

Fall 2020, lecture 8
Quantum phase transitions



... take home...

* "I have chosen Brain Entropy Mapping Using fMRI, for | am working in
a Finnish medical imaging company (although mostly on CT) so the
topic generally fits my interest.”

* "This was a tough choice, | thought both of them were super
interesting, but | ended up choosing the Brain entropy article. | have
always been intrigued by brain research and how our brains work in
general, so finding out that our brains have their own entropy and
just examining brains from the point of view of statistical mechanics
settled my choice.”



... On the papers ....

"In the study, theK mapped the brain entropy of 1049 subjects and computed the entropy for their

brains based on the fMRI. To reduce the noise in the imaging, they also computed the entropy for a
water phantom to serve as a base line. In the study the?/ identified eight clusters in the brain, where
one was assumed to be a peripheral boundary. These clusters corresponded to thedprior knowledge
of the brain’s regions. Furthermore, the study suggests that the brain entropy could serve as a well-
quantifiable measure of the brain activity and help to detect abnormalities in the brain.The living-

organisms are presumed to have lower entropy in comparison to the non-living matter, which could
be used as a tool in the search of extra-terrestrial life. *

"The paper is about computing the different entropy contributions, vibrational and configutarional
entropies, of two metallic glasses. The authors do this computationally with a molecular dynamics
simulation, and the results show that most of the entropy of the glass is vibrational, corresponding
to the regular dynamical degrees of freedom of the glass, while some of it is configurational, related
to the different (non-crystal) configurations the glass could assume when quickly cooled from the
liquid phase. The authors find that their results match experiments pretty closely. Furthermore, the
configurational entropy of one of the glasses, one with aluminum added to copper and zirconium, is
significantly higher than the one without aluminum. They attribute this as one of the reasons why
this alloy has a higher glass-forming ability, as there are more possible configurations for the glass to
set to near the transition point."
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Quantum Ising

transverse-field quantum Ising model:

e cach site / has Spin—% d.o.f.

e §%: operators obeying [6%,

!

e In G° basis, [1);, 1),

{1J): nearest neighbours
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Quantum Ising model has symmetry under spin-flip operator U =[], &7

e, [H,U =0



Paramagnet

H=-J) 667 —Jg)» &

5’;:”*’ =i } 6%| =) = +|—); where | =) = %UT) +14))

!

For g — 400, [g.5.) = [[;|—=);
spins align with applied field: “quantum paramagnet”
g.s. Is symmetric under spin flip: Ulg.s.) = |g.s.)
(95.67l9.5.) = 0 v=11e
product state, so no correlations: (g.5.|u:':‘r,-zf’ij-z|g.5.}I = 0jj
For large finite g, |g.s.) = |[.|-—); + perturbative corrections in 1/g

correlations (g.s.|6767(g.s.) ~ e~ X=X/ with £ — 0 for g — oo

“kinetic energy (i.e., off-diagonal term) wins"
(“kinetic" / “potential” depends on choice of basis)



Ferromagnet

MY etor — JgY o
(i) i
For g = 0, two degenerate ground states: |1) = [[,|T); and [4) = T[;|1)

spins align with each other: ferromagnet
both states break spin-flip symmetry (U|{) = [I}))
(9.5.]67]g.s.) = 1
product state: (g.s.|6767[g.s.) = (9.5.[67]9.5.)(9.5./167]|g9.5.) =1
For g = 0%, superpositions |1t} & |||} are e'states, but splitting — 0 as N — oo
N = oo: macroscopic superpos’'ns unstable; take |11}, |{}) as degenerate g.s.

for small g and N = oo, |g.s.;) = [[;|1); + perturbative corrections in g
lg.s._) = [],|4); + perturbative corrections in g

“potential energy (i.e., diagonal term) wins"



Partititon function

at temperature T = 1/, partition function
Z =Tre PH

= Z(s|e_m{|5} for any (orthonormal) basis {|s)}
5

split operator e ™ into M pieces e~ with Ma = (3

Z =) (sole”Me ... e"H|s) Y Is)(s =1
50 M 5
= Z (sole™®"|s1)(s1le”|s2) (sn] -+ - |sm—1)(Sm-1]e"""|s0)
50,511,000, 501 | | . L s ! |
Lo 1]
| | | | | | |
e~@": evolution by “imaginary time” t=—ia « , 1 1 1 | | | | |a
(real-time evolution £ T
operatore Mty T | 917111 0
- I I T R T R R
D susi...s .. SUM over trajectories -3
“path integral” representation of Z 51°,—';E/; i i i i i i i

d-dimensional space (lattice)




Quantum model to classical mapping

Z= Y {(sole”™si)(sile”|s2)(sal - Ism-1){Sm-1le”7"|sa)

50,51, S
Y

choose basis states |s) corresponding
to classical configurations s

define £(s, s') = —log(s|e™?"|s') = [£(5", 5)]”

S e Tt E(sisi)

imaginary time 7

50.51,....51M-1 51 /
where sy = sg (periodicity in T V2R —>
M 0 (p ty ) 50 d-dimensional space (lattice)
ﬂ:f. classical statistical system with reduced Hamiltonian E \

on (d + 1)-dimensional lattice (with p.b.c.)

Eq = Z [E1(si) + Ex(si, si41)] E;: layer configuration energy
i E>: interaction between adjacent layers
M—1

- Z{ [E1(si) + Ex(six1)] + EQ{sth-l:]} = Z E(s;, Sj=1)
\ i=0 /

if £(s,s’) is real, interpret Z as partition f'n for classical (d + 1)-dimensional system




summary

quantum classical

imaginary time 1 extra spatial dimension 7

, 1 . : : :
inverse temperature § = T system size L, in 7 direction

_, Boltzmann weight (transfer
matrix) e €(55) = (sle~ M |g’)

sum over trajectories sum over configurations
(“path integral") (canonical ensemble)

imaginary-time evolution e

quantum critical phenomena  classical critical phenomena
at T =0 in d dimensions in d + 1 dimensions

Imaginary time T

| a

@

k.

d-dimensional space (lattice)

n.b., distinct from relationship between classical stochastic dynamics
(in d dimensions) and quantum mechanics (in d dimensions)

at zero temperature, 8 = 1/T = oc: imaginary-time direction is infinite



ISIng again

transverse-field quantum Ising model: H = —JZ&ZE}Z — Jch'}f‘
(i) /
define £(s, s') = — log(s|e *"|s’) use 67 basis, [1),. 1)
N
7 Z o ZI:UDJE(S Sii1) |5>_|{5]~52|---5N}>_H5 |5,'>f.

50,51, 51

for sufficiently small a, use e?(A+E) — g2 eas[l FO(a)]
(s] e—aM |s') 2 (s o492 87 oad >y 6767 s')
— <5| ean Z;‘ 3;{ |5"> eaJE(u';. 5,-{5: {S|ea6x |5!> _ A(a)eB(a:}ss’
e 224 Sis] H (si| €79%" |s!) B(a) = — 3 logtanh o
F.

— [A(an)]NeElJ 2—’\)’? 5:5’+B ajg)z:rg’-g:

E(s,s") aJZs" ! B(an)Zs,—sf t const
i.

"



Ising I

transverse-field quantum Ising model: H = —JZﬁf 67 — ngaf
(i) i

7 = Z o itot E(sisien)

50.51....,.50m 1

.
o

For a — 0, B(a) = —1 log tanh &

imaginary time 1

E(s,s') = —aJZs{sj — B(aJg) ZS;’S;

(U')) '
layer configuration energy >

d-dimensional space (lattice)

™

interaction between adjacent layers
e Transverse-field Ising model in d dimensions maps to highly anisotropic
(a — 0) classical Ising model in d + 1 dimensions

e By universality, quantum Ising model has identical critical properties
to isotropic classical Ising model in d + 1 dimensions



Ising chain

transverse-field quantum Ising model in 1D:
H=—JY (67671 + 0]

!
(related to 2D classical Ising model, so ordering transition at g.)

for g = o0, |g.s.) = [[;|—)i

excited states have —+—+——+—+——+—+—+

flipped spins

for large g, use perturbation +—+—+—+—+—+—+

theory, with 6H = ), 6767,

OH creates flipped spins in pairs & +—+—+—+—+—+—+

hops them between sites

5 (IT) + |J,>) 6°
(1)

) G

$ o

so treat flipped spins as particles



Use a transformation....

; _
Treat flipped spins as particles +—+—+—+—+—+—+

either:
e as bosons—hbut then need interactions
to forbid two flipped spins on one site &

e as fermions—double occupation automatically forbidden,

but fermion operators anticommute on different sites:
{c, C; } =19
{a.gy={c. ¢} =4,

(6%, 6Y] = —2i€u,,070;

Jordan—-Wigner transformation (in 1D): add a string of minus signs

ax _ i
g; =1-2n; n = clc

4
67 = —(¢ CJ-T)H(]_ 2nj)
J<i
including this string, [67, 67] = 0 for i # j, as required



diagonalize... exact spectrum.

transverse-field quantum Ising model in 1D: H = —JZ 6767, + g7

JW transformation: &7 =1 — 2n; nj = CTC /
67 = —(ci+c) ] - 2n)
J<i
67671 = (6 + (e + ) [T —2n) TT (1 2ny)
J<i J<i+l
= (¢ + ) (e + ¢l ) —2m) {ci. ¢} =14,
=(—¢+ C;T)(Ci+1 - Cj_l) {ci,gt = {C,'Tr Cj} = 0jj

result: quadratic Hamiltonian in terms of fermion operators

H = —JZ (cfcprl + CT_lC,' +c ,TH + Ciy16G — 29::,-T G + g)

I I

(see practice
problems)

diagonalize with FT and unitary transformation: cx = ueyx + ivw‘ik {’Yk.’rf(} = Ok i

H = ZER('Y;T{’Y!': ) ground state |g.s.): v«/g.s.) = 0 (all k)
k

ex = 2J\/1+ g2 — 2gcosk gap A=E; — Egs = €0 =2J|1 - ¢



Chain: QPT

A nonanalyticity in ground state
gap A (in thermodynamic limit)

>
(6767) — const # 0 ge =1 kj/{g}g@—f) ~ o= lxi=xil/E(9)
as |x; — x;| = o0 as |x; — x| = oo

gk = 2Jy/1+ g2 — 2gcosk
A=2J1-g|~|g—gc”
critical exponent zv = 1

Sachdev (1999/2011)




Quantum annealing

Solution

Quantum Tunnelling

Solution

Adiabatic evolution

ldea: take a classical Hamiltonian
(energy function). Instead of doing
things at finite T and lowering it
(Simulated Annealing)... Glauber
dynamics with a decreasing T.

Do the quantum version with
decreasing quantum effects.

Tunneling through barriers.



Kibble-Zurek

Approach a 2"9 order phase transition at a (fixed) finite rate. Eg. The
Ising transition.

At some point, the correlation time / relaxation timescale becomes so

large, that the system no longer relaxes (“adiabatically”) or is able to
follow the change.

Consequence: topological defects are created. The density depends on
the correlation scale (length) and dimension (“coherent volumes”).

Lots of applications...
Physics depends on the rate of approach (velocity).



Kibble-Zurek mechanism in colloidal monolayers

Kl b b | e—Z u re k | | Sven Deutschlinder,! Patrick Dillmann,! Georg Maret,! and Peter Keim!: *

quasi-adiabatic polycrystalline
dynamics phase
5 S { 3
% %
"
v <
‘ Rt (¢ ’ ".. Vo
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& T e
: AT 2 .
'y ' <
nl,:ll > '
t"'y,‘.‘r FIG. 5. Snapshot sections of the colloidal ensemble
. (992 x 960 um?, & 4000 particles) illustrating the defect (a.c)
2 and domain configurations (b,d) at the freeze out temperature
1 T for the fastest (a,b: T' = 0.0326 1/s, T = 30.3) and slowest
Istance to : .
o cooling rate (c,d: I' = 0.000042 1/s, I' = 66.8). The defects
transition are marked as follows: Particles with five nearest neighbors

are colored red, seven nearest neighbors green and other de-
fects blue. Sixfold coordinated particles are colored grey. Dif-
ferent symmetry broken domains are colored individually and
high symmetry particles are displayed by smaller circles.



Quantum take-home

The classic reference for this stuff is by Subir Sachdeev (Quantum Phase Transitions) but we utilize here
two sets of lecture notes that exploit it. The first set is from Warwick

https://warwick.ac.uk/fac/sci/physics/mpags/modules/theory/cqpt/lectures9-10.pdf

And if you want another viewpoint, with partly more detail, check lectures 5 and 6 from Dresden
(Lukas Jansssen), https://tu-dresden.de/mn/physik/itp/tfp/studium/lehre/ss18/qpt ss18

For the applications, we have quantum annealing and the Kibble-Zurek mechanism. The take home is
now like this: check those notes so that you recall the main points of QPT. Then pick either a topic on
guantum annealing (including the D-Wave simulator), in other words

https://www.nature.com/articles/s41598-019-49172-3

... or if you want to have more insight on the Kibble-Zurek, you should take

https://www.nature.com/articles/s41586-019-1070-1

And your task is like the previous time "2+8" sentences on the selection and main points.


https://warwick.ac.uk/fac/sci/physics/mpags/modules/theory/cqpt/lectures9-10.pdf
https://tu-dresden.de/mn/physik/itp/tfp/studium/lehre/ss18/qpt_ss18
https://www.nature.com/articles/s41598-019-49172-3
https://www.nature.com/articles/s41586-019-1070-1

