
CS-E4710 Machine Learning: Supervised

Methods

Lecture 9: Feature engineering

Juho Rousu

November 10, 2020

Department of Computer Science

Aalto University

Course topics

• Part I: Theory

• Introduction

• Generalization error analysis & PAC learning

• Rademacher Complexity & VC dimension

• Part II: Algorithms and models

• Linear classification

• Support vector machines

• Kernel methods

• Neural networks (MLPs)

• Ensemble learning

• Part III: Additional learning models

• Feature engineering

• Multi-class classification

• Preference learning, ranking

• Multi-output learning

1

The importance of input representations

• So far in this course, we have (mostly) assumed the representation

of the input data as feature vectors in Rd

• But how do we come up with such representation?

• Is the given representation the best possible?

• It can be argued that good data representation is actually more

important than the choice of the learning algorithm

• The importance of good data representations is exemplified by the

fat there us nowadays a international conference on the topic

(https://iclr.cc) with thousands of participants.

2

https://iclr.cc

Feature engineering techniques

Variety of techniques:

• Feature transformation - convert the features in a form that allows

learning better

• Feature selection - aim to reduce the number of input variables that

are used by the predictor

• Feature generation - build new features by combining the original

ones either manually (using prior knowledge) or by learning

representations by optimizing some objective

Note: we used the term ”variable” and ”feature” interchangeably

3

Feature transformations

Feature transformations

• Simple transformations of the variables may have a large effect on

the models

• One can obtain better error rates or faster optimization by

transforming the variables

• Feature transformations are generally performed to make the

distribution of the input variables to better represent the domain

knowledge or to make the data more suitable to the learning

algorithm

• However, feature transformation is largely art rather than science - it

is hard to give any guarantees of the success of transforming the data

4

Examples of feature transformations

Let f = (f1, . . . , fm) denote the values of a single variable in the dataset

• Centering: f ′i = fi − f̄ where f̄ = 1
m

∑
i fi is the mean of variable -

Rationale: learning algorithms generally learn from the variance of

the data, not the mean. Centering makes the variance more obvious.

• Standardization: f ′i = fi−f̄√
var(f)

, where var(f) = 1
m

∑
i (fi − f̄)2 is the

variance of variable. Rationale: making all variables have zero mean

and unit variance may help if the raw variables have very different

scales

• Unit range: f ′ = fi−fmin

fmax−fmin
, where fmin and fmax are the minimum and

maximum values for the variable. Rationale: useful if the variable’s

relative position in the observed range is important

• Clipping: f ′i = sgn (fi) max(b, |fi |), for some thresgold b > 0.

Rationale: if certain large values are known to be non-informative,

clipping may make learning easier

5

Examples of feature transformations

• Logarithmic transformation: f ′i = log(b + fi), for some user-defined

constant b > 0. Rationale: if small differences between small values

(e.g. 0 vs. 1) are more important than small differences between

large values (1000 vs. 1001), log-transform can be used to

emphasize the former.

• Sigmoid transformation: f ′i = 1
1+exp(bfi)

. Compresses the high

absolute values heavily, ”soft version” of clipping.

• Normalization of feature vectors: x′i = xi
‖xi‖ where xi is a single

training example. Rationale: useful if the relative values of the

variables for a single example are important rather than the absolute

values, e.g. if large object produces large average values for all

features but the class of the object does not depend on its size

In general, several transformations are used to establish a desired effect,

e.g. log-transform + normalization

6

Feature selection

Potential benefits of feature selection

• Facilitating data visualization and interpretation: a model with fewer

features is easier to explain

• Reducing time and space requirements of training models: less data

to store and compute over

• Improving the predictive performance: a small subset of variables is

less likely to overfit

Guyon, I. and Elisseeff, A., 2003. An introduction to variable and feature selection. Journal of machine learning research, 3(Mar),

pp.1157-1182.

7

Feature selection by exhaustive search

Given a set of d features, an idealized approach to feature selection

would be to

• Exhaustively go through all 2d − 1 feature subsets

• Train a model using each subset

• Select the feature subset that gives the best predictive accuracy

(e.g. by cross-validation)

While this approach would give us the optimal feature subset, it is

prohibitively expensive unless d is very small

8

Feature selection in practice

In general, feature selection approach aim to avoid the exponential

complexity of checking each feature subset

• Variable ranking: assess the usefulness of each input feature

individually in a preprocessing step prior to learning, select a subset

of most useful features

• Variable subset selection: generate several different feature subsets

generally by some greedy search strategy, train a model with each

subset, select the subset with the best predictive performance

• Embedded methods: the learning algorithm performs variable

selection

9

Variable ranking

Variable ranking approach

A generic variable ranking procedure:

• Compute a score sj for each input variable j using some scoring

criterion

• Sort the variables in descending order of sj
• Select a subset of the most highly ranking variables, e.g. by top k

variables or all variables exceeding a score threshold θ (k or θ

generally decided by the user)

This approach is often called the ”filtering” approach, due to the

non-selected variables begin ”filtered out”

Image By Lucien Mousin - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37776286

10

Regression-based scoring criterion : Pearson correlation

• Assume a dataset S = {(xi , yi)}mi=1, where xi = (xi1, . . . , xid)T , and

yi ∈ R

• (Empirical) Pearson correlation of the j ’th feature and the output is

given by

rj =

∑m
i=1(xij − x̄j)(yi − ȳ)√∑

i (xij − x̄j)2
√∑

i yi − ȳ)2

• Above, x̄j = 1
m

∑m
i=1 xij denotes the mean of the j ’th feature in the

dataset and ȳ = 1
m

∑m
i=1 yi denotes the mean of the output variable

• rj ranges from +1 (perfect correlation) to −1 (perfect

anti-correlation)

• For feature scoring, we use sj = r2
j to allow selection of both

anti-correlated and correlated features

11

Regression-based scoring criterion : Pearson correlation

• Pearson correlation has a natural interpretation in terms of linear

regression

• rj is the optimal regression co-efficient in a univariate linear model

y = rx + b

that has the smallest mean squared error on the data

rj = argminr∈R
1

m

m∑
i=1

(rxij + b − yi)
2

• r2
j is the fraction of the variance of the output variable explained by

the linear model

• r2
j = 0 means that the j ’th feature alone does not explain any of the

variance of the output

12

Classification-based scoring criteria

• Alternatively, one can use univariate classification based scoring

criteria

• Given y ∈ {−1,+1}, a simple approach of to consider a model

y = sgn (ax + θ)

where a ∈ {−1,+1} and θ ∈ R is set to optimize the empirical error

[aj , θj] = argmina∈{−1,+1},θ∈R

m∑
i=1

1sgn(axij+θ) 6=yi

• The above is essentially the ”decision stump” we used in the

AdaBoost example (Lecture 8)

• For feature scoring, we can use the accuracy:

rj = 1− 1
m

∑m
i=1 1sgn(ajxij+θj) 6=yi

• Also can use other evaluation metrics for classification (Lecture 1)

13

Pros and cons of the filtering approach

• The filtering approach is reasonably efficient:

• computation of the feature scores can be done in O(md) for

correlation and O(dm log2 m) time for the decision stump (the

dominating cost is sorting the values of the feature j in O(m log2 m)

time).

• The ranking of the features given the scores also requires sorting the

features in O(d log d) time.

• However, the method is limited by two issues:

• Features that are not correlating with the output may still be useful

when combined by other variables

• As the filtering is made independently of the predictive model that

will use the selected features, the selected subset might not be

optimal

14

Example 1: Useless variables may be useful in combination of

other variables

In the figure, we have toy dataset of two input variables and binary

output (open and closed circles)

• The data lies in four clusters

in a ”XOR-like” layout

• The marginal distribution of

neither input variable (top

left and bottom right) give

any separation of the classes

• Combination of the two

variables can perfectly

separate the classes (e.g. by

intersection of two

hyperplanes)

Figure : Guyon and Elisseef, 2003. Top let and botom right pane show the distribution of the data along the ranges two features,

respectively. The top right and bottom left panes show the same data, with the coordinate axes swapped
15

Example 2: Useless variables may be useful in combination of

other variables

In the second example the two classes have high within class covariance

in the two input variables, which gives the elongated clusters

• One of the variables alone

does not give any separation

of the classes (top left)

• The other variable gives

partial separation, but with

some overlap (bottom right)

• However, using both variables

gives perfect separation in 2D

plane (e.g. by a single

hyperplane)

Figure : Guyon and Elisseef, 2003. Top left and bottom right pane show the distribution of the data along the ranges two features,

respectively. The top right and bottom left panes show the same data, with the coordinate axes swapped 16

Variable subset selection

Wrapper approach

• The wrapper approach to variable selection uses the same learning

algorithm that is used for the final model to evaluate variable subsets

• It iterates two steps:

• Generate a variable subset (by some fixed procedure)

• Evaluate the subset by training a model with the subset

Image By Lastdreamer7591 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37208688

17

Wrapper approach

• Two generic procedures for generating a subset:

• Forward selection - grow the set of selected variables by iteratively

• Backward elimination - start from set of all variables and iteratively

eliminate variables until a given stopping criterion is fulfilled

• Also more thorough search strategies can be used (best-first,

branch-and-bound, etc.)

Image By Lastdreamer7591 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37208688

18

Variable scoring in wrapper approach

• In a wrapper algorithm it is natural to use the risk of the hypothesis

(either on training or validation data) as the variable scoring criterion

• This involves training and testing a hypothesis for each variable

subset considered

• Computationally heavier than the filter approach

• But can find better variable subsets than the filter approach

Image By Lastdreamer7591 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=37208688

19

Greedy forward selection

• In greedy forward selection, we add a variables iteratively, choosing

in each step a variable that gives the maximum improvement

• The variables that have been chosen to the model are not removed,

even if they become redundant (no back-tracking)

• For each iteration, models are trained for every candidate variable to

be added

• In total O(Kd) models are trained where K is the upper bound for

the number of variables selected

20

Greedy forward selection pseudo-code

Input: Dataset S = {(xi , yi)}mi=1

Input: Maximum number of variables K

Output: A subset of selected variables J ⊂ {1, . . . , d}
Initialize J ← ∅, sJ ← 0; k ← 0

repeat

for j ∈ {1, . . . , d} \ J do

Train a model fJ∪j with input variables J ∪ j

sJ∪j ← accuracy of the model fJ∪j (training set or validation set)

end for

Select the best variable: j∗ ← argmaxj∈{1,...,d}\JsJ∪j
if sJ∪j∗ > sJ then

J ← J ∪ j∗; k ← k + 1

else

stop ← TRUE

end if

until k = K or stop

21

Backward elimination

• In backward elimination, one starts from the full set of input

variables

• It is argued that backward elimination is more effective in finding

good variable subsets than forward selection

• In each stage, the input variable whose elimination has the best

effect on the model is eliminated

• Largest increase or smallest decrease of accuracy on validation set

• Accuracy on validation set generally used, since it will generally have

an optimum for some number of selected variables

• In total O(d2) models are trained

22

Backward elimination pseudo-code

Input: Training set S = {(xi , yi)}i=1m , validation set V = {(xi , yi)}ni=1

Output: A subset of selected variables Jmax ⊂ {1, . . . , d}
Initialize J ← {1, . . . , d}; smax = 0; Jmax = J

repeat

for j ∈ J do

Train a model fJ\j with input variables excluding j

sJ\j =← accuracy of the model fJ\j on the validation set

end for

Variable whose elimination gives the best model:

j∗ ← argmaxj∈JsJ\j
J ← J \ j∗

Keep track of the best model:

if sJ > smax then

smax = sJ ; Jmax = J

end if

until J = ∅
23

The case for backward selection

A simple example demonstrates a case where forward selection may miss

the best subset

• Variable 3 separates the two

classes best when used as a

single variable: forward

selection would likely choose

Variable 3

• However, variables 1 and 2

separate the classes perfectly

as a pair: backward selection

is likely to remove variable 3,

since its redundant when

variables 1 and 2 are in the

subset.
Figure : Guyon and Elisseef, 2003. The diagonal panes show the histograms of the class distributions for each variable. The off diagonal

blocks show the scatter plots of the data using each pair of the variables

24

Embedded feature selection methods

Embedded feature selection algorithms refer to cases where the learning

algorithm itself is selecting features as part of searching for the best

model

• Models based on logical tests on single variable values e.g. decision

trees

• Boosting algorithms using base hypotheses on single variables

• AdaBoost on decision stumps can be seen as an embedded feature

selection method

• Sparse modelling methods: focused on penalizing the weights with

sparsity inducing norms

25

Sparse modelling

Sparsity-inducing norms: : `0

• Consider the problem of minimizing the empirical risk of a linear

model subject to a budget of K variables

min
w∈Rd

m∑
i=1

L(wTxi , yi)s.t. |{j |wj 6= 0}| ≤ K

where wTx is a model with the weight vector w

• The size of the set {j |wj 6= 0} corresponds to the `0 norm of w:

‖w‖0 = |{j |wj 6= 0}|

• With small K , the optimal solutions to the above problem are sparse

(with at most K non-zero weights)

26

Sparsity-inducing norms: `0

• Alternatively, the optimization problem can be written as a

regularized learning problem

min
w∈Rd

1

m

m∑
i=1

L(wTxi , yi) + λ‖w‖0

• if λ > 0 is sufficiently large, the optimal solution will be a sparse

containing a small number of non-zero weights

• However, both the constraint version (previous slide) and the above

penalization version are computationally hard to solve (non-convex,

NP-hard)

27

Sparsity-inducing norms: `1

• Replacing the non-convex ‖w‖0 by the `1 norm

‖w‖1 =
d∑

j=1

|wj |

gives a convex objective (assuming the loss L is also convex):

min
w∈Rd

1

m

m∑
i=1

L(wTxi , yi) + λ‖w‖1

• It turns out that the above `1 regularized problem often returns

sparse solutions

• But what is so special about `1 norm?

28

Sparsity-inducing norms: `1

Consider a simple example of minimizing mean squared error (MSE) on

two input variables

β̂ = argminβ1,β2

1

m

m∑
i=1

(β1x1i + β2x1i − yi)
2 + λ‖β‖p

where p = 1, 2

• The turqoise diamond

(p = 1) and ball

(p = 2)denote the constraint

regions ‖β‖p ≤ 1

• The co-centric ellipses denote

the level sets of equal MSE

Hastie, T., Tibshirani, R. and Wainwright, M., 2015. Statistical learning with sparsity: the lasso and generalizations. CRC press.

29

Sparsity-inducing norms: `1

Consider a simple example of minimizing mean squared error (MSE) on

two input variables

β̂ = argminβ1,β2

1

m

m∑
i=1

(β1x1i + β2x1i − yi)
2 + λ‖β‖p

where p = 1, 2

• The optimal model is at the

intersection of the smallest ellipse

• With p = 1 this intersection is often

at the corners of the diamond

• At each corner, one of the variables

will have zero weight ⇒ sparsity

• With p = 2 the solutions are more

likely to have non-zero weights for all

variables
Hastie, T., Tibshirani, R. and Wainwright, M., 2015. Statistical learning with sparsity: the lasso and generalizations. CRC press.

30

Sparsity-inducing norms: `1

• But is some other p also possible?

• For general p, the `p norm is given by

‖w‖p = (
d∑

j=1

|wj |p)1/p

• For p < 1 the constraint region ‖w‖p ≤ 1 becomes non-convex with

”spikes” extending towards the corners: will give sparsity but hard to

optimize

• For p > 1 the the constraint region is more and more ”ball-like” and

”box-like” and will give less and less sparsity

• p = 1 gives the most sparse solutions while keeping optimization

problem convex

Image

31

Sparse learning problems

Combining `1 regularisation with different loss functions gives sparse

variants of well-known models

• Hinge loss ⇒ Sparse SVM: minw
1
m

∑m
i=1 LHinge(wTxi , yi) + λ‖w‖1

• Logistic loss ⇒ Sparse logistic regression:

minw
1
m

∑m
i=1 LLogistic(wTxi , yi) + λ‖w‖1

• Squared loss ⇒ Sparse regression, LASSO:

minw
1
m

∑m
i=1 Lsq(wTxi , yi) + λ‖w‖1

Sparse modelling can also be used in applications that go beyond

classification. See e.g. the book Hastie, T., Tibshirani, R. and

Wainwright, M., 2015. Statistical learning with sparsity: the lasso and

generalizations. CRC press.

32

Stability of feature selection

Stability of feature selection

A recognized problem with variable subset selection and sparse modelling

approaches is their sensitivity to small perturbations

• upon removal or addition of a few variables or examples

• addition of noise

• initial conditions of the algorithms

The lack of stability may sometimes be a problem

• It may be a symptom of a ”bad” model, one that will not generalize

well

• The results are not reproducible

• One variable subset fails to capture the ”whole picture”

33

Stability of feature selection

• A general approach to tackle the lack of stability is to use

bootstrapping

• One runs the variable selection or sparse modelling algorithm on T

sub-samples, drawn with replacement from the original training data

• The final variable subset may be selected as

• The union of all selected features in the T models, or

• Counting how many models include a given variable j and selecting

the variables that occur at least given fraction of the T models

34

Summary

• Feature transformations can be used to improve the input data prior

to learning

• Feature selection is used to improve the interpretability, resource

consumption and predictive performance of machine learning

• Hard computational problem: many heuristics to speed it up,

including greedy forward selection and backward elimination

• Sparsity inducing norms can be used to learn a model with small

number of features

35

	Feature transformations
	Feature selection
	Variable ranking
	Variable subset selection
	Sparse modelling
	Stability of feature selection

