

Today 10.11.2020

- ESA's Cosmic Vision Science Programme
- Lifecycle of a space mission: researcher's view
- Case study: the Planck satellite
- Space debris

ESA

ESA SPACE MISSIONS

ESA's COSMIC VISION

- Horizon 2000 (1985-2005)
- Horizon 2000+ (2005-2015)
- Cosmic Vision (2015-2025)
- Three categories
 - Small (S), Medium (M), Large (L)
 - Scientific goals, cost, and development time

- What are the conditions for planet formation and the emergence of life?
- How does the Solar System work?
- What are the physical fundamental physical laws of the Universe?
- How did the Universe originate and what is it made of?

Cosmic vision themes

- The Hot and Energetic Universe
- The Gravitational Universe
- Planets and Life
- The Solar System
- Fundamental Laws
- The Universe

Science Programme Committee SPC

COSMIC VISION (2016-2035)

Additional reading:

sci.esa.int/cosmic-vision/46510-cosmic-vision/
www.esa.int/Our Activities/Space Science/How a mission is chosen

Cosmic Vision timeline

• ESA missions:

https://sci.esa.int/s/ABne4NA

 For NASA missions see http://www.nasa.gov/missions

Sun	Solar System	Astrophysics	Fundamental Physics					
IMPLEMENTATION								
	[2022] JUICE	[2026] PLATO [2022] Euclid [2021] JWST						
OPERATIONS / POST-OPERATIONS								
[2020] Solar Orbiter [2009] PROBA2 [1995] SOHO	[2018] BepiColombo [2016] ExoMars TGO & Schiaparelli [2004] Rosetta [2003] Mars Express [2003] Double Star [2000] Cluster	[2019] CHEOPS [2013] Gaia [2002] INTEGRAL [1999] XMM-Newton [1990] Hubble						
LEGACY								
[1990] Ulysses	[2005] Venus Express [2003] SMART-1 [1997] Cassini- Huygens [1985] Giotto	[2009] Planck [2009] Herschel [1995] ISO [1989] Hipparcos [1983] EXOSAT [1978] IUE [1975] Cos-B	[2015] LISA Pathfinder					

Space in Finland ... or Finland in space?

- Instruments and science typically funded nationally:
 - Academy of Finland (research projects, research fellows etc)
 - Business Finland (used to be Tekes; technology, instruments, Finland's ESA representative along with the Ministry of economic affairs and employment)
- ESA funds project management, launch, operations etc.
- Finland pays ESA fees yearly (approx. 20 MEUR).
 - Full member since 1995.
- Other space-related organizations
 - The Finnish space committee (Avaruusasiain neuvottelukunta, ANK),
 Committee on Space Research COSPAR, ESO
- Space researchers: universities, institutes etc.
 - Astronomy, space physics, Earth observation, space technology ...
- Aalto-satellites

COSMOLOGICAL MISSIONS

A short recap

CMB missions

The supremacy of Planck

- Cosmological parameters with supreme accuracy and tiny errors
 - higher resolution (14' vs. 5')
 - higher sensitivity, also
 polarization (10⁻⁵ vs. 10⁻⁶)
 - more frequencies (5 vs. 9)

Angular power spectrum

PLANCK SATELLITE

Planck

- Measured the cosmic microwave background (CMB) temperature anisotropies with an unprecedented accuracy and sensitivity
- Frequencies 30 857 GHz (9)

Payload

- Two instruments:
 - Low Frequency Instrument
 LFI (30 77 GHz)
 - High Frequency Instrument
 HFI (100 857 GHz)
- Telescope
 - Off-axis tilted Gregorian
 - 1.9 x 1.5 m paraboloid
 - surface accuracy <10 μm RMS
 - FOV 8° at its widest
- Total size
 - $-4.2 \times 4.2 \text{ m}$
 - 1900 kg

HFI (100 – 857 GHz)

- Array of microwave detectors using bolometers (52) in which the incoming radiation is absorbed in a grid, and the resulting increase in temperature is then measured.
- Cooled to 0.1 K.
- HFI Consortium led by principal investigator from France.

LFI (30 – 77 GHz)

- Array of radio receivers (22) using high electron mobility transistor mixers.
- Sky signal and 4 K blackbody reference loads compared.
- Cooled to 20 K.
- LFI Consortium led by principal investigator from Italy.

Elimination of systematic effects!

Estimated Instrument Performance Goals

Telescope	1.5 m ()	proj. ape	rture) ap	lanatic;	shared:	focal plai	ne; syster	m emissi	vity 1%
	Viewing direction offset 85° from spin axis; Field of View 8°						0		
Instrument	LFI		F NAME OF THE STATE OF THE STAT						
Center Freq. (GHz)	30	44	70	100	143	217	353	545	857
Detector Technology	HEM	T LNA	arrays			Bolomet	er array	s	
Detector Temperature	~20 K		0.1 K						
Cooling Requirements	H ₂ so	H ₂ sorption cooler H ₂ sorption + 4 K J-T stage + Dilution cooler			cooler				
Number of Unpol.	0	0	0	0	4	4	4	4	4
Detectors									
Number of Linearly	4	6	12	8	8	8	8	0	0
Polarised Detectors									
Angular Resolution	33	24	14	9.5	7.1	5	5	5	5
(FWHM, arcmin)									
Bandwidth (GHz)	6	8.8	14	33	47	72	116	180	283
Average $\Delta T/T_{I}^{*}$ per	2.0	2.7	4.7	2.5	2.2	4.8	14.7	147	6700
pixel [#]									
Average ∆T/T _{U,Q} * per	2.8	3.9	6.7	4.0	4.2	9.8	29.8		
pixel [#]									

* Sensitivity (1_{\circ}) to intensity (Stokes I) fluctuations observed on the sky, in thermodynamic temperature (x10-5) units, relative to the average temperature of the CMB (2.73 K), achievable after two sky surveys (14 months).

^{*} Sensitivity (1\sigma) to polarised intensity (Stokes U and Q) fluctuations observed on the sky, in thermodynamic temperature (x10⁻⁶) units, relative to the average temperature of the CMB (2.73 K), achievable after two sky surveys (14 months).

[&]quot;A pixel is a square whose side is the FWHM extent of the beam.

70 GHz receivers

 Designed and built in Finland by Millilab, DA Design (Ylinen, Elektrobit Microwave), Metsähovi

Cooling

- Passive radiative cooling down to 45 K
 - Also thermal isolation of instruments and telescope from the warm spacecraft bus.
- Active Cryocoolers 20 & 0.1K
 - Closed-cycle hydrogen sorption cooler for LFI.
 - Chain of three cryo-coolers for HFI.
 - LFI cooler (18 K)
 - Joule-Thomson cooler (4 K)
 - ³He⁴He dilution cooler (0.1 K)

Vibration?

Orbit

- ~4 months to reach L2
- Anti-Sun pointing:
 - Line-of-sight 85° to the spin axis
 - Optimal thermal conditions,
 minimal straylight (Earth, Sun,
 Moon, communications...)
- One sky ring per minute, one degree per day.
- Whole sky (>95%) covered once in 6 months.
 - Several timescales.

LAUNCH CAMPAIGN

- Instruments put together and tested in Europe, then shipped to launch site at Kourou, French Guiana.
- Further testing and integration of the satellite (solar panels, launcher...) on site.

Integration of payload to launcher

(This is not Planck.)

Planck and Herschel ready for launch

Ariane 5 rollout 13.5.2009

Launch pad

Launch 14.5.2009

Separation of Planck and Herschel

- 26 min after launch
- At the height of 1150 km

PLANCK SCHEDULE & ORGANIZATION

The beginning

- Response to a call for proposals for 3rd medium-sized (M3) missions in ESA's Horizon 2000 Science Programme in 1993:
 - COBRAS (Cosmic Background Radiation Anisotropy Satellite)
 - SAMBA (Satellite for Measurement of Background Anisotropies)
- Phase A (=feasibility) study February 1996.
 - Results in a preliminary design & industrial contacts.

Mission lifetime cycle

Phase 0	Mission analysis and identification
Phase A	Feasibility
Phase B	Preliminary Definition
Phase C	Detailed Definition
Phase D	Qualification and Production
Phase E	Utilisation
Phase F	Disposal

"The Redbook" 1996

- Planck's Phase A study
 - The scientific case (32 pages)
 - From observations to scientific information (28 pages)
 - The model payload (20 pages)
 - The mission (11 pages)
 - The Spacecraft (8 pages)
 - Project management (4 pages)
- Launch foreseen in 2003 (-> 2009)

Acceptance & implementation

- Accepted 1996.
- Announcement of Opportunity (AO) for instruments 1997, accepted 1999.
- Invitation to Tender for spacecraft and launch 2000.

"The Bluebook" 2005

- Planck's scientific programme according to the Planck Baseline
 Scientific Programme call for proposals
 - The Planck mission (overview, 19 pages)
 - Primary CMB anisotropies (41 pages)
 - Secondary anisotropies (20 pages)
 - Extragalactic sources (23 pages)
 - The astrophysics of quasars and blazars (3 pages)
 - Galactic and solar system science (22 pages)

Planck schedule

- Horizon 2000 Science Programme call 1993
- Phase A study report 1996
- Metsähovi gets involved 1997
- The baseline scientific programme 2005
- Launch 14.5.2009
- First all-sky scan winter 2009 2010, ...
- Early Release Compact Source Catalog (ERCSC) in January 2011 together with a set of Planck Early Results
- Extended mission (HFI & LFI) until end of 2011
- Extended mission (LFI only) until mid-2013
- Planck Results released 2013 and 2015
- Planck Intermediate Results since 2011
- Operations stopped 23.10.2013
- More results to come...

The end

- Nominal lifetime of 15 months was exceeded: 4.5 years!
- 14.1.2012 HFI ran out of coolant; LFI went on taking data.
- All science operations ended 3.10.2013.
- Safe disposal:
 - Disposal trajectory away from L2, on a "parking" orbit drifting away from Earth.
 - Burning remaining fuel off.
 - Re-programming of software to avoid automatic reactivation.
 - Disconnecting batteries.
 - Switch off transmitters: "We will witness the silencing of Planck and we will never receive a signal from her again."
- Operations stopped 23.10.2013.

Planck Collaboration

- Planck Science Team
 - "A group of scientists whose general task is to monitor and advise on all aspects of Planck which may affect its scientific objectives."
- Instrument Consortiums (LFI & HFI)
- Telescope Consortium
- Data Processing Centres (LFI & HFI)
- Science Working Groups (7; cosmology & foregrounds)
- Core teams
- Individual: Planck Associates, Planck Scientists, Planck Co-Investigators
- Planck Editorial Board
 - Publication of results

Rules and policies
Documentation

So what did we do all those years before we actually got the data?

- Helped in eliminating CMB foregrounds.
- Formulated extragalactic points sources' science case.
- Went to a lot of meetings and got to know a lot of great people.
 - Official Planck meetings
 - Planck national meetings
 - Tekes Planck LFI 70 GHz steering group
- Also... wrote a lot of tedious reports, memorandums of understanding, policies...
- Wrote a lot of justifications for the science cases.
- Wrote a lot lof funding proposals and reports to funding agencies.

PLANCK DATA

Planck data

- Data transferred to Earth once a day (Mission Operations Centre, MOC, in Darmstadt, Germany).
- Data processing has 4 levels:
 - level 1: telemetry processing, instrument control, timeordering of data.
 - level 2: data reduction and calibration, QDS.
 - level 3: astrophysical and cosmological component maps (LFI & HFI).
 - level 4: generation of the final data products (LFI & HFI).
 - level S: simulations.

Quick Detection System (QDS)

- Software package that looks for unusual and interesting point sources in the time-ordered data stream of Planck within a week from the observations.
 - First scientific data that can be exploited.
 - Testing the performance of the satellite.

How can I use Planck data?

- Data products in Planck Legacy Archive
 - All-sky frequency & component maps, catalogs, cosmology
 - Auxiliary information
- Everything else in calibrated time-ordered format
 - Need software/algorithm for making sense out of it.

PLANCK SCIENCE

Cosmology

Cosmology

- Accurate determination of cosmological parameters.
 - For example, the Hubble constant.
- Tests of inflationary models of the early universe.
- Nature of primordial fluctuations.
 - Formation of structure in the Universe
- Nature of dark energy.

More on CMB on the Radio Astronomy course!

Planck foregrounds

- Radio emission also from other sources in front of the CMB.
- Identification and elimination of contaminating foreground radio sources requires observations at several frequencies.
- "Garbage for cosmologists = science for astronomers!"
 - Cleaning the foregrounds off the CMB maps.
 Scientific research of the foregrounds.

Planck all-sky foreground maps

Planck science in Finland

- Dept. of Physics, Univ. of Helsinki
 - Cosmology
 - Local interstellar matter; cold cores of molecular clouds; nearby molecular clouds; star formation; structure of the Galaxy
- Aalto University Metsähovi Radio Observatory
 & Tuorla Observatory, Univ. of Turku
 - Quasars, BL Lac and GPS sources; statistics of radio sources; galaxy clusters, Sunyaev-Zel'dovich effect

Why were we so excited about Planck?

Extragalactic point sources

- No all-sky surveys at high radio frequencies.
 - WMAP, 400 / 500 sources, >0.7 Jy
 - AT20G, 6000 sources, >40 mJy
- Relatively few observations even of individual sources at high radio frequencies.
- Wide selection of sources with diverse physical characteristics.

From Planck we get...

- ...the most complete radio source catalogs ever at high radio frequencies (depending on detection limit).
 - Complete samples of all classes of radio sources.
 - Variability at several time scales.
 - Simultaneous data (from Planck and multifrequency campaigns).

The second *Planck* catalogue of compact sources

COBRAS/SAMBA

A Mission Dedicated to Imaging the
Anisotropies of the Cosmic Microwave Background

REPORT ON THE PHASE A STUDY

Planck links

- Planck Science Team home:
 - http://www.cosmos.esa.int/web/planck
 - Access to data via the Planck Legacy Archive (PLA)
 - Access to Planck publications
- The Bluebook:
 - http://www.cosmos.esa.int/web/planck/publications#PlanckProgramme
- Planck mission history and the Redbook:
 - http://www.cosmos.esa.int/web/planck/mission-history

What if...

- Something goes wrong
 - Launch
 - Operations
 - Instruments
 - Funding

Space debris

- >5500 launches, 9600 satellites, 5500 remain, ~2300 operational now.
- >22 300 tracked objects in orbit, in reality probably over 30 000 large pieces and millions of small pieces.
- Future: 57 000 planned launches until 2029!
- Discards, disintegration, pollutants
- Collisions, explosions, missile tests etc produce more and more debris.
- Most will finally reenter the atmosphere: burn or crash? However, this will take time...

Kessler syndrome

Thinking ahead:

 Good design (no risk), active debris removal, deorbiting to graveyard orbit or reentry, passivation.

NEXT STEPS

- Project plan deadline TODAY at 23.59.
- Continue project work, next help session Thu 12.11. at 12-13. If you have questions, be there. If you are all clear, no need to attend.
- Next lecture Tue 17.11 at 14-16
 - Dr. Karri Koljonen : High energy space missions I. X rays.