Taloustieteen matemaattiset menetelmät

Problem Set 5: Solutions

1. Solution

By Weierstrass's Theorem we know that a global maximum exists if the objective function is continuous and its domain is compact (i.e. closed and bounded). These conditions hold in the constraint set, so a solution exists.
The Lagrangian is

$$
L\left(x, y, \mu, \lambda_{x}, \lambda_{y}\right)=x^{2}+y^{2}-\mu(2 x+y-4)-\lambda_{x}(-x)-\lambda_{y}(-y)
$$

The first order conditions are:

$$
\begin{gathered}
\frac{\partial L}{\partial x}=2 x-2 \mu+\lambda_{x}=0 \\
\frac{\partial L}{\partial y}=2 y-\mu+\lambda_{y}=0 \\
\frac{\partial L}{\partial \mu}=2 x+y-4=0 \\
\lambda_{x} x=0 \\
\lambda_{y} y=0 \\
x, y, \lambda_{x}, \lambda_{y} \geq 0
\end{gathered}
$$

Consider the following four cases.
(a) $x=y=0$. From the third condition we get $y=4-2 x$, which cannot hold as $0 \neq 4$. Thus, $(0,0)$ cannot be a solution.
(b) $x>0$ and $y>0$. Now $\lambda_{x}=\lambda_{y}=0$, which leads to $\mu=x=2 y$. Substituting $x=2 y$ to $y=4-2 x$ yields $y=\frac{4}{5}$, and therefore $x=\frac{8}{5}$ and $\mu=\frac{8}{5}$.
(c) $x>0$ and $y=0$. From $y=4-2 x$ we get $x=2$, and therefore $\lambda_{x}=0$. Thus, the first two conditions yield $\mu=\lambda_{y}=2$.
(d) $x=0$ and $y>0$. Now $y=4-2 x=4$, so $\lambda_{y}=0$ and $\mu=\frac{\lambda_{x}}{2}=2 y=8$, so $\lambda_{x}=16$.

By substituting x and y to the objective function we can conclude that it is maximized when $(x, y)=(0,4)$. Now we have to check that the NDCQ is satisfied. The Jacobian of the binding constraints is

$$
J=\left(\begin{array}{ll}
\frac{\partial g_{1}}{\partial x} & \frac{\partial g_{1}}{\partial y} \\
\frac{\partial g_{2}}{\partial x} & \frac{\partial g_{2}}{\partial y}
\end{array}\right)=\left(\begin{array}{cc}
2 & 1 \\
-1 & 0
\end{array}\right)
$$

which is of full rank, so NDCQ is satisfied.

By the proposition in the slide 14 of lecture 12 , we know that if a solution exists, it must be a critical point of the Lagrangian. Since by Weierstrass's Theorem we know that a solution exists, we can conclude that $\left(x^{*}, y^{*}\right)=(0,4)$ is a global constrained maximizer.

2. Solution

A solution exists by Weierstrass's Theorem. The Lagrangian is

$$
L=a x_{1}+b x_{2}-\mu\left(p_{1} x_{1}+p_{2} x_{2}-w\right)+\lambda_{1} x_{1}+\lambda_{2} x_{2} .
$$

The first order conditions are:

$$
\begin{align*}
a-\mu p_{1}+\lambda_{1} & =0 \tag{1}\\
b-\mu p_{2}+\lambda_{2} & =0 \tag{2}\\
\mu\left(p_{1} x_{1}+p_{2} x_{2}-w\right) & =0 \tag{3}\\
\lambda_{1} x_{1} & =0 \tag{4}\\
\lambda_{2} x_{2} & =0 \tag{5}\\
\mu, \lambda_{1}, \lambda_{2} & \geq 0 \tag{6}\\
p_{1} x_{1}+p_{2} x_{2} \leq w, x_{1} \geq 0, x_{2} & \geq 0 . \tag{7}
\end{align*}
$$

Consider the following four cases.
(a) $x_{1}=x_{2}=0$. By (3), $\mu=0$. By (1), $\lambda_{1}=-a<0$, which violates (6). We conclude that $\left(x_{1}, x_{2}\right)=(0,0)$ cannot be a solution.
(b) $x_{1}>0$ and $x_{2}=0$. By (4), $\lambda_{1}=0$. By (1), $\mu=\frac{a}{p_{1}}>0$. Hence the budget constraint is binding, and $x_{1}=\frac{w}{p_{1}}$. Using $\mu=\frac{a}{p_{1}}$ in (2), we get $\lambda_{2}=a \frac{p_{2}}{p_{1}}-b$, which is nonnegative provided that $\frac{a}{b} \geq \frac{p_{1}}{p_{2}}$.
(c) $x_{1}=0$ and $x_{2}>0$. By (5), $\lambda_{2}=0$. By (2), $\mu=\frac{b}{p_{2}}>0$. Hence the budget constraint is binding, and $x_{2}=\frac{w}{p_{2}}$. Using $\mu=\frac{b}{p_{2}}$ in (1), we get $\lambda_{1}=b \frac{p_{1}}{p_{2}}-a$, which is nonnegative provided that $\frac{a}{b} \leq \frac{p_{1}}{p_{2}}$.
(d) $x_{1}>0$ and $x_{2}>0$. By (4) and (5), $\lambda_{1}=0$ and $\lambda_{2}=0$. By (1) and(2), $\mu=\frac{a}{p_{1}}=\frac{b}{p_{2}}>0$, which holds provided that $\frac{a}{b}=\frac{p_{1}}{p_{2}}$. In addition, the budget constraint is binding.

Summing up, when $\frac{a}{b}>\frac{p_{1}}{p_{2}}$, the unique solution is $\left(x_{1}, x_{2}\right)=\left(\frac{w}{p_{1}}, 0\right)$. When $\frac{a}{b}<\frac{p_{1}}{p_{2}}$, the unique solution is $\left(x_{1}, x_{2}\right)=\left(0, \frac{w}{p_{2}}\right)$. When, $\frac{a}{b}=\frac{p_{1}}{p_{2}}$, we have infinitely many solutions: every $\left(x_{1}, x_{2}\right)$ such that $p_{1} x_{1}+p_{2} x_{2}=w$ is a global constrained maximizer. You can easily check that the NDCQ is always satisfied.

3. Solution

The Lagrangian is

$$
L=x^{2}-x+\lambda x
$$

The first order conditions are

$$
\begin{aligned}
2 x-1+\lambda & =0 \\
\lambda x & =0 \\
x & \geq 0 \\
\lambda & \geq 0 .
\end{aligned}
$$

The set of first order conditions admit two solutions: $(x, \lambda)=(0,1)$ and $(x, \lambda)=$ $\left(\frac{1}{2}, 0\right)$.

The NDCQ trivially holds. However, neither $(0,1)$ nor $\left(\frac{1}{2}, 0\right)$ is a global maximizer. As a matter of fact, there are no global constrained maximizers in this problem. As $x \longrightarrow \infty, f(x)$ goes to infinity too. Given that a global maximizer does not exist, the Proposition mentioned allows us to find only potential local constrained maximizers. In other words, the Proposition rests on the hypothesis that local (and not necessarily global) maximizers exist. You can verify that $x=0$ is a local maximizer, and $x=\frac{1}{2}$ is a local minimizer.

4. Solution

(a) The Lagrangian is

$$
L=y-\mu\left(y^{3}-x^{2}\right) .
$$

The first order conditions are

$$
\begin{align*}
2 \mu x & =0 \tag{8}\\
1-3 \mu y^{2} & =0 \tag{9}\\
y^{3}-x^{2} & =0 . \tag{10}
\end{align*}
$$

From (8) we have either $\mu=0$ or $x=0$. If $\mu=0$,(9) cannot hold. If $x=0$, $y=0$ by (10) and, consequently, (9) cannot hold. Thus the system (8)-(10) does not admit any solution.
(b) The NDCQ fails when $\frac{\partial g}{\partial x}=\frac{\partial g}{\partial y}=0$. That is, $3 y^{2}=2 x=0$, which holds only at the point $(x, y)=(0,0)$. Notice that $(0,0)$ belongs to the constraint set.
(c) One can argue as follows. The constraint requires $y^{3}=x^{2}$. Since $x^{2} \geq 0$ for every x, this implies that $y \geq 0$. Since we want to minimize f, the lowest possible value that f can take on is when $y=0$, which requires $x=0$. Thus $(0,0)$ is the unique global constrained minimizer.

5. Solution

The Lagrangian is

$$
L=x^{2}+y^{2}+z^{2}-\mu_{1}(x+2 y+z-30)-\mu_{2}(2 x-y-3 z-10) .
$$

The first order conditions are

$$
\begin{array}{r}
2 x-\mu_{1}-2 \mu_{2}=0 \\
2 y-2 \mu_{1}+\mu_{2}=0 \\
2 z-\mu_{1}+3 \mu_{2}=0 \\
x+2 y+z-30=0 \\
2 x-y-3 z-10=0 .
\end{array}
$$

The above is a system of 5 linear equations in 5 unknowns. The unique solution is $\left(x, y, z, \mu_{1}, \mu_{2}\right)=(10,10,0,12,4)$.
The bordered Hessian is:

$$
H=\left(\begin{array}{ccccc}
0 & 0 & \frac{\partial g_{1}}{\partial x} & \frac{\partial g_{1}}{\partial y} & \frac{\partial g_{1}}{\partial z} \\
0 & 0 & \frac{\partial g_{2}}{\partial x} & \frac{\partial g_{2}}{\partial y} & \frac{\partial g_{2}}{\partial z} \\
\frac{\partial g_{1}}{\partial x} & \frac{\partial g_{2}}{\partial x} & L_{x x}^{\prime \prime} & L_{x y}^{\prime \prime} & L_{x z}^{\prime \prime} \\
\frac{\partial g_{1}}{\partial y} & \frac{\partial g_{2}}{\partial y_{2}} & L_{y x}^{\prime \prime} & L_{y y}^{\prime \prime} & L_{y z}^{\prime \prime} \\
\frac{\partial g_{1}}{\partial z} & \frac{\partial g_{2}}{\partial z} & L_{z x}^{\prime \prime} & L_{z y}^{\prime \prime} & L_{z z}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{ccccc}
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 2 & -1 & -3 \\
1 & 2 & 2 & 0 & 0 \\
2 & -1 & 0 & 2 & 0 \\
1 & -3 & 0 & 0 & 2
\end{array}\right) .
$$

In this problem, we have $n=3$ variables and $m=2$ constraints. We have to check the sign of the last $n-m$ leading principal minors. That is, we only need to check the sign of the determinant of the whole matrix H. This determinant is equal to 150 . Since $(-1)^{m}=1$ and $(-1)^{n}=-1$, and since $\operatorname{det}(H)>0$, we conclude that H is positive definite on the constraint set. Therefore, $(10,10,0)$ is a strict local minimizer of f over the given constraint set.

