Neural Network Language Models

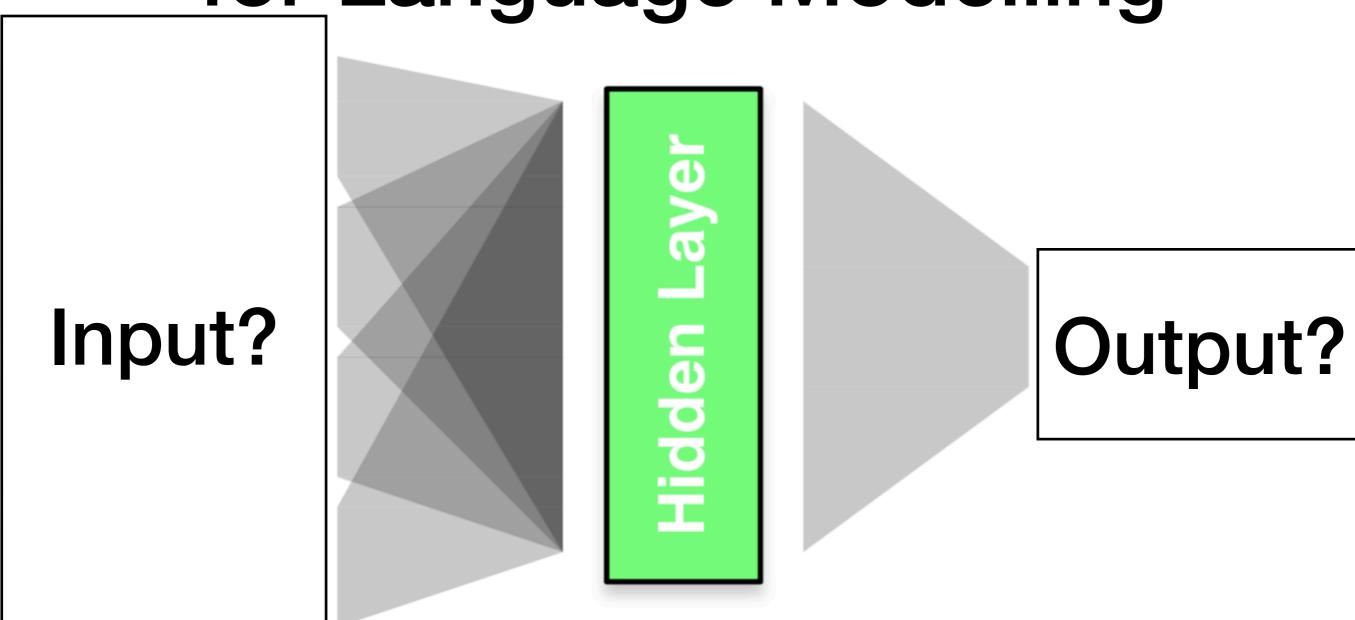
Mittul Singh

Recap: N-gram Language Models

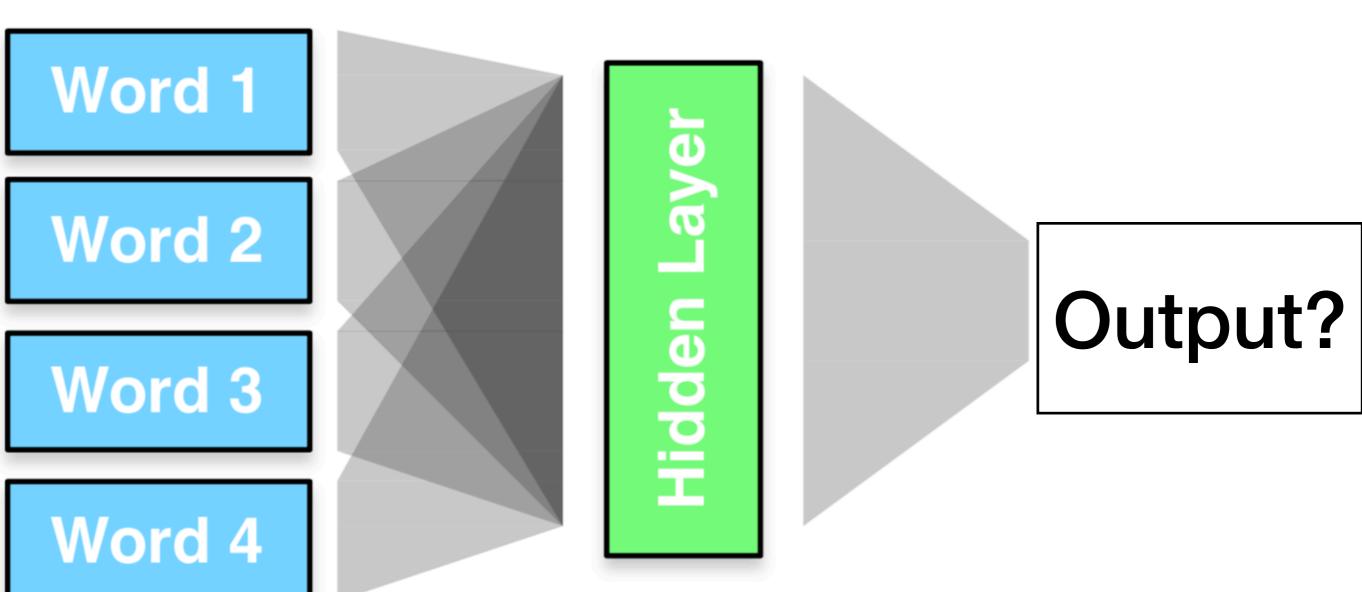
N-gram language model

$$P(w_i|w_{i-1},w_{i-2},w_{i-3},w_{i-4})$$

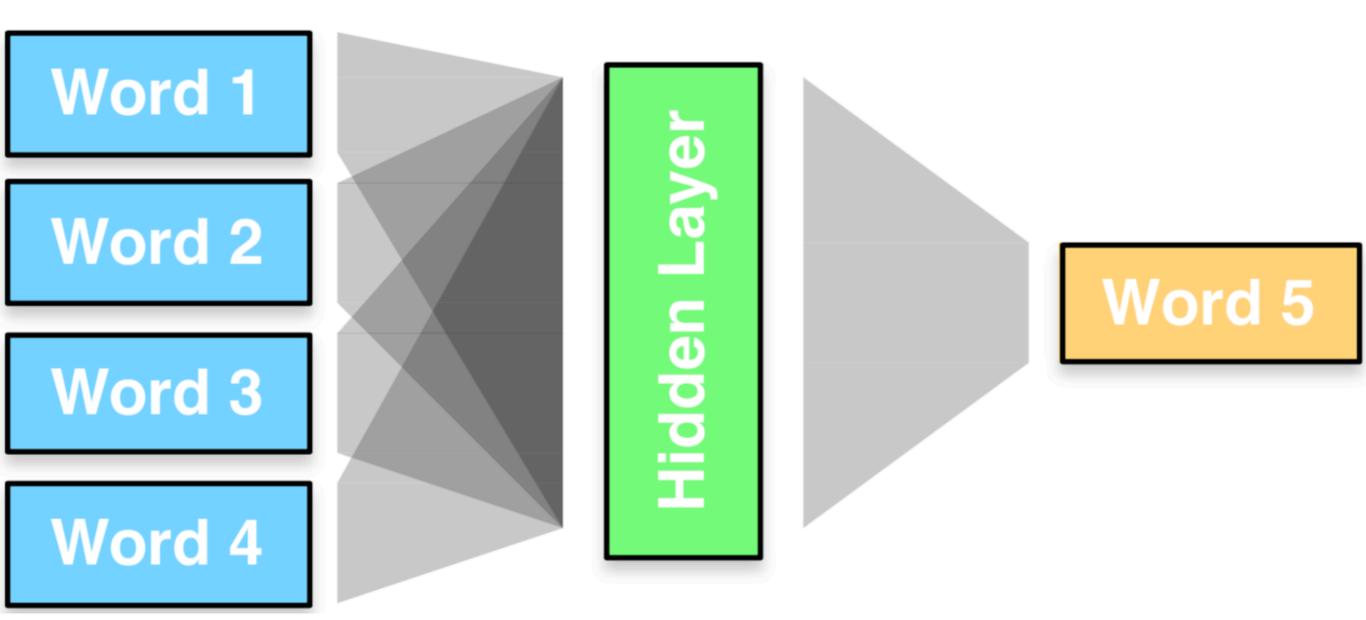
Neural Network Classifier for Language Modelling



Neural Network Classifier for Language Modelling



Neural Network Classifier for Language Modelling

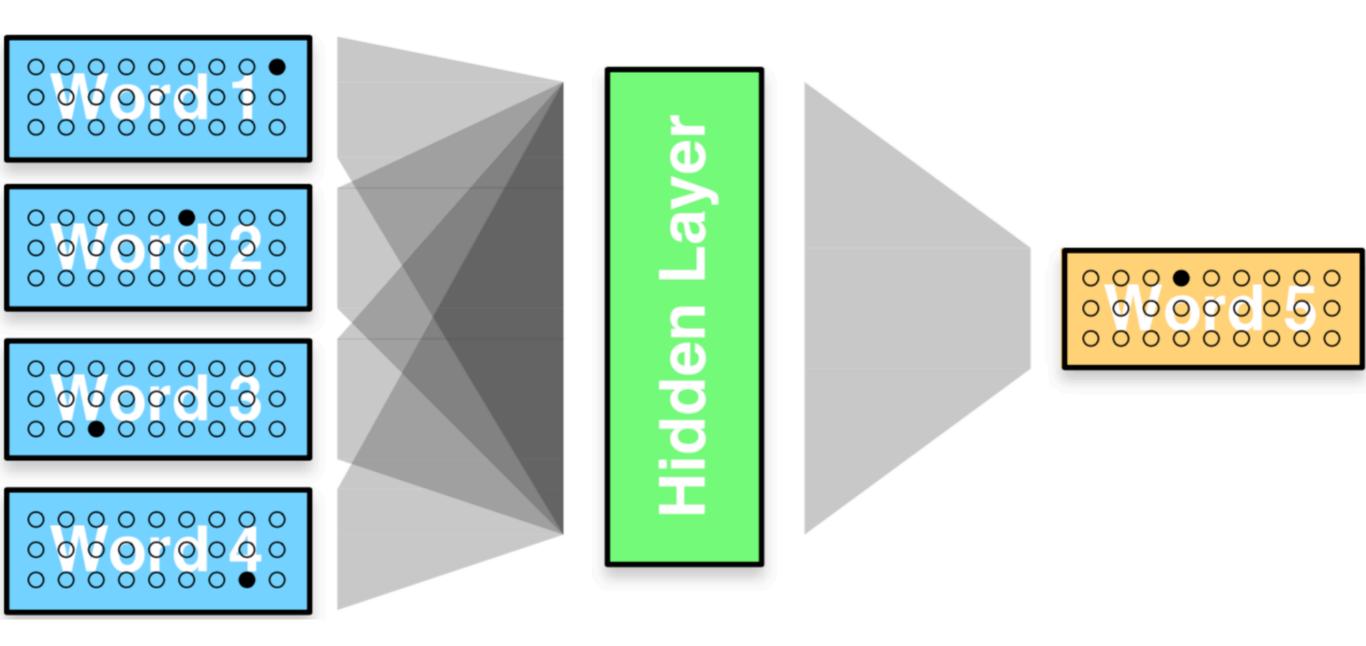


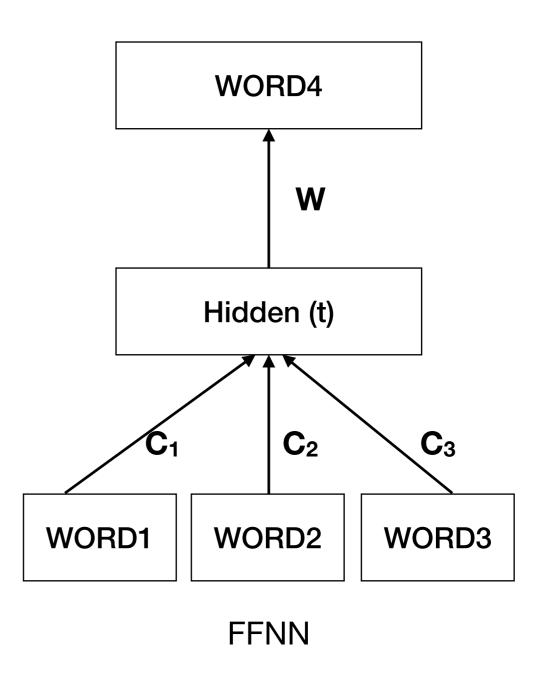
Representing Words

Representing Words

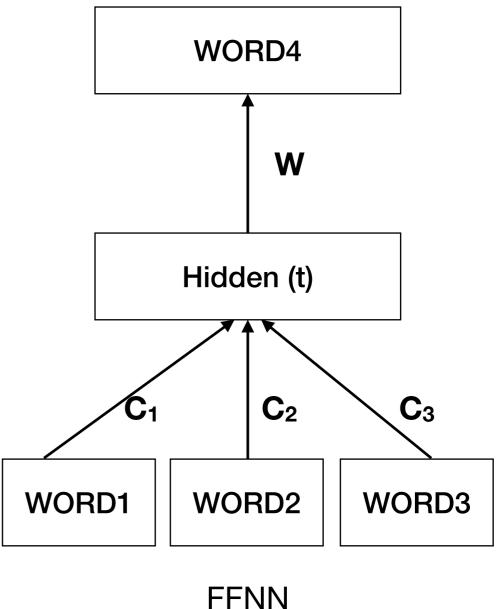
- Words are represented with one-hot vector, e.g.,
 - dog = (0, 0, 0, 1, 0, 0, ...)
 - cat = (0, 0, 0, 0, 0, 1, ...)
 - eat = (0, 1, 0, 0, 0, 0, ...)

Second Sketch

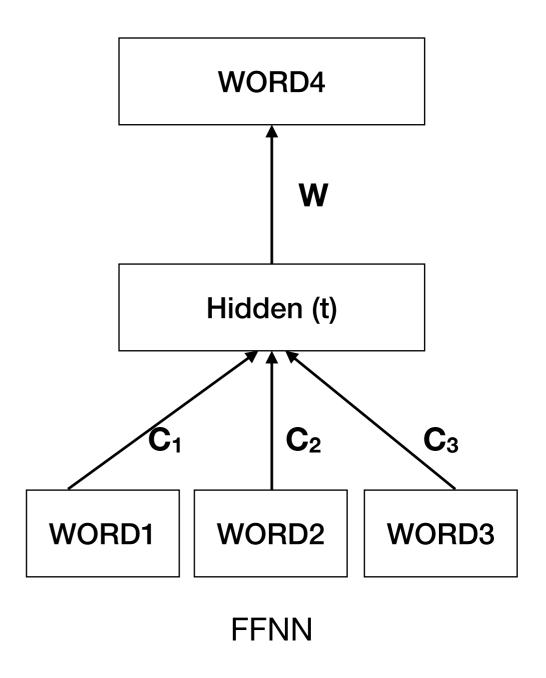




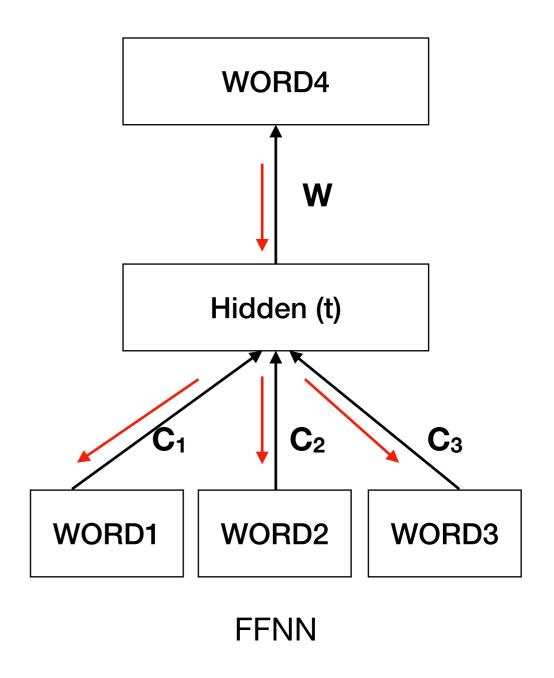
Loop through the entire corpus



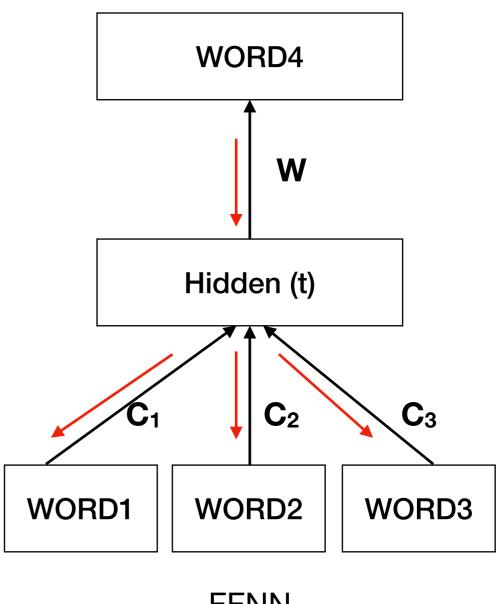
- Loop through the entire corpus
- Calculate error or loss (cross-entropy loss)



- Loop through the entire corpus
- Calculate error or loss (cross-entropy loss)
- Propagate the error through network to update the weight matrices



- Loop through the entire corpus
- Calculate error or loss (cross-entropy loss)
- Propagate the error through network to update the weight matrices
- **Back Propagation**



FFNN

The cat is walking in the bedroom

A dog was running in a room

The cat is walking in the bedroom

A dog was running in a room

The cat is running in a room

-> A dog is walking in a bedroom

The dog was walking in the room

The cat is walking in the bedroom

A dog was running in a room

The cat is running in a room

A dog is walking in a bedroom

The dog was walking in the room

 NNLM generalizes in such a way that similar words have similar vectors

The cat is walking in the bedroom

A dog was running in a room

The cat is running in a room

A dog is walking in a bedroom

The dog was walking in the room

- NNLM generalizes in such a way that similar words have similar vectors
- Presence of only one such sentence in the training set helps improve the probability of its combinations

Types of NNLM

- Feedforward Neural Network Language Model
- Recurrent Neural Network Language Model
- Long-Short Term Memory LM
- Transformer-based LM

• ..

NNLM: Questions

 What might be some challenges that you might face while training or applying NNLMs?

Long-Range Dependencies

- Long-Range Dependencies
- Training Speed

- Long-Range Dependencies
- Training Speed
- On-disk Size

- Long-Range Dependencies
- Training Speed
- On-disk Size
- Rare Context

- Long-Range Dependencies
- Training Speed
- On-disk Size
- Rare Context

• ...

Feedforward: Long-term information

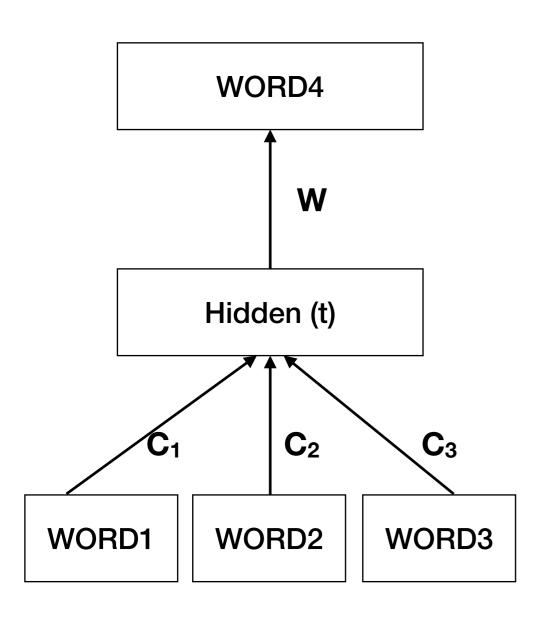
"I grew up in France... I speak fluent _____."

Feedforward: Long-term information

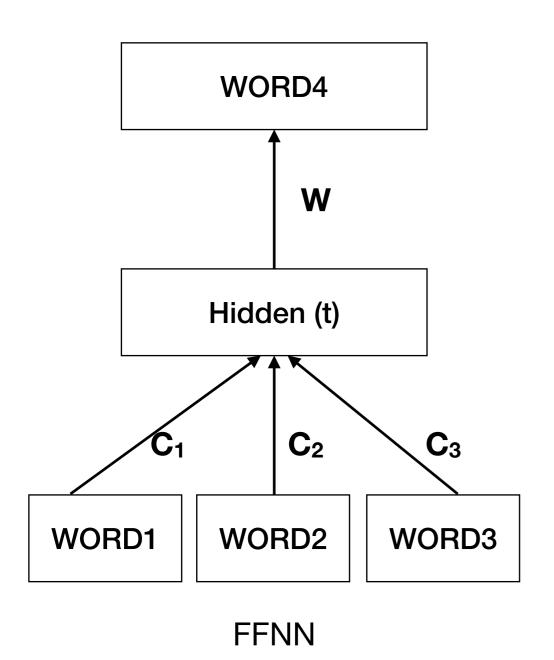
• "I grew up in France... I speak fluent French."

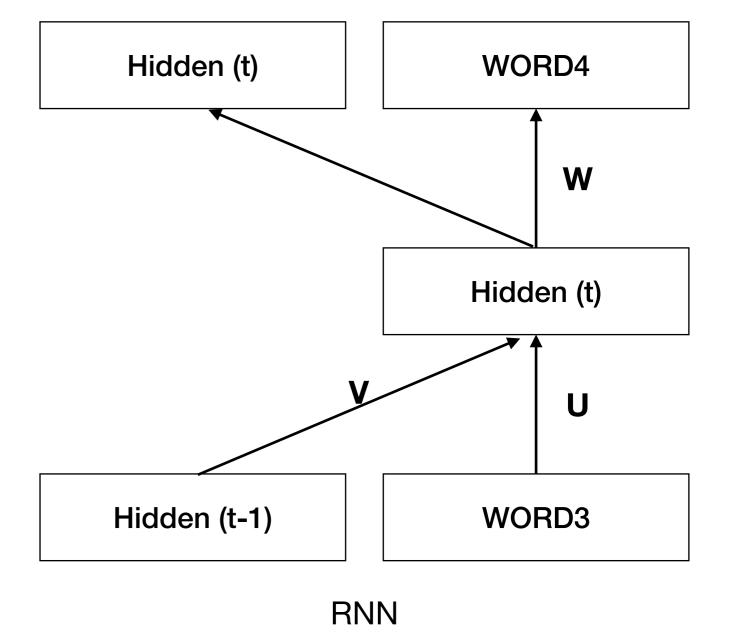
Feedforward: Long-term information

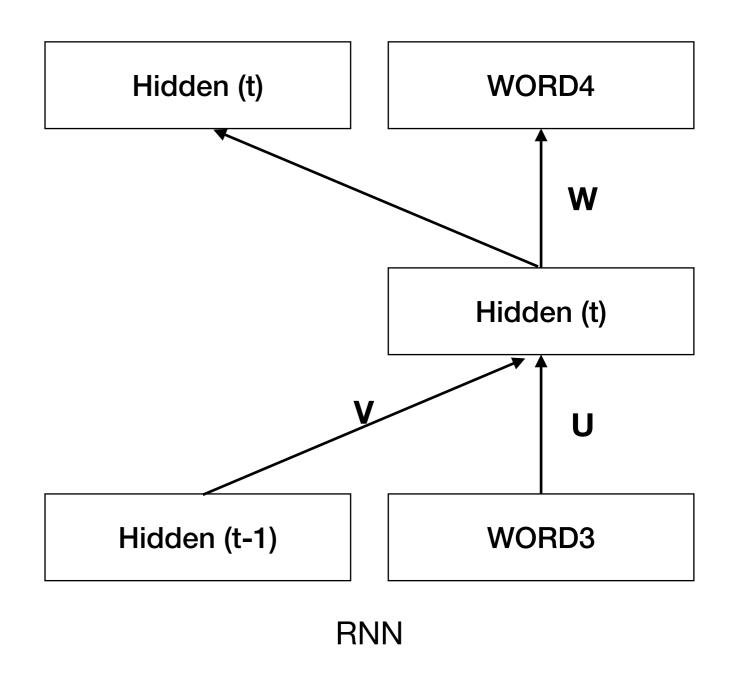
- "I grew up in France... I speak fluent <u>French</u>."
- Feedforward Neural Network (FFNN) has limited context size

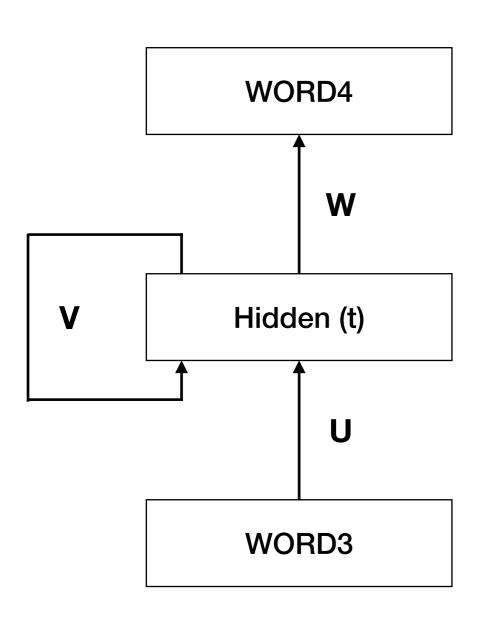


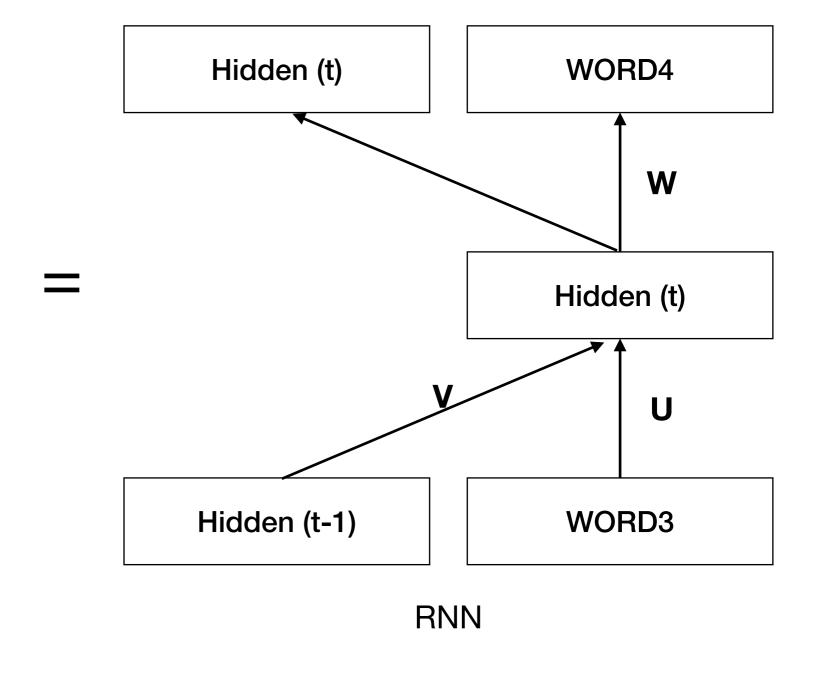
FFNN



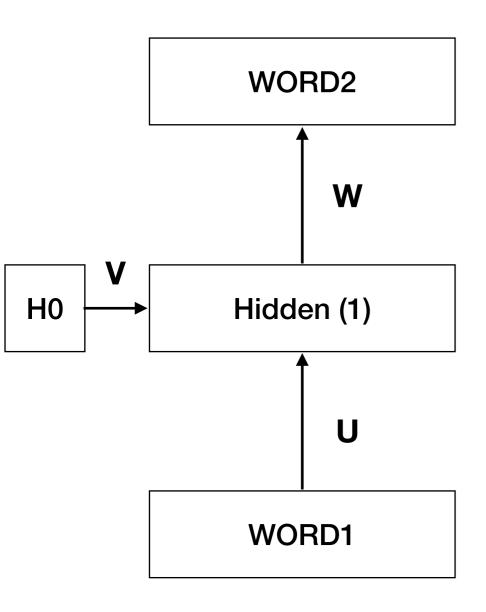




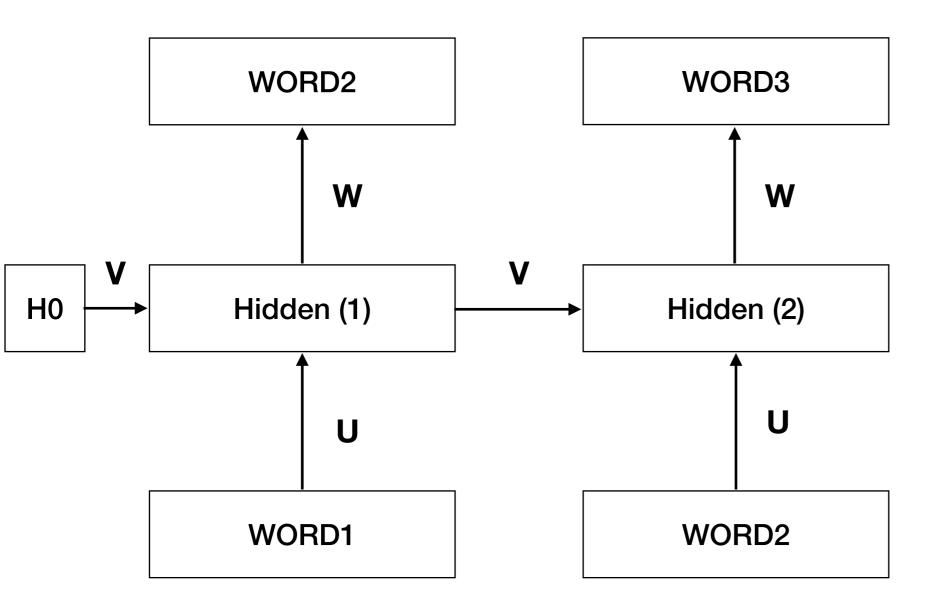




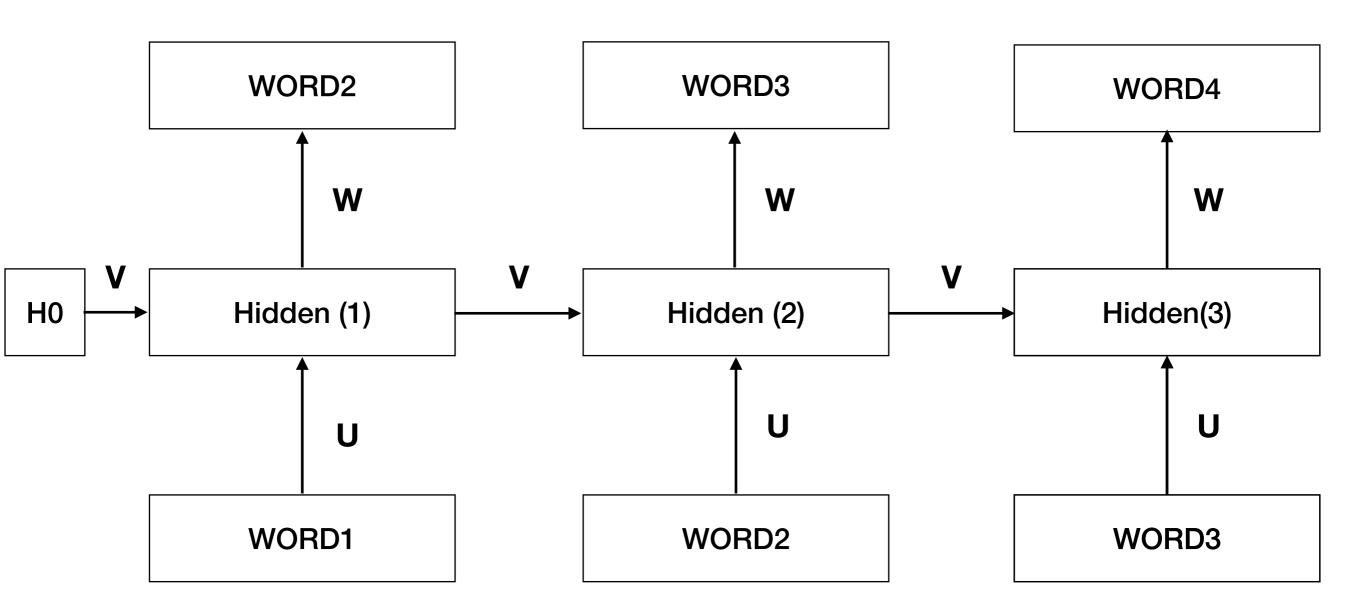
RNN: Timestep 1



RNN: Timestep 2



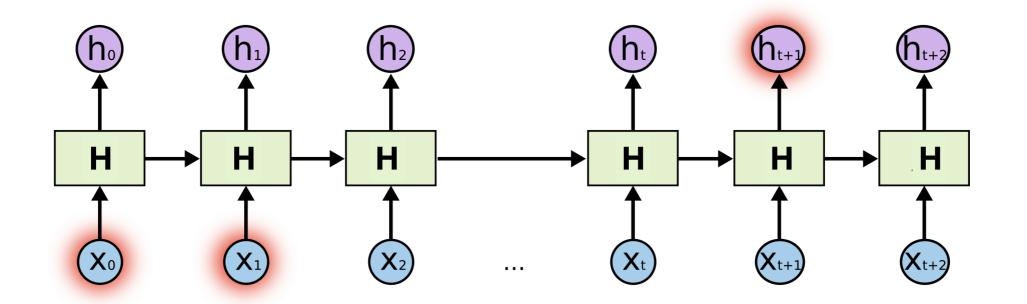
RNN: Timestep 3



Theoretically information from first step is available to the present timestep

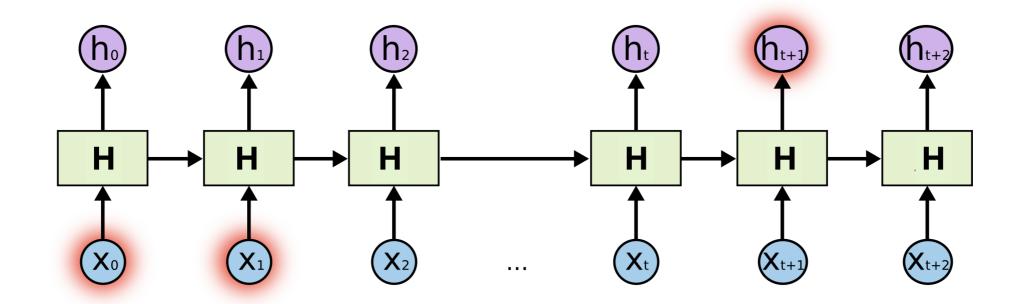
RNN

• "I grew up in France... I speak fluent French."

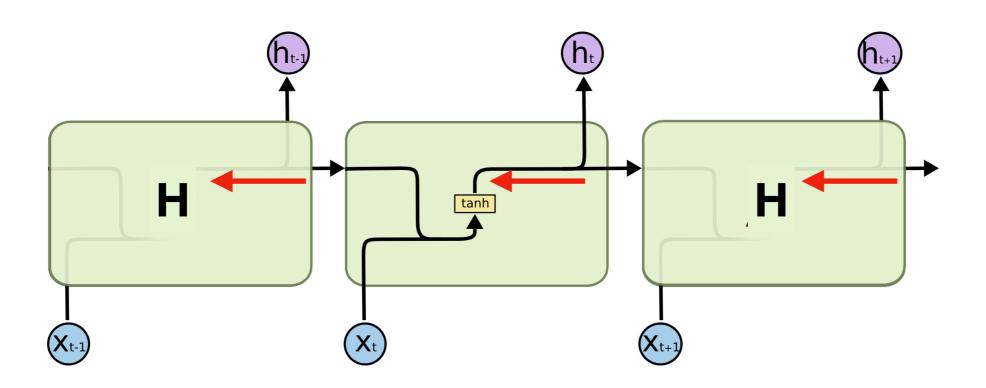


RNN

- "I grew up in France... I speak fluent French."
- As the gap grows, RNNs become unable to learn to connect information



RNN



- Error (red arrow) is passed through a chain of hidden states
- Error passing through multiple of these functions can vanish

 The main problem with RNNs is that gradients less than 1 become exponentially small over time

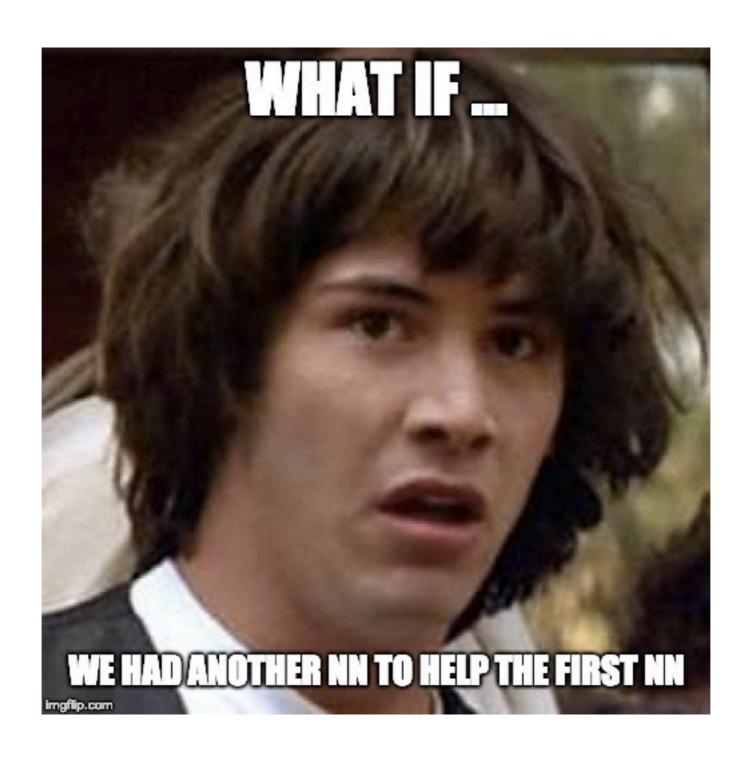
- The main problem with RNNs is that gradients less than 1 become exponentially small over time
- Known as the vanishing gradient problem

- The main problem with RNNs is that gradients less than 1 become exponentially small over time
- Known as the vanishing gradient problem
- Gradients greater than 1 become exponentially large over time (the exploding gradient problem)*

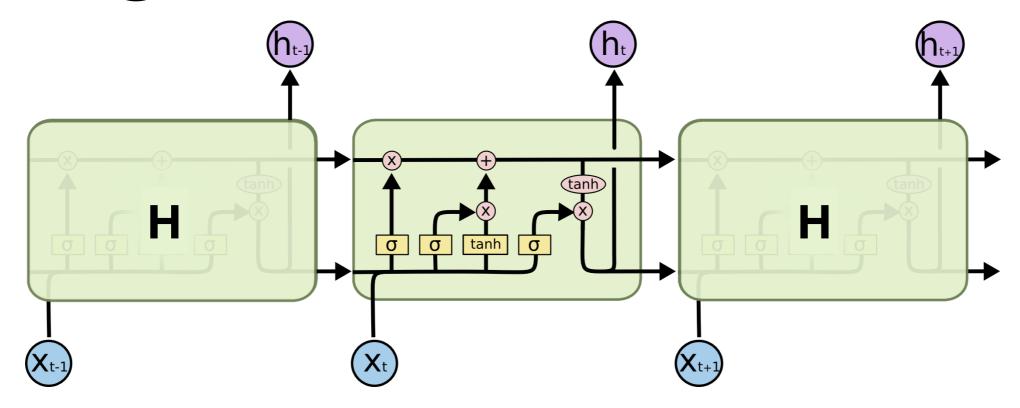
- The main problem with RNNs is that gradients less than 1 become exponentially small over time
- Known as the vanishing gradient problem
- Gradients greater than 1 become exponentially large over time (the exploding gradient problem)*
- This leads to training instability, and bad results

- The main problem with RNNs is that gradients less than 1 become exponentially small over time
- Known as the vanishing gradient problem
- Gradients greater than 1 become exponentially large over time (the exploding gradient problem)*
- This leads to training instability, and bad results
- Sequence Modeling: https://www.deeplearningbook.org/ contents/rnn.html

ASR 2020 Alto University

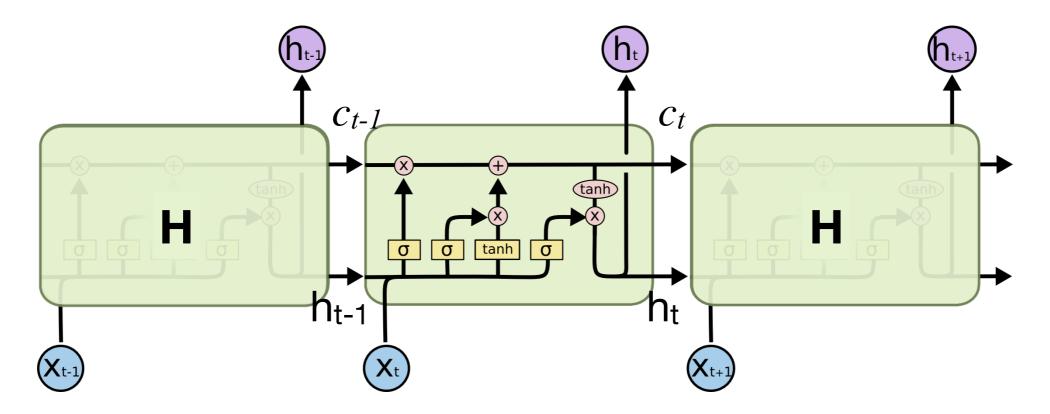


Long-Short Term Memory

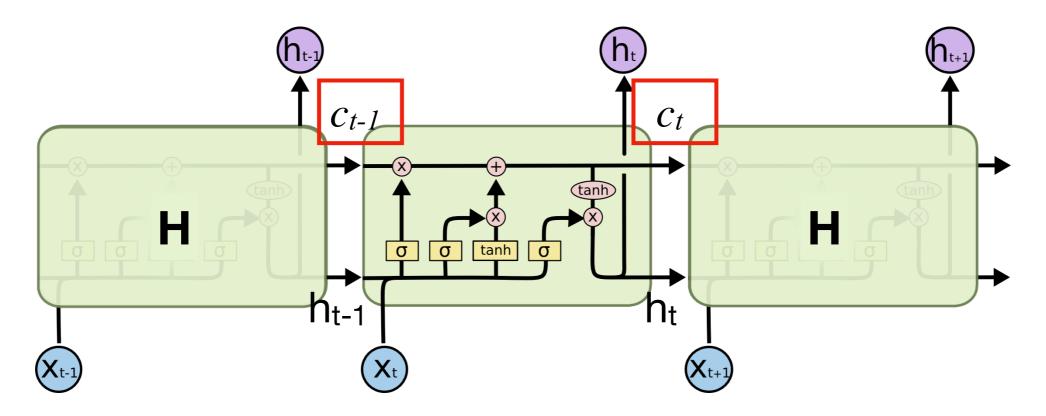


- Lets add another neural network help the first network learn long-distance relationships
- That's basically what we do when we add more weight matrices to a neural network

LSTM: States

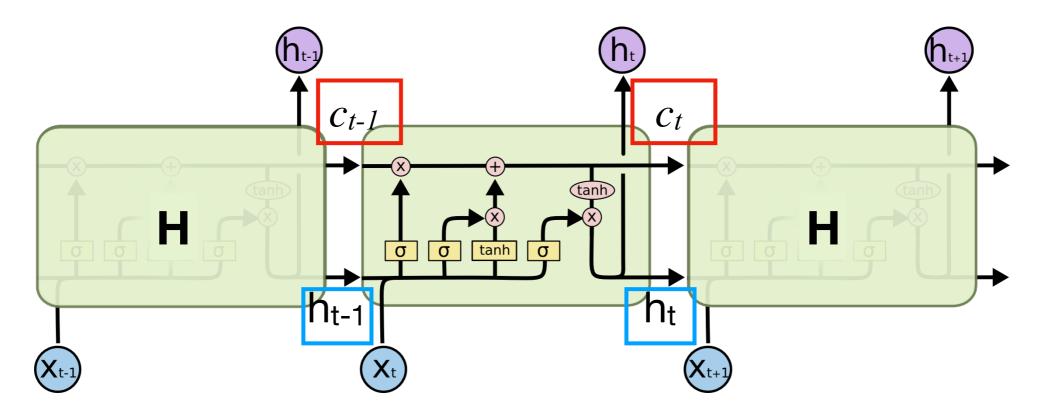


LSTM: States

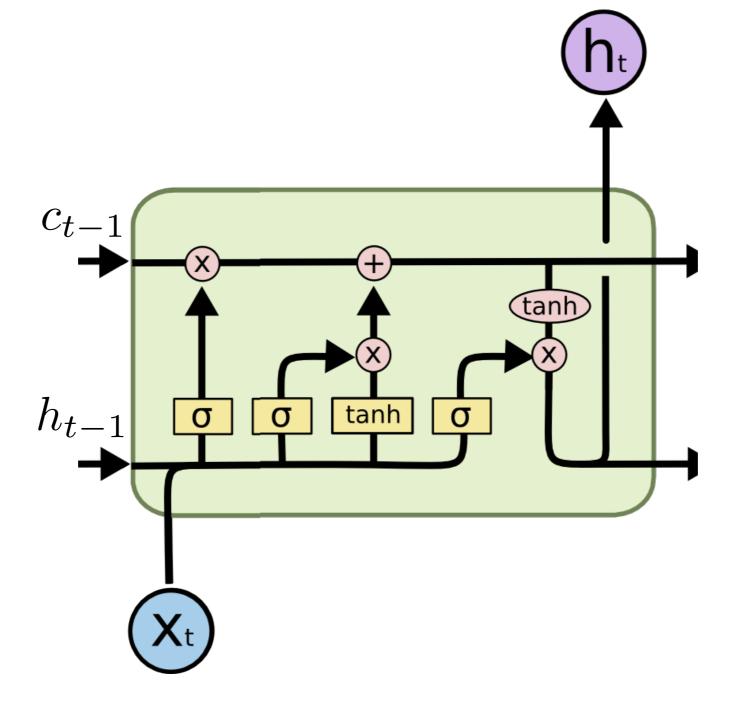


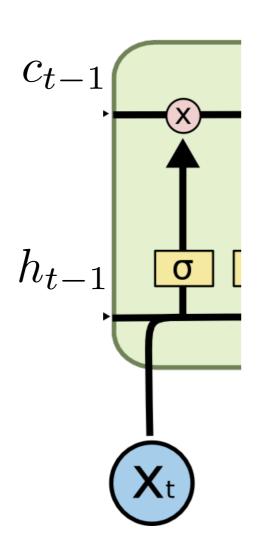
• Global State c captures global information at the document/ sentence level

LSTM: States



- Global State c captures global information at the document/ sentence level
- LSTM hidden state h_t interacts with this global state to predict the next word





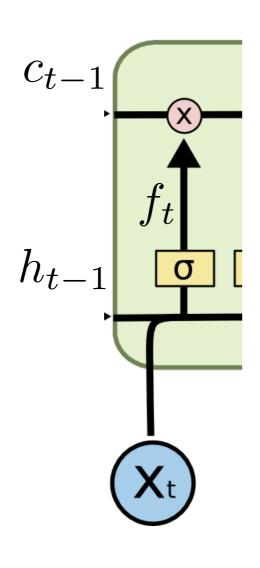
 σ sigmoid function

 w_x weight of the respective gate(x)

 b_x bias of the respective gate(x)

 h_{t-1} output of the previous LSTM

 x_t input at current timestamp



$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$

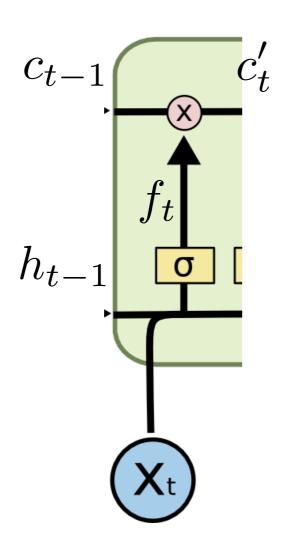
 σ sigmoid function

 w_x weight of the respective gate(x)

 b_x bias of the respective gate(x)

 h_{t-1} output of the previous LSTM

 x_t input at current timestamp



$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$

 $c'_t = c_{t-1} * f_t$

 σ sigmoid function

 w_x weight of the respective gate(x)

 b_x bias of the respective gate(x)

 h_{t-1} output of the previous LSTM

 x_t input at current timestamp

$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$

 $c'_t = c_{t-1} * f_t$

$$w_f = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
$$b_f = 0$$

- σ : sigmoid fn *: pointwise multiplication
- $h_{t-1} = [1], c_{t-1} = [2], x_t = [0.2]$
- calculate: c_t^\prime

$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$

 $c'_t = c_{t-1} * f_t$

$$w_f = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
$$b_f = 0$$

- σ : sigmoid fn *: pointwise multiplication
- $h_{t-1} = [1], \quad c_{t-1} = [2], \quad x_t = [0.2]$
- calculate: c_t^\prime

$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$

 $c'_t = c_{t-1} * f_t$

$$w_f = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
$$b_f = 0$$

- σ : sigmoid fn *: pointwise multiplication
- $h_{t-1} = [1], \quad c_{t-1} = [2], \quad x_t = [0.2]$
- calculate: c_t' $w_f[h_{t-1}, x_t] + b_f = \begin{bmatrix} 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0.2 \end{bmatrix} = [1.2]$

$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$

 $c'_t = c_{t-1} * f_t$

$$w_f = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
$$b_f = 0$$

- σ : sigmoid fn *: pointwise multiplication
- $h_{t-1} = [1], \quad c_{t-1} = [2], \quad x_t = [0.2]$
- calculate: c'_t $w_f[h_{t-1}, x_t] + b_f = \begin{bmatrix} 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 1.2 \end{bmatrix}$ $f_t = [\sigma(1.2)] = [0.77]$

$$f_t = \sigma(w_f[h_{t-1}, x_t] + b_f)$$

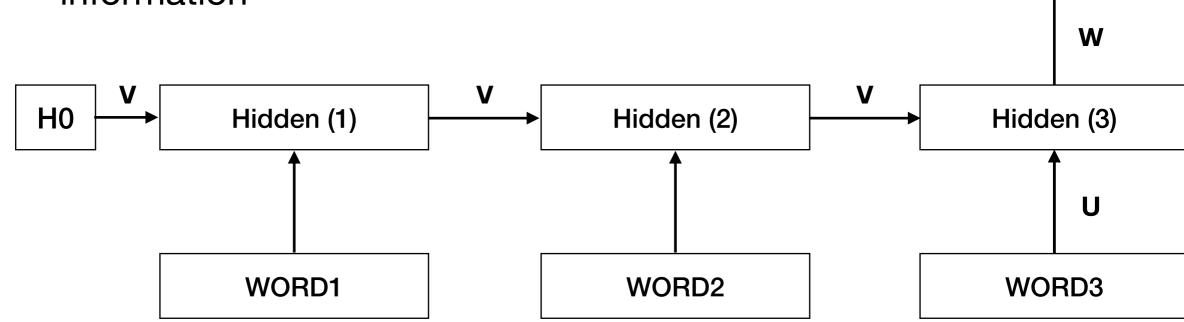
 $c'_t = c_{t-1} * f_t$

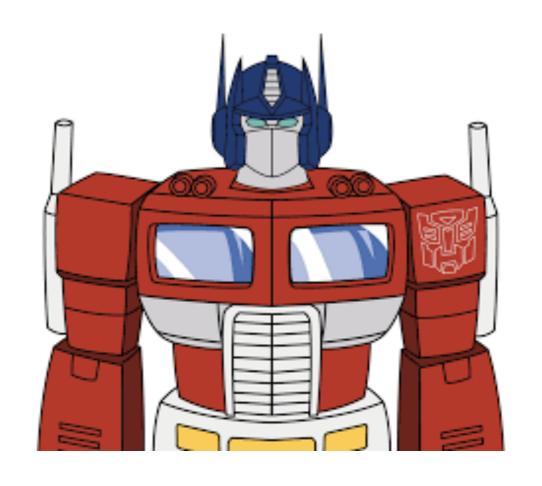
$$w_f = \begin{bmatrix} 1 & 1 \end{bmatrix}$$
$$b_f = 0$$

- σ : sigmoid fn *: pointwise multiplication
- $h_{t-1} = [1], \quad c_{t-1} = [2], \quad x_t = [0.2]$
- calculate: c'_t $w_f[h_{t-1}, x_t] + b_f = \begin{bmatrix} 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 1.2 \end{bmatrix}$ $f_t = [\sigma(1.2)] = [0.77]$ $c'_t = c_{t-1} * f_t = [2] * [0.77] = [1.54]$

LSTM Problems

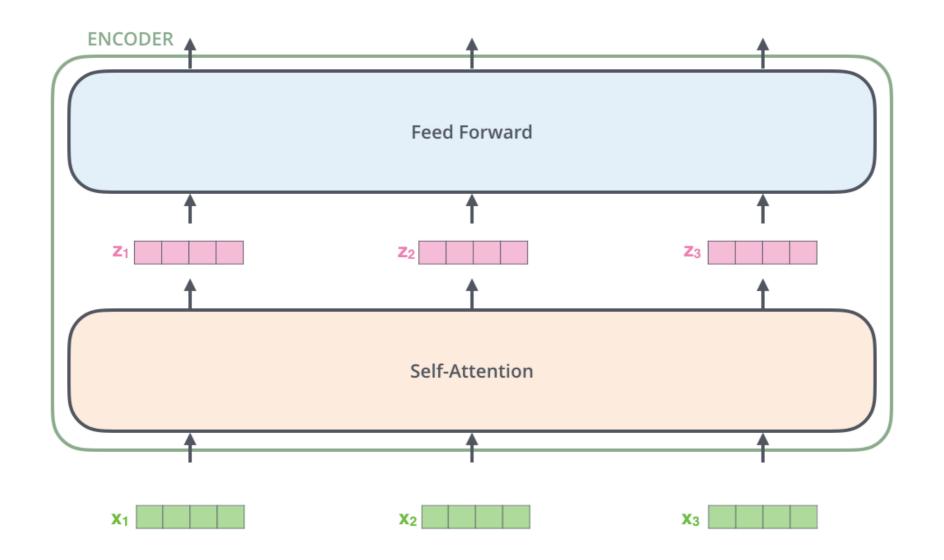
- Forget gate: removes information from the Global Cell state (C)
 - this information might be be useful at a later stage
- Implicit representation of long-term information
 - Cell state and previous hidden state summarise the prior information





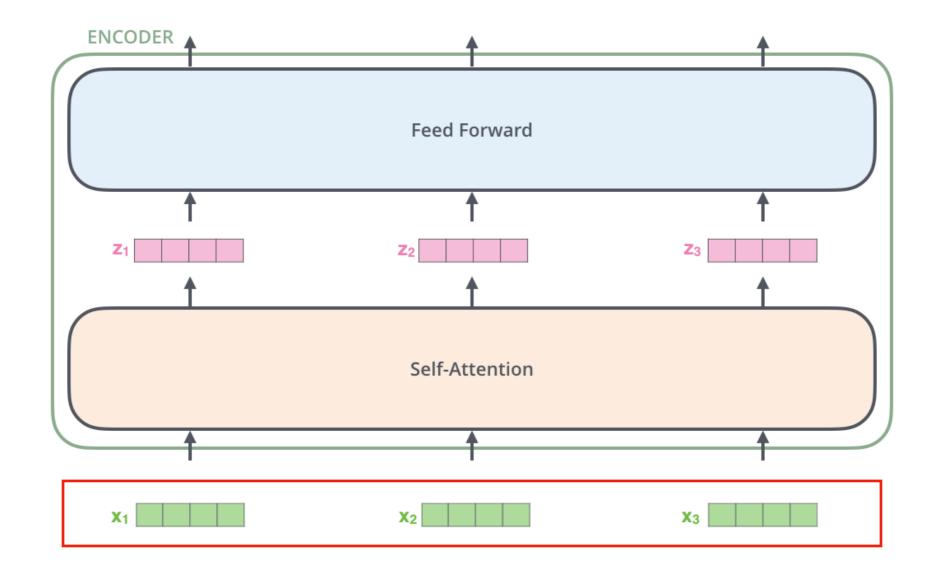
Transformers for Language Modelling

Transformers: Simplified



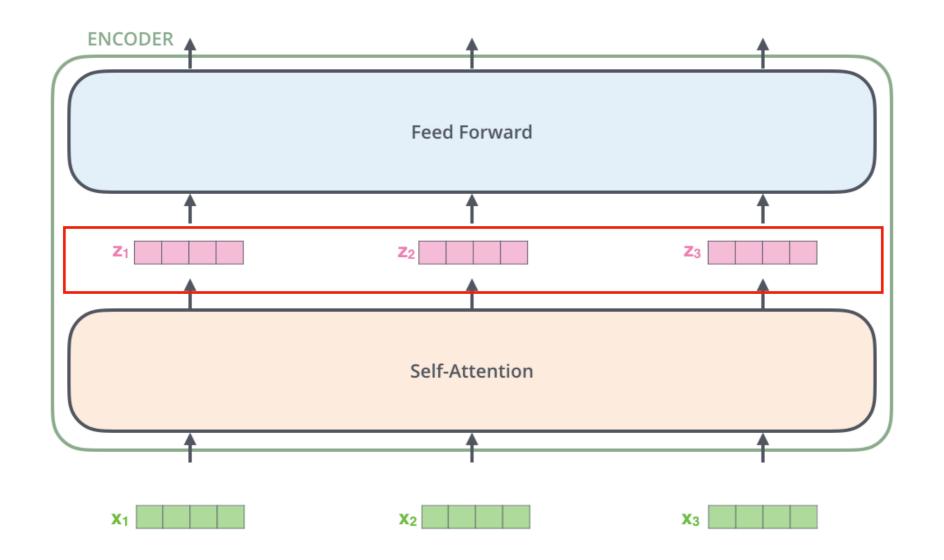
Multiple (50-90) such layers in a Transformer LM

Transformers: Simplified



Multiple (50-90) such layers in a Transformer LM

Transformers: Simplified

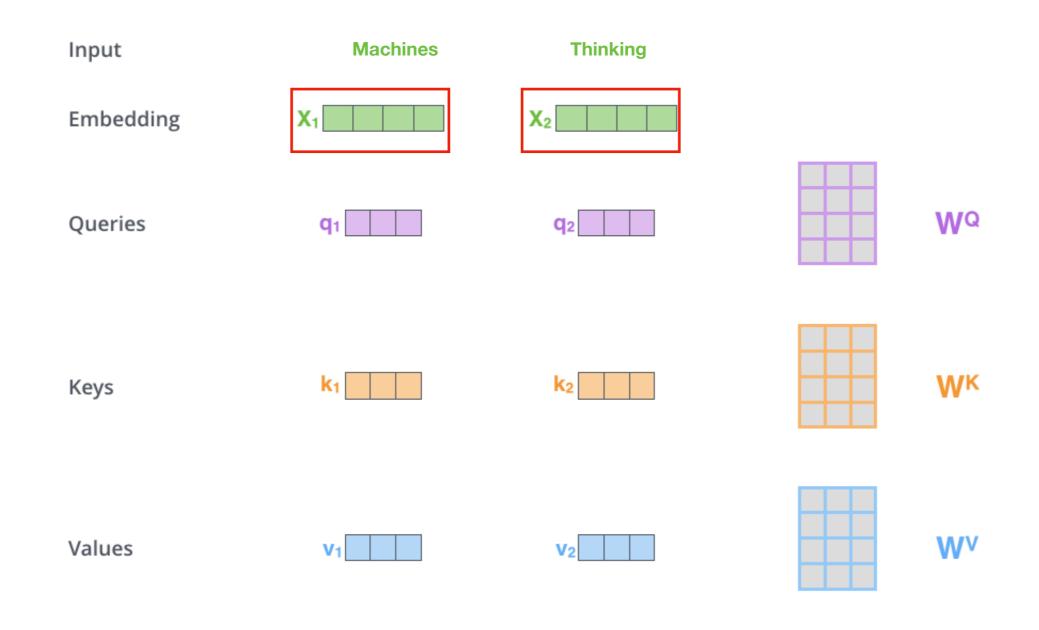


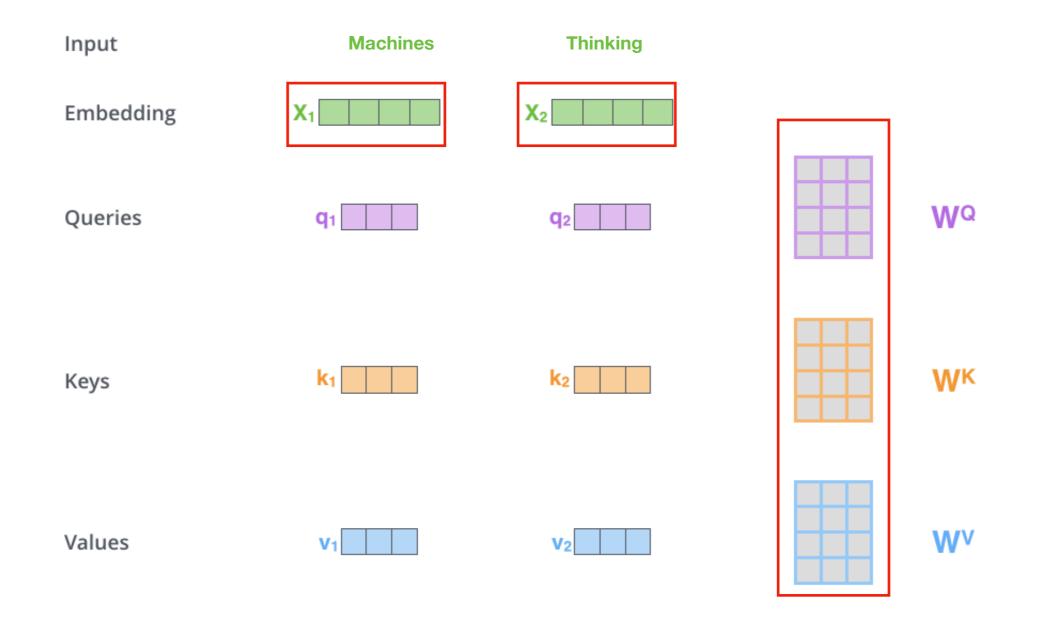
Multiple (50-90) such layers in a Transformer LM

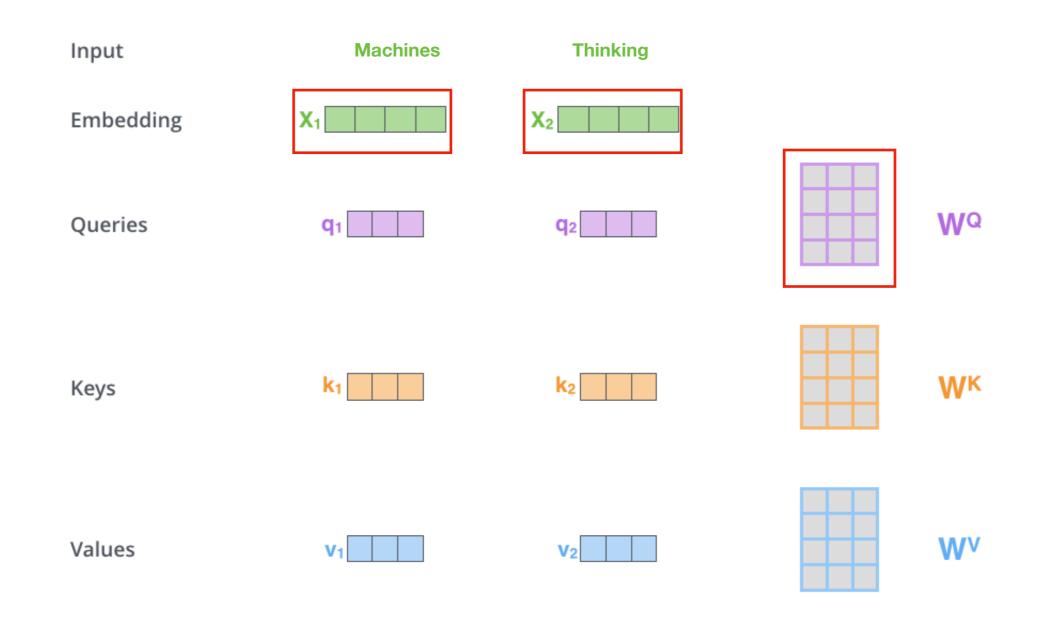
Self-Attention

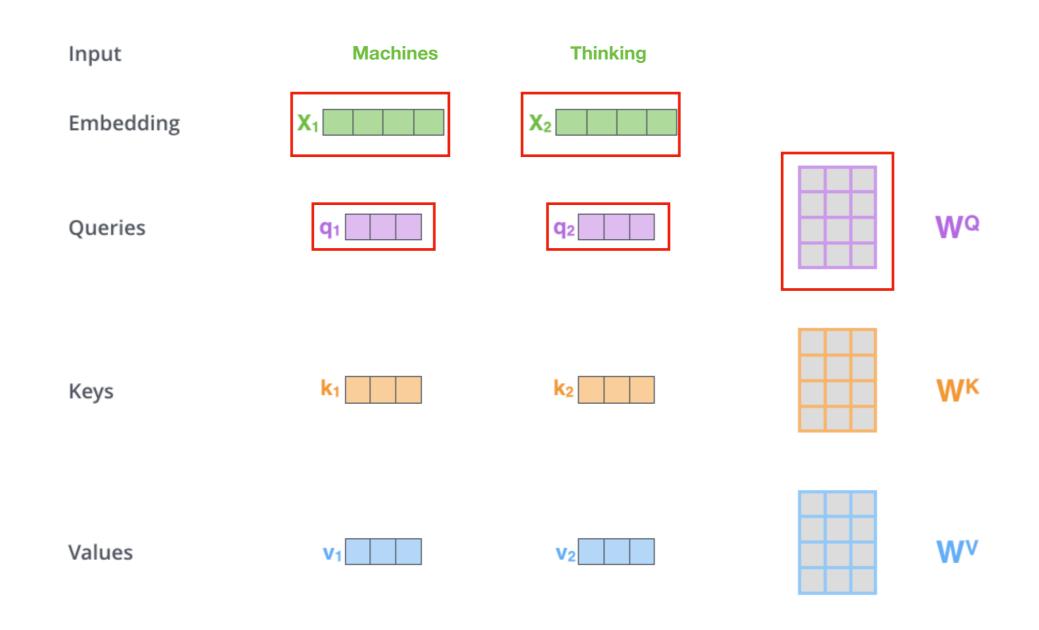
- E.g. "The animal didn't cross the street because it was too tired"
- What does "it" refer to? "The animal" or "the street"
- Self-attention is the mechanism that helps LM associate:
 - "it" with "the animal"

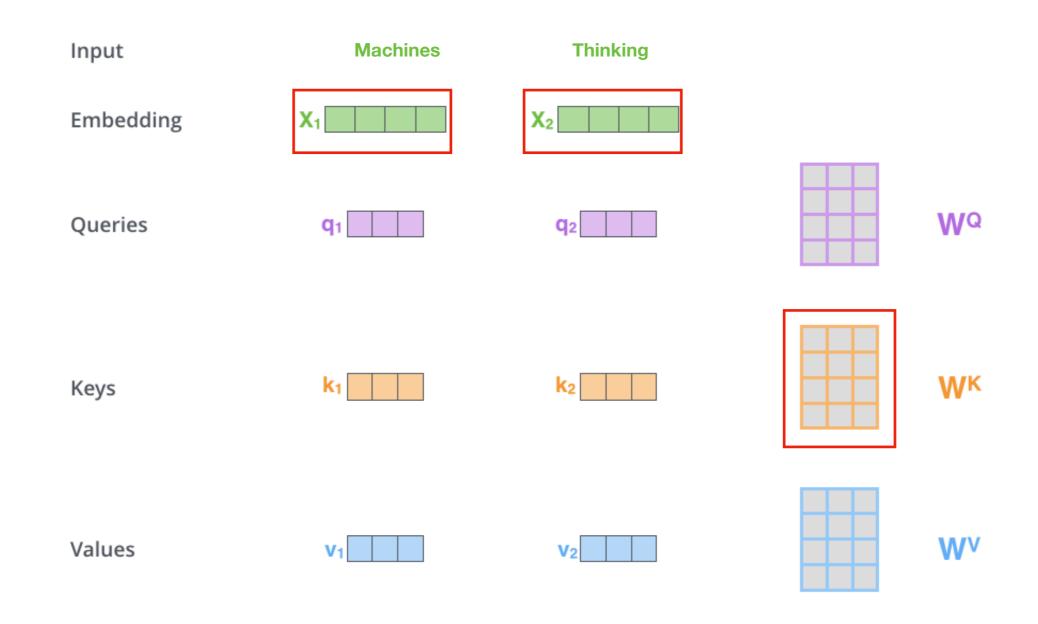
ASR 2020 Alto University

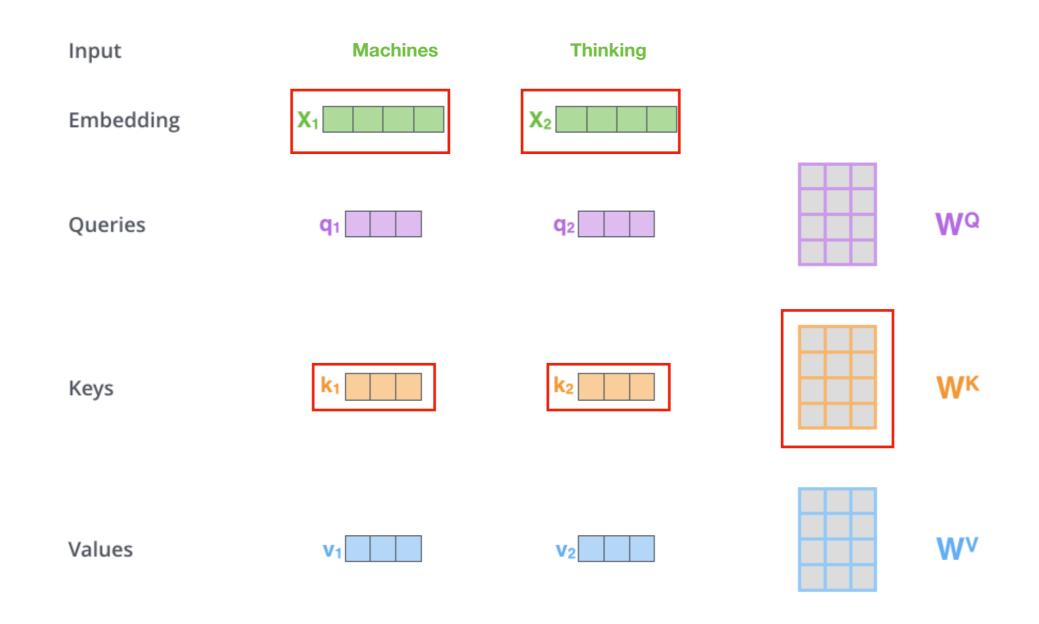


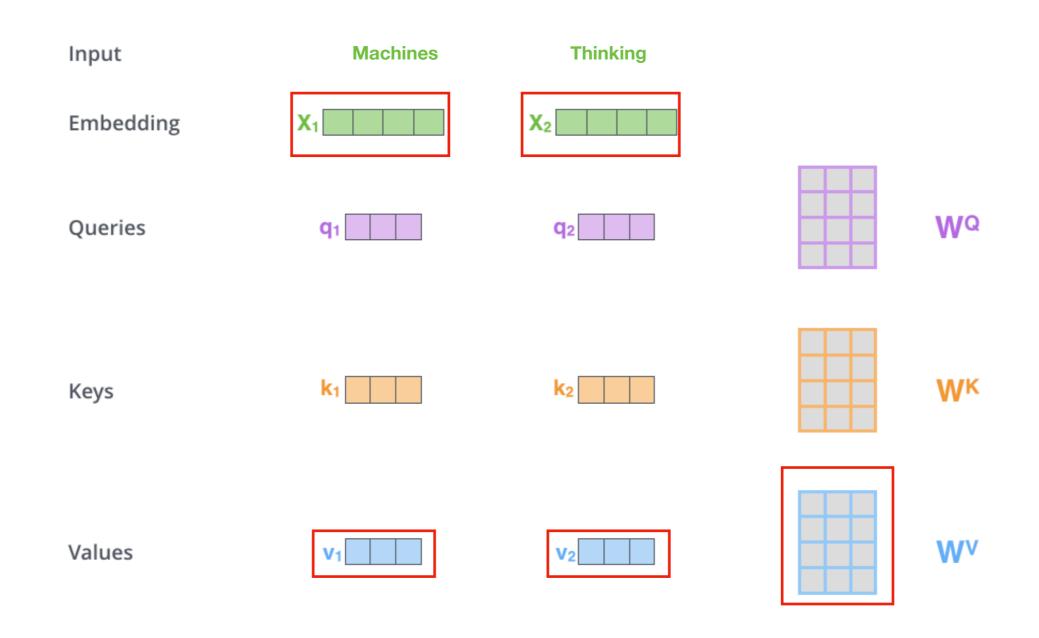












Input	Machines	Thinking
Embedding	X ₁	X ₂
Queries	q ₁	q ₂
Keys	k ₁	k ₂
Values	V ₁	V ₂

Aalto University

Input	Machines	Thinking
Embedding	X ₁	X ₂
Queries	q ₁	q ₂
Keys	k ₁	k ₂
Values	V ₁	V ₂
Score	q ₁ • k ₁ = 112	q ₁ • k ₂ = 96

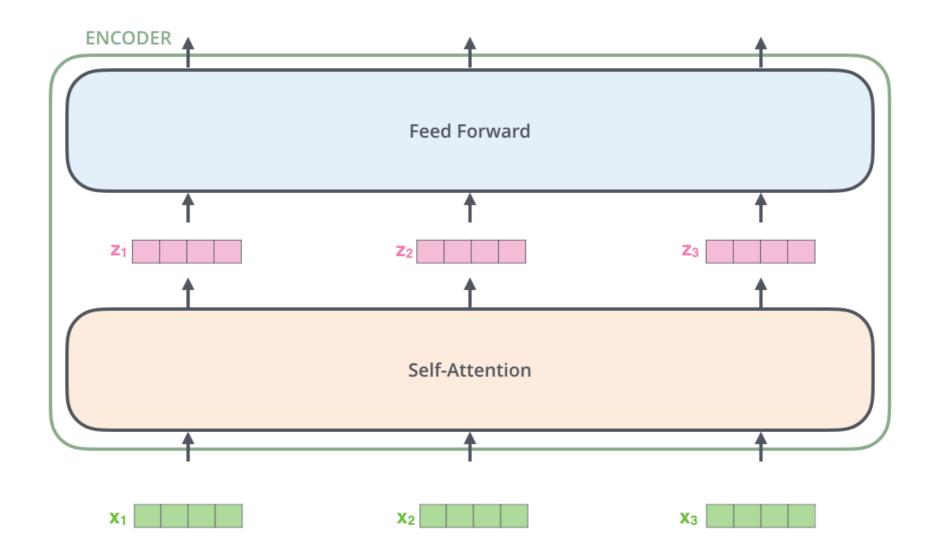
Input	Machines	Thinking
Embedding	X ₁	X ₂
Queries	q ₁	q ₂
Keys	k ₁	k ₂
Values	V ₁	V ₂
Score	q ₁ • k ₁ = 112	$q_1 \cdot k_2 = 96$
Divide by 8 ($\sqrt{d_k}$)	14	12

Input	Machines	Thinking
Embedding	X ₁	X ₂
Queries	q ₁	q ₂
Keys	k ₁	k ₂
Values	V ₁	V ₂
Score	q ₁ • k ₁ = 112	q ₁ • k ₂ = 96
Divide by 8 ($\sqrt{d_k}$)	14	12
Softmax	0.88	0.12

Input	Machines	Thinking
Embedding	X ₁	X ₂
Queries	q ₁	q ₂
Keys	k ₁	k ₂
Values	V ₁	V ₂
Score	q ₁ • k ₁ = 112	q ₁ • k ₂ = 96
Divide by 8 ($\sqrt{d_k}$)	14	12
Softmax	0.88	0.12
Softmax X Value	V ₁	V ₂

Input	Machines	Thinking
Embedding	X ₁	X ₂
Queries	q ₁	q ₂
Keys	k ₁	k ₂
Values	V ₁	V ₂
Score	q ₁ • k ₁ = 112	$q_1 \cdot k_2 = 96$
Divide by 8 ($\sqrt{d_k}$)	14	12
Softmax	0.88	0.12
Softmax X Value	V ₁	V ₂
Sum	Z 1	Z ₂

Transformers: Simplified



Self-Attention

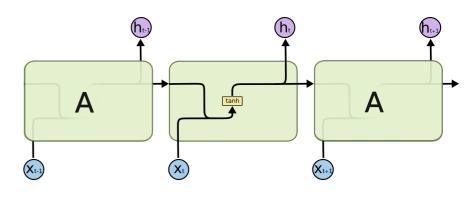
• Self-Attention seems to be asking an association question

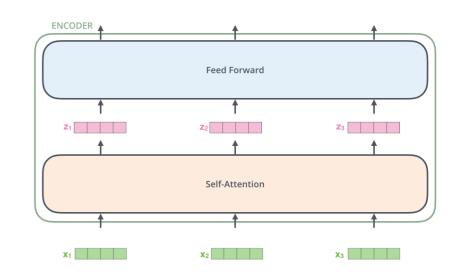
Self-Attention

- Self-Attention seems to be asking an association question
- Query ~ smaller word embedding

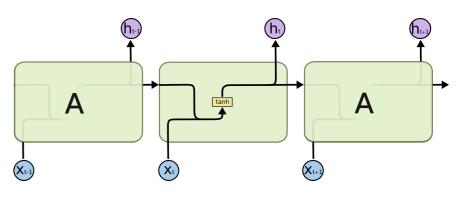
Self-Attention

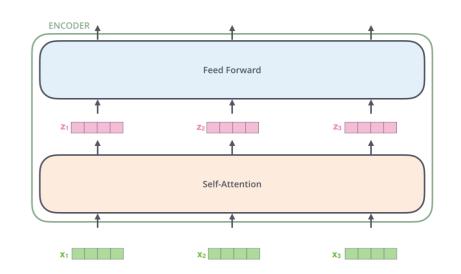
- Self-Attention seems to be asking an association question
- Query ~ smaller word embedding
- Key & Value ~ Key is the hash key that maps to Value



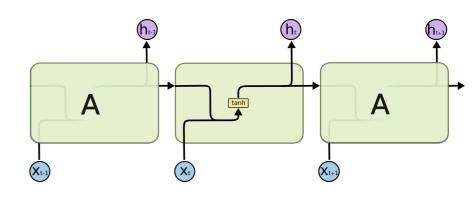


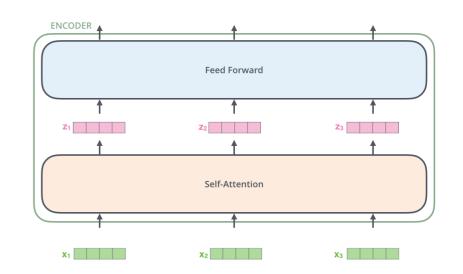
RNNs: Process tokens one-by-one





- RNNs: Process tokens one-by-one
 - Chain of dependencies built using a single token



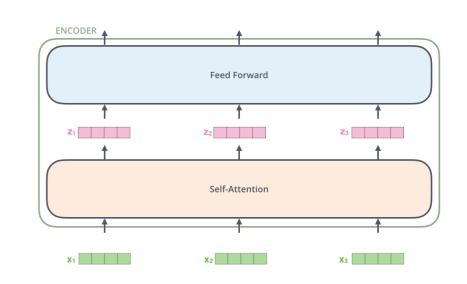


Aalto University

- RNNs: Process tokens one-by-one
 - Chain of dependencies built using a single token

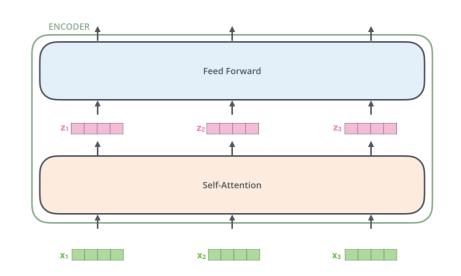
A Tanh A

Transformers LM: Process a segment of tokens



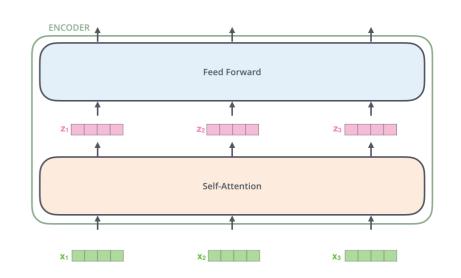
- RNNs: Process tokens one-by-one
 - Chain of dependencies built using a single token
- A Lanh A A

- Transformers LM: Process a segment of tokens
 - Dependencies within the segment

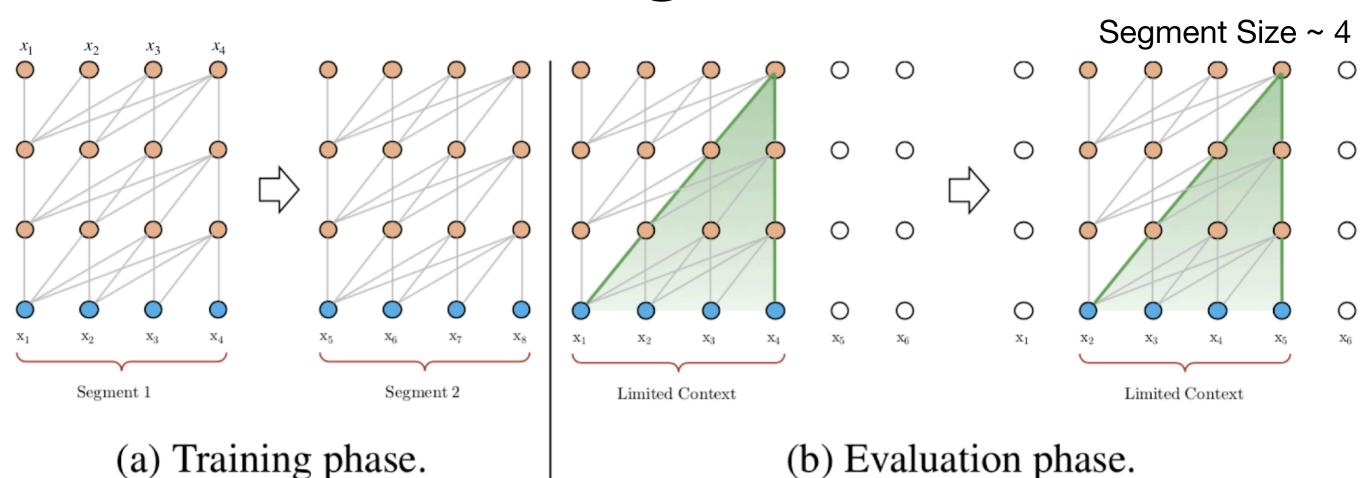


- RNNs: Process tokens one-by-one
 - Chain of dependencies built using a single token
- A Lanh A Kee

- Transformers LM: Process a segment of tokens
 - Dependencies within the segment
 - Within segment position is given by the positional encoding

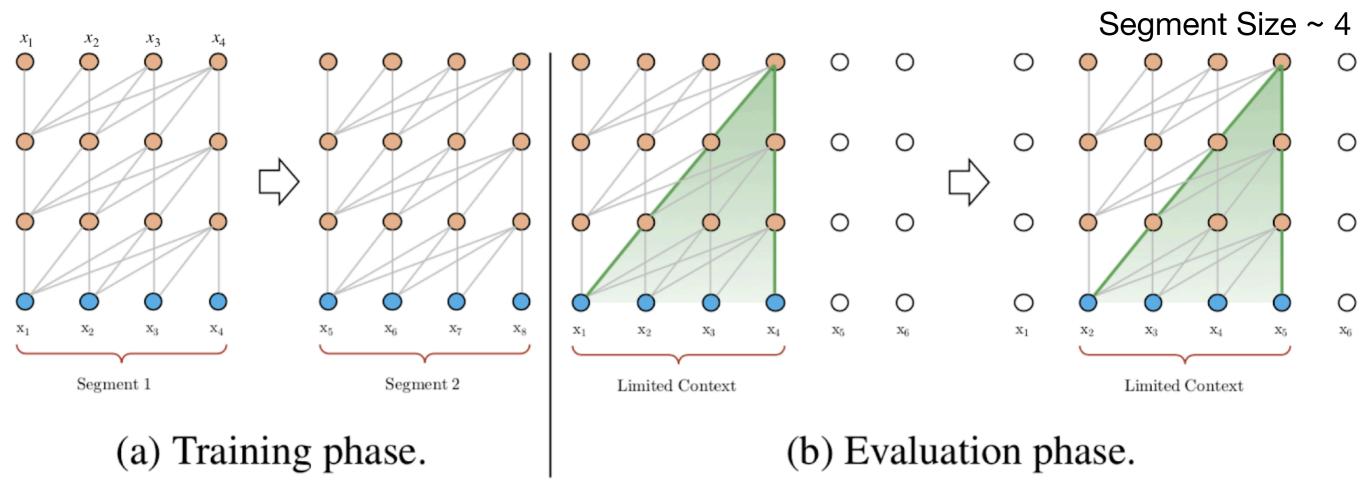


Transformer LM processing of Segments



Dai et al., 2019

Transformer LM processing of Segments

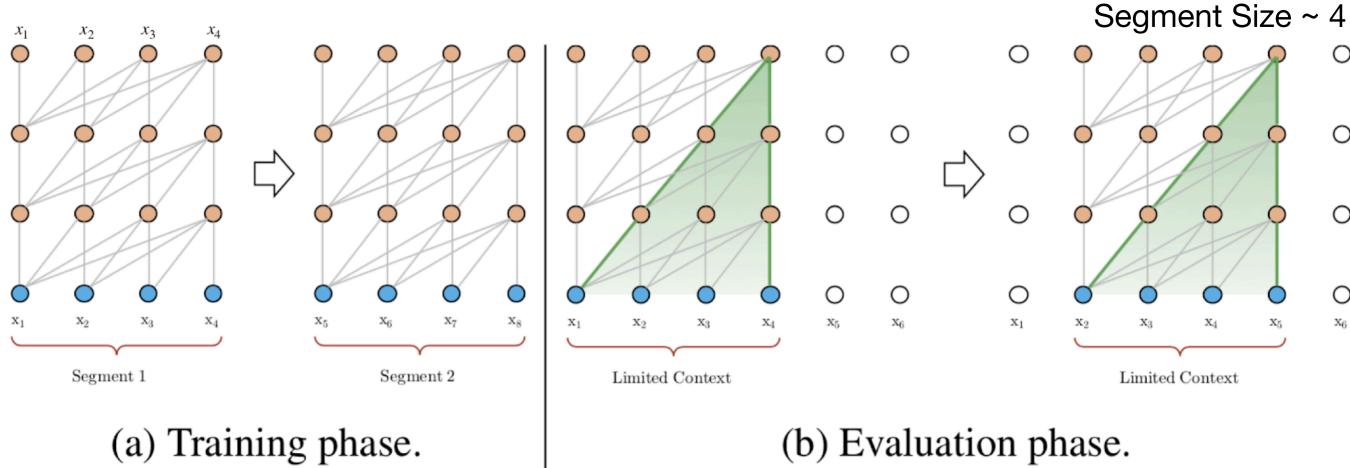


• Limited context-dependency

Dai et al., 2019

• the model can't "use" a word that appeared several sentences ago.

Transformer LM processing of Segments



Dai et al., 2019

- Limited context-dependency
 - the model can't "use" a word that appeared several sentences ago.
- Context fragmentation
 - no relationships can be leveraged across segments

Aalto University **ASR 2020** 41

Summary

- NNLM:
- Challenges
 - Long-Term Dependencies
 - LSTMs
 - Transformers
 - Self Attention