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Recap: N-gram Language
Models

e N-gram language model

P(w;|w;—1, wi—2, Wi—3, W;_4)
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Neural Network Classifier
for Language Modelling

Input? Output?

Image: http://mt-class.org/jhu/slides/lecture-nn-Im.pdf
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Neural Network Classifier
for Language Modelling

Word$

HULE

Image: http://mt-class.org/jhu/slides/lecture-nn-Im.pdf
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Representing Words

 Words are represented with one-hot vector, e.qg.,
e dog=(0,0,0,1,0,0, ...
e cat=(0,0,0,0,0,1, ...
e eat=(0,1,0,0,0,0, ...
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Feedforward Neural
Network LM (FFNN)

* |Loop through the entire
corpus WORD4
e (Calculate error or loss W
(cross-entropy loss)
Hidden (i)
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Feedforward Neural

Loop through the entire
corpus

Calculate error or loss
(cross-entropy loss)

Propagate the error
through network to
update the weight
matrices

Back Propagation

Network LM (FFNN)
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A

l w
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Why NNs for LMs

The cat is walking in the bedroom

A dog was running in a room

ASR 2020 / Aalto University



Why NNs for LMs

_ S The cat is running in a room
The cat is walking in the bedroom

=> A dog is walking in a bedroom

A dog was running in a room -
The dog was walking in the room

ASR 2020 7 Aalto University



Why NNs for LMs

_ S The cat is running in a room
The cat is walking in the bedroom

=> A dog is walking in a bedroom

A dog was running in a room -
The dog was walking in the room

* NNLM generalizes in such a way that similar words have
similar vectors

ASR 2020 / Aalto University



Why NNs for LMs

_ S The cat is running in a room
The cat is walking in the bedroom

=> A dog is walking in a bedroom

A dog was running in a room -
The dog was walking in the room

* NNLM generalizes in such a way that similar words have
similar vectors

* Presence of only one such sentence in the training set
helps improve the probability of its combinations
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Types of NNLM

 Feedforward Neural Network Language Model
 Recurrent Neural Network Language Model
 Long-Short Term Memory LM

e Transformer-based LM
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NNLM: Questions

 What might be some challenges that you might face while
training or applying NNLMs?
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 |ong-Range Dependencies
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Feedforward: Long-term
Information

e “| grew up in France... | speak fluent French >

e Feedforward Neural Network (FFNN) has limited context
size
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Recurrent Neural Networks
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Recurrent Neural Networks
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Recurrent Neural Networks
(RNN)
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RNN: Timestep 1
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RNN: Timestep 2
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RNN: Timestep 3
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Theoretically information from first step is available to the present timestep
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e “| grew up in France... | speak fluent French >
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Image: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RNN

e “| grew up in France... | speak fluent French >

* As the gap grows, RNNs become unable to learn to
connect information

. P
ol S Sl ol

Image: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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e Error passing through multiple of these functions can

vanish
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Image: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/
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* Error (red arrow) is passed through a chain of hidden
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Problems with RNN

 The main problem with RNNs is that gradients less than 1
become exponentially small over time
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Problems with RNN

 The main problem with RNNs is that gradients less than 1
become exponentially small over time

e Known as the vanishing gradient problem

e Gradients greater than 1 become exponentially large over
time (the exploding gradient problem)-

* This leads to training instability, and bad results

e Sequence Modeling: https://www.deeplearningbook.org/
contents/rnn.html

* The exploding gradient problem can be alleviated by clipping large gradient values to some maximum number
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Long-Short Term Memory
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e | ets add another neural network help the first network
learn long-distance relationships

 That’s basically what we do when we add more weight
matrices to a neural network

Image: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/
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LSTM: States
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e Global Stateaptures global information at the
document/ sentence level
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LSTM: States
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e Global Stateaptures global information at the
document/ sentence level

e LSTM hidden state hifinteracts with this global state to
predict the next word
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o sigmoid function
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b.. bias of the respective gate(x)

ht_1 output of the previous LSTM
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fr = o(wglhi—1, x¢] + by)
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fe = o(wglhs—1,x¢] + )

C; = Ct—1 * [

* weights and bias
wg =1[1 1
e 0:sigmoid fn * : pointwise multiplication

e hi_1=[1], ¢t—1 =[2], T+ =[0.2]

/
e calculate: ¢
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ft =o(wyslhi—1,2¢] + by)

Cp = ci—1 * fi

* weights and bias
wg =1[1 1
e 0:sigmoid fn * : pointwise multiplication

e hi_1=[1], ¢&t—1=[2], T+ =[0.2]

/
e calculate: ¢ _

’U]f[ht_l,l't] -+ bf — [1 1] X 0.9 — [12]
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ft =o(wyslhi—1,2¢] + by)

Cp = ci—1 * fi

* weights and bias
wg =1[1 1
e 0:sigmoid fn * : pointwise multiplication

e hi_1=[1], ¢&t—1=[2], T+ =[0.2]

e calculate: C; -
’U]f[ht_l,l't] -+ bf — [1 1] X — [12]

0.2
fr = lo(1.2)] = [0.77]
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https://keisan.casio.com/exec/system/15157249643325

ft =o(wyslhi—1,2¢] + by)

Cp = ci—1 * fi

* weights and bias
wg =1[1 1
e 0:sigmoid fn * : pointwise multiplication

e hi_1=[1], ¢&t—1=[2], T+ =[0.2]

e calculate: C; h
wrlhi—1,2¢] +0r =1 1] X 02| = 1.2]
fr = lo(1.2)] = [0.77] -

¢, = ci_1 * fr = [2] % [0.77] = [1.54]
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LSTM Problems

* Forget gate: removes information from the Global Cell state (C)

 Implicit representation of long-term information

ASR 2020

e this information might be be useful at a later stage

e (Cell state and previous hidden state summarise the prior
information
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Transformers for Language Modelling
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Transformers: Simplified

1 1 1

T 1 1
L] L[] L]

1 1 1

NN NN NN

Multiple (50-90) such layers in a Transformer LM

Credit: http://jalammar.github.io/illustrated-transformer/
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http://jalammar.github.io/illustrated-transformer/

Self-Attention

e E.g. “The animal didn't cross the street because it was
too tired”

e What does “it” refer to? “The animal” or “the street”

o Self-attention is the mechanism that helps LM associate:

 “It” with “the animal”

Credit: http://jalammar.github.io/illustrated-transformer/
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Self-Attention: Step O
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Credit: http://jalammar.github.io/illustrated-transformer/
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Input Machines Thinking
Embedding X1 X2
Queries 1 2
Keys ki K2
Values Vi V2
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Input Machines Thinking
Embedding X1 X2

Queries 1 02

Keys ki K2

Values Vi V2

Score qir e ki=112 qi ® k2 =96
Divide by 8 (/d;. ) 14 12
Softmax 0.88 0.12
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Input
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Values

Score

Divide by 8 ( V/d; )

Softmax

Softmax
X
Value

Machines Thinking
X1 X2
g1 gz
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V1 V2
qir e ki=112 qi ® ko =96
14 12
0.88 0.12
V1 V2
36
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Input
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Credit: http://jalammar.qgithub.io/illustrated-transformer/
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Transformers: Simplified
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Credit: http://jalammar.github.io/illustrated-transformer/
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Self-Attention

e Self-Attention seems to be asking an association question
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e Query ~ smaller word embedding
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Self-Attention

e Self-Attention seems to be asking an association question
e Query ~ smaller word embedding

e Key & Value ~ Key is the hash key that maps to Value
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Transformers for Language

Modelling

* RNNSs: Process tokens one-by-one

e Chain of dependencies built using a single [ A J‘ﬁ:

token

\\\\\

\\\\\

\\\\\

Self-Attention
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Transformers for Language
Modelling

* RNNSs: Process tokens one-by-one

® ® ©
j ! !
* Chain of dependencies built using a single [ A J‘ﬁ:r—ﬂ A }‘
token | |
© ® ©

 Transformers LM: Process a segment of
tokens
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Transformers for Language
Modelling

* RNNSs: Process tokens one-by-one

> o @
e Chain of dependencies built using a single [ i J‘ﬁ:r—ﬂ o }‘
token | |
3 ® ©
 Transformers LM: Process a segment of
tokens
1 1 t
* Dependencies within the segment [ )
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Transformers for Language
Modelling

* RNNSs: Process tokens one-by-one

* o o
e Chain of dependencies built using a single [ R m:r—ﬂ F }‘
token | |
3 ® ©
 Transformers LM: Process a segment of
tokens
1 1 t
* Dependencies within the segment [ )
f f f
e Within segment position is given by the : : :
positional encoding [ )
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Transformer LM processing

5 6 6 6
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Segment 1

of Segments
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99

Segment 2

(a) Training phase.
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Segment Size ~ 4
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Limited Context

(b) Evaluation phase.

Dai et al., 2019
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Transformer LM processing
of Segments

Segment Size ~ 4

6 6 0 0o © © 0 0|0 © 0 ® O O O © 0 O 9 O
o © o0 0o 6 6 0 olod o & b o o o o o & o o
) D
O O 0 © © © 0 o0|lo g o0 o0 O O © 6 g o0 0 O
s o000 osoooeldeoooo0 odeoe o
(a) Training phase. (b) Evaluation phase.

Dai et al., 2019

e Limited context-dependency
* the model can’t “use” a word that appeared several sentences ago.
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Transformer LM processing
of Segments

Segment Size ~ 4

8 C\) (3 5 o O O Ol O O O © O O o O O OREN® O
o 0o 0 0 ©o 0 0 olo o & o o o o 0o o & o o
m D w
© © 0 © © 0 0 olo g o o0 o o o o g © o o
o006 oo s 000 O 0O
(a) Training phase. (b) Evaluation phase.

Dai et al., 2019

e Limited context-dependency

* the model can’t “use” a word that appeared several sentences ago.
e Context fragmentation

* no relationships can be leveraged across segments
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Summary

e NNLM:

e Challenges
| ong-Term Dependencies
e LSTMs
* Transformers

o Self Attention
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