
Implementing maintainable
software

By Bytecraft_

Agenda

● Introduction
● Agile
● Characteristics of

maintainable code
● Techniques

Who?

● Bytecraft_
○ Software craftsmanship

■ Raising the bar
■ https://manifesto.softwarecraftsmanship.org/

○ https://www.bytecraft.fi/ (sorry finnish only)

● Antti Ahonen

https://manifesto.softwarecraftsmanship.org/
https://www.bytecraft.fi/

Some Agile Principles

• Satisfy the customer through early and
continuous delivery of valuable software.

• Working software is the primary measure
of progress.

• Deliver working software frequently, from a
couple of weeks to a couple of months.

• Welcome changing requirements, even late
in development.

• Business people and developers must
work together daily throughout the
project.

• Continuous attention to technical
excellence and good design enhances
agility.

http://www.agilemanifesto.org/

http://www.agilemanifesto.org/

Characteristic of maintainable software

● Can be changed easily
○ Malleable

● High software internal quality
● Built-in quality, by the developer

○ Constant work, in every decision
○ Professional pride

● Present at every abstraction level
○ Architecture, line of code

● Documents itself

https://www.shutterstock.com/fi/image-photo/colorful-children-building-bricks-1142522201

https://www.shutterstock.com/fi/image-photo/colorful-children-building-bricks-1142522201

Techniques

High-level guide

● Extreme programming
○ Small Releases
○ Simple Design
○ Testing
○ Refactoring
○ Pair Programming
○ Collective Ownership
○ Continuous Integration
○ Coding Standard

https://www.agilealliance.org/glossary/xp

=> Actually normal programming nowadays

https://www.agilealliance.org/glossary/xp

Simple design

● YAGNI https://martinfowler.com/bliki/Yagni.html
○ Avoid generalization until you actually need it
○ Even if you know the whole product vision and

the stories, only build the software around the
current sprint stories

● KISS

→ Both are there to remind you to avoid
over-engineering https://effectivesoftwaredesign.com/2013/

08/05/simplicity-in-software-design-kiss-ya
gni-and-occams-razor/

https://martinfowler.com/bliki/Yagni.html
https://effectivesoftwaredesign.com/2013/08/05/simplicity-in-software-design-kiss-yagni-and-occams-razor/
https://effectivesoftwaredesign.com/2013/08/05/simplicity-in-software-design-kiss-yagni-and-occams-razor/
https://effectivesoftwaredesign.com/2013/08/05/simplicity-in-software-design-kiss-yagni-and-occams-razor/

KISS
const myCondition = true;

const conditionAction = () => console.log("condition")

const myOtherCondition = false;

const otherConditionAction = () => console.log("otherCondition");

const alwaysAction = () => console.log("conditions evalutuated");

const complex = () => {

 //CLEVER CODE? maybe not, but complicated at least

 (((myCondition && conditionAction()) || (myOtherCondition && otherConditionAction())) || true) && alwaysAction();

}

const simple = () => {

 //SIMPLE

 if (myCondition) {

 conditionAction();

 }

 if (myOtherCondition) {

 otherConditionAction();

 }

 alwaysAction();

}

Naming

● Aim to reveal intent
 const d = 5; //days elapsed since beginning
 //VS
 const daysElapsedSinceBeginning = 5;

● Name for concepts, not language types
 const userList = []
 //VS
 const users = []

● Pick one word, use consistently for technical & domain concepts
○ Get, fetch, query, search
○ Client, customer, buyer, patron, consumer, shopper

https://dzone.com/articles/naming-conventions-from-uncle-bobs-clean-code-phil

https://dzone.com/articles/naming-conventions-from-uncle-bobs-clean-code-phil

Comments

● First and foremost, explain the intent with code
● Comments can help, but they are no substitute for good code
● Inherent problem of comments? → Going stale much easier than code
● Even though most of the time comments are a code smell, there do exist good comments
● Best comments are structured comments that generate living documentation:

○ Language mechanisms (annotations, decorators etc) used for commenting, that generate runnable
documentation from code → Swagger
■ Or documentation that can be used to generate code (OpenAPI)

○ Testing frameworks : Injecting comments as part of method names, structure → reports
■ Or test files that are text documentation, but can be run → Cucumber

○ With shared/public libraries, use with thought involved: JavaDoc, JSDoc, PyDoc etc..

Examples of bad comments

● Redundant

/**
* Fetch customer by customer identifier
* @param customerIdentifier identifier for customer
* @return customer for the idenfifier
* @see Customer
*/
@Override
Customer fetchCustomerBy(Customer.Identifier customerIdentifier)

● Clearing intention, that could be done with code

//customer has wanted order template
if (!customer.orderTemplate .empty &&
 customer.orderTemplate .get().identifier .valueLong ==
templateId .valueLong)
//VS
if (customer.hasOrderTemplate(templateId))

● Intent pt2, magic numbers

 //search for cat in animal category

 search("cat", 1)

 //search for bmw in vehicle category

 search("bmw", 5)

 //VS

 const ANIMAL_CATEGORY = 1

 const VEHICLE_CATEGORY = 5

 search("cat", ANIMAL_CATEGORY)

 search("bmw", VEHICLE_CATEGORY)

● ‘Read more about bad / good
comments:
https://blog.usejournal.com/stop-writing-code-comment
s-28fef5272752

https://blog.usejournal.com/stop-writing-code-comments-28fef5272752
https://blog.usejournal.com/stop-writing-code-comments-28fef5272752

Functions

● Small
● Do only one thing
● Intention revealing naming
● Aim for single level of abstraction

○ → SLAP
https://hackernoon.com/object-oriented-
tricks-6-slap-your-functions-a13d25a7d9
94

● DRY

● Try to avoid long list of arguments
● Aim for pure functions, avoid side-effects
● Design the (public) methods to be used

with one way only
○ In general, prefer for example method

overloading, multiple functions over
boolean flags/other conditional
arguments

○ Avoid primitives, use type system
● When calling, use named arguments if

language supports

https://www.todaysoftmag.com/article/1071/clean-code-functions

https://hackernoon.com/object-oriented-tricks-6-slap-your-functions-a13d25a7d994
https://hackernoon.com/object-oriented-tricks-6-slap-your-functions-a13d25a7d994
https://hackernoon.com/object-oriented-tricks-6-slap-your-functions-a13d25a7d994
https://www.todaysoftmag.com/article/1071/clean-code-functions

Refactoring

● You can and should first make code work
● Do not refactor without testing, automated

tests help a lot with refactoring
● Work in small, single changes at a time →

verify with tests everything works
● Refactoring doesn’t add any new

functionality or remove existing ones
● Refactoring != Restructuring

● Make it readable
○ Naming, only valuable comments

● DRY
○ Extract method
○ Extract variable

● Reduce complexity
○ KISS
○ Correct abstractions that relate to your

domain concepts
● More knowledge about the domain →

refactor it as clear concepts into your
softwarehttps://dzone.com/articles/code-refactoring-techniques

https://dzone.com/articles/code-refactoring-techniques

Refactoring, functions example

void create(Order order, Customer customer, Boolean cust, Boolean ini) {
 //store persisted customer here
 def e1 = null
 //create customer conditionally
 if (cust) {
 //new customer with identifier, firstname and lastname
 e1 = new CustomerEntity(customer.identifier.valueLong, "Doe", "Doerson")
 //persist the customer
 e1 = entityManager.persist(e1)
 }
 //validate the order
 order.doStuff()
 //if no customer creation, but initialization should happen, initialize default products for order
 if (ini && !cust) {
 order.products.each { product ->
 product.amount = 1
 }
 }
 //create customer
 def o = new OrderEntity(order.identifier.valueLong, order.products, cust && !ini ? e1 : null)
 //persist the order
 repository.save(o)
}

Better methods?
Customer createCustomer(Customer customer) {
 def customerEntity = new CustomerEntity(
 id: customer.identifier .valueLong,
 firstName: customer.firstName,
 lastName: customer.lastName
)
 return modelMapper .map(repository .save(customerEntity), Customer)
}
Order createOrder(Order order, Customer persistedCustomer) {
 order.validate()
 def orderEntity = new OrderEntity(
 id: order.identifier .valueLong,
 products: order.products,
 customer: modelMapper .map(persistedCustomer ,
CustomerEntity)
)
 return modelMapper .map(repository .save(orderEntity), Order)
}

static PRODUCT_DEFAULT_AMOUNT = 1

Order createDefaultInitializedOrder(Order order) {
 order.validate()
 order.products = initializeProductDefaultAmountsFor(order)
 //OR
 order.initializeProductDefaultAmounts()

 def orderEntity = modelMapper .map(order, OrderEntity)

 return modelMapper .map(repository .save(orderEntity), Order)
}

private static Set<OrderProduct>
initializeProductDefaultAmountsFor(Order order) {
 return order.products.collect { product ->
 new OrderProduct(
 code: product.code,
 amount: PRODUCT_DEFAULT_AMOUNT
)
 }
}

void initializeProductDefaultAmounts() {
 products.each { product ->
 product.amount = PRODUCT_DEFAULT_AMOUNT
 }
}

More refactoring examples

@Override
Plan updatePlanWith(
 Customer.Identifier customerIdentifier ,
 Plan.Identifier planIdentifier ,
 Set<Receipt> receipts
) {
 Customer customer = persistence .fetchCustomerBy
customerIdentifier
 if (customer.plan && !customer.plan.empty && !customer.plan.id
== planIdentifier) {
 def errorMessage = "..."
 throw new NotFoundException(errorMessage)
 }
 def plan = customer.plan.get()
 plan.receipts = fetch(receipts)
 persistence .update(customer).plan.get()
}

@Override
Plan fetchPlanWith(
 Customer.Identifier customerIdentifier ,
 Plan.Identifier planIdentifier
) {
 Customer customer = persistence .fetchCustomerBy
customerIdentifier
 if (customer.plan && !customer.plan.empty && !customer.plan.id
== planIdentifier) {
 def errorMessage = "..."
 throw new NotFoundException(errorMessage)
 }
 customer.consumptionPlan .get()
}

What are the reasons to refactor here?

Refactored example

@Override
Plan updatePlanWith(
 Customer.Identifier customerIdentifier ,
 Plan.Identifier planIdentifier ,
 Set<Receipt> receipts
) {
 Customer customer = persistence .fetchCustomerBy
customerIdentifier
 def plan = getConsumptionPlan(customer,
consumptionPlanIdentifier)
 plan.products = fetch(products)
 persistence .update(customer).consumptionPlan .get()
}

@Override
Plan fetchConsumptionPlanWith(
 Customer.Identifier customerIdentifier ,
 Plan.Identifier planIdentifier
) {
 Customer customer = persistence .fetchCustomerBy
customerIdentifier
 getConsumptionPlan(customer, consumptionPlanIdentifier)
}

private Plan getPlan(Customer customer, Plan.Identifier planIdentifier) {
 boolean planExistsFor = { c -> c.consumptionPlan && ! c.consumptionPlan.empty }
 boolean hasWantedPlan = { c -> c.consumptionPlan.get().id == consumptionPlanIdentifier }
 boolean customerHasPlan = planExistsFor (customer) && hasWantedPlan (customer)
 if (!customerHasPlan) {
 def errorMessage = "..."
 throw new NotFoundException(errorMessage)
 }
 customer.consumptionPlan .get()
}

SOLID

● SRP – Single Responsibility Principle
● OCP – Open/Closed Principle
● LSP – Liskov Substitution Principle
● ISP – Interface Segregation Principle
● DIP – Dependency Inversion Principle

https://deviq.com/solid/

https://deviq.com/solid/

Classes, interfaces

● Like functions, classes and interfaces should be small
● Size measured by responsibilities

○ Classes:
■ Aim for single responsibility → Single Responsibility Principle (SRP) → only one reason to

change:
https://medium.com/@severinperez/writing-flexible-code-with-the-single-responsibility-principle-
b71c4f3f883f
Aim for cohesion: instance variables should be operated by maximal amount of class methods

○ Interfaces (Interface Segregation Principle):
■ https://medium.com/@severinperez/avoiding-interface-pollution-with-the-interface-segregation-p

rinciple-5d3859c21013

● The name of the class/interface should reveal the responsibility
○ Try to avoid general names like Processor, Handler

https://medium.com/@severinperez/writing-flexible-code-with-the-single-responsibility-principle-b71c4f3f883f
https://medium.com/@severinperez/writing-flexible-code-with-the-single-responsibility-principle-b71c4f3f883f
https://medium.com/@severinperez/avoiding-interface-pollution-with-the-interface-segregation-principle-5d3859c21013
https://medium.com/@severinperez/avoiding-interface-pollution-with-the-interface-segregation-principle-5d3859c21013

SRP, Interface segregation with example

interface OrderHandler {
 void printOrder(Order order)
 long calculateOrderAmountWithTax(Order order, Tax taxRate)
 long calculateOrderAmount(Order order)
 Order persistOrder(Order order)
}

interface OrderPresenter {
 void presentOrder(Order order)
}

class OrderCalculator {
 long calculateOrderAmountWithTax(Order order, Tax
taxRate)
 long calculateOrderAmount(Order order)
}

interface OrderPersistence {
 Order persistOrder(Order order)
}

Too many responsibilities:
● Order presentation
● Order calculations
● Order persistence

Better, each class / interface has single
responsibility and single reason to change

Few words about architecture

● Simple design
○ In this course, or even in a lot of work projects, you probably won’t need multiple separate

(micro)services

● Use the PO, or optimally the end-users, to get domain understanding
○ Keep that understanding (terms) consistent in every part of your applications
○ But do the domain processing only in one place: the backend of your application

■ And only in one abstraction layer inside the backend

● End user needs drive the architecture

Architectures

By Cth027 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=81276242

https://www.oreilly.com/library/view/software-architecture-patterns/978149197
1437/assets/sapr_0101.png

https://commons.wikimedia.org/w/index.php?curid=81276242
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/assets/sapr_0101.png
https://www.oreilly.com/library/view/software-architecture-patterns/9781491971437/assets/sapr_0101.png

Clean Code

Book by Robert C. Martin

https://www.goodreads.com/book/show/3735293-clea
n-code

List of topics, a cheatsheet:

https://gist.github.com/wojteklu/73c6914cc446146b8b
533c0988cf8d29

https://www.goodreads.com/book/show/3735293-clean-code
https://www.goodreads.com/book/show/3735293-clean-code
https://gist.github.com/wojteklu/73c6914cc446146b8b533c0988cf8d29
https://gist.github.com/wojteklu/73c6914cc446146b8b533c0988cf8d29

Next week

Probably the most important part for maintainable code: automated testing

● Basics of unit and integration testing
● Backend test examples
● React test example

