
CS-E4710 Machine Learning: Supervised

Methods

Lecture 10: Multi-class Classification

Juho Rousu

November 17, 2020

Department of Computer Science

Aalto University



Multi-class classification

• Given a training data set {(xi , yi )}mi=1, (xi , yi ) ∈ X × Y
• Outputs belongs to a set of possible classes or labels:

yi ∈ Y = {1, 2, . . . , k}
• In multi-class classification, one of the labels is considered to be

the correct label, the other ones incorrect1

• In multi-label classification, several of the labels can be correct for

a given input xi , the output space will be Y = {−1,+1}k , each

output yi is a k-dimensional vector (next Lectures)

• In both cases, we aim learning a function

f : X 7→ Y,

for predicting the outputs

1Mohri et al. book calls this case mono-label multi-class classification, but that is

not standard vocabulary

1



Multi-class classification

Two basic strategies to solve the problem:

1. Aggregated methods using multiple binary classifiers:

• One-versus-all approach : Separate each class from all the others

• One-versus-one or all-pairs approach: Separate each class pair from

each other

• Error-correcting output code approach: Represent each class with a

binary code vector and predict the bits of the vector

2. Standalone models: learning to predict multiple classes directly

• Multiclass SVM

• Multiclass Boosting

2



One-versus-All Classification



One-versus-All Classification

• Given a training data set {(xi , yi )}mi=1, (xi , yi ) ∈ X × Y
• If we have k > 2 classes we will train k binary hypotheses h1, . . . , hk ,

h` : X 7→ {+1,−1}
• For training the `th hypothesis, new binary labels, called the

surrogate labels are computed ỹ
(`)
i =

{
+1, if yi = `,

−1, if yi 6= `

• A binary classifier is trained to predict the surrogate labels

• The hypothesis class for the binary classifiers is not restricted: we

can use any that is deemed suitable

3



Geometry of the linear OVA model: separable case

n example with three classes in two-dimensional space (green crosses, red

circles and yellow boxes)

• Linear classifiers wT
` x + w`0 are used

as the predictors (Note that the bias

terms w`0 are written out excplicitly)

• In the linearly separable case, there is

a hyperplane H` : wT
` x + w`0 = 0 so

that all x ∈ Ci lie in the positive

halfspace and all other points lie in

the negative halfspace

• h`(x) = sgn
(
wT

` x + w`0

)
= +1 for a

single class `

4



OVA prediction

• In general, there may be more than one class ` for which h`(x) = +1

• Some arbitrary tie-breaking could be used, e.g. predict the class with

the smallest index `

• Better results can be obtained if the hypotheses also provide some

real-valued score f`(x) ∈ R (confidence, margin, etc.) for the label

to be `.

• In that case, we can choose the label with the highest score

h(x) = argmax`f`(x)

• With linear models h`(x) = sgn
(
wT

` x
)

using the margin of the

example is a natural choice f`(x) = wT
` x

5



OVA training pseudo-code

Input: Dataset S = {(xi , yi )}mi=1,xi ∈ X , yi ∈ Y = {1, . . . , k}
Output: Multiclass hypothesis h : X 7→ Y

for ` ∈ {1, . . . , k} do

Generate training dataset with surrogate labels: {(xi , ỹ
(`)
i )}mi=1

Train a binary hypothesis h` : X 7→ {−1,+1}
Let f`(x) be the score for x given by the model h`

end for

h(x) = argmax`f`(x)

6



Pros and cons of the OVA approach

• OVA classification is simple to implement and therefore popular

• Training is relatively efficient with O(kt) time where t is the time to

train a single binary classifier, if k is not too large

• The method may suffer from the class imbalance of the training

sets for a given class `: there may be a low number of positive

examples and a high number of negative examples per class

• In general OVA approach suffers from a calibration problem: the

scores f`(x) returned by the individual classifiers may not be

comparable

• It does not always produce the optimal empirical error rate for the

dataset (example below)

7



Example: sub-optimality of OVA classification

• Consider a dataset with 3 classes (red,

blue, green), with class frequencies

40%, 20%, 40%, respectively

• The classes are concentrated in

distinct clusters centered at

(−1, 1), (0, 1), and 1, 1), respectively

8



Example: sub-optimality of OVA classification

• Optimal linear classifies can separate

red and green classes from the other

two

• However, the optimal linear classifier

for the blue class classifies all data as

negative

• Combination of the three classifiers

will predict (incorrectly) blue cluster

to be either red or green, depending

on tie breaking

• Empirical error rate is 20%

9



Example: sub-optimality of OVA classification

• However, the three classes are

separable by three hyperplanes

f`(x) = wT
` x,

wred = (−1
√

2, 1
√

2),wblue = (0, 1)

and wgreen = (1/
√

2, 1/
√

2) using the

rule h(x) = argmax`f`(x)

• Note that the hyperplane wblue is not

a good classifier as a independent

model, its empirical error rate is 80%!

• Thus we see that independent training of the binary hypotheses

loses information and may result in sub-optimal error rates.

10



One-versus-One Classification



One-versus-one approach

• An alternative is one-versus-one (OVO) or all-pairs approach

• In OVO classification, we divide a multiclass problem into a set of

k(k − 1)/2 binary classification problems, one for each pair of

classes (`, `′), 1 ≤ ` < `′ ≤ k

• This entails generating a new training set consisting of examples of

the pair of classes (`, `′) and generating a surrogate label

ỹ `,`′ =

{
+1 if y = `

−1 if y = `′

• For each class pair, a binary hypothesis h`,`′(x) : X 7→ {−1,+1} is

trained using the generated training set

11



OVO prediction

• In predicting, for each class ` we have k − 1 pairwise hypotheses,

one for each class containing ` (h`,`′ and h`′,`, for all `′ 6= `)

• In the ideal case, all of the k − 1 hypotheses involving class ` would

predict class `

• In practice this may not happen, we might have for some classes

`′, `′′

• h`,`′(x) = +1 - predicting class ` for x

• h`,`′′(x) = −1 - predicting class `′′ for x

• We need to resolve these discrepancies

12



OVO prediction

A voting approach can be used:

• We count for each input x, how many pairwise hypotheses predict

class ` (the votes)

h(x) = argmax`
∑
`<`′

1{h``′ (x)=+1} +
∑
`>`′

1{h`′`(x)=−1}

• Ties can occur with several classes receiving the same number of

votes, we can break them arbitrarily (e.g. predicting the smallest

index `)

13



Geometry of linear OVO classifier

An example with three classes and linear predictors w`′`
Tx + b``′ for each

class pair (Again the bias terms b``′ written out explicitly)

• A class ` is predicted within a region

of the feature space where the

number of votes for the class equal

the maximum

• Geometrically, the region is defined by

intersection of half-spaces

H`,`′ = {x|w``′
Tx + b``′ > 0}, for all ` < `′

H`′,` = {x|w`′`
Tx + b`′` < 0}, for all ` > `′

• The triangle in the middle represents

the region where all classes have one

vote

C3

C2

C1
H 12

H 13

H 23

+

+

+
-

-

-

14



Pros an cons of the OVO model

• Compared to OVA, we are training many more binary classifiers:

O(k2) compared to O(k)

• However, the training sets are smaller since they only contain

examples of two classes at a time:

• Faster to train

• Increased chance of overfitting

• The OVA training sets are less likely to be imbalanced than in OVA

• Better theoretical justification through the voting approach

15



Generalization performance of OVO models

• OVO model has some theoretical justification through viewing it as a

kind of majority voting ensemble

• Assume that the pairwise hypotheses have generalization error of at

most r

• Now if an example x with true class `′ is miclassified by the OVO

model, there must be at least one pairwise hypothesis h``′ or h`′`
that makes an error on x

• The probability of this event is at most∑
`<`′

P(”h``′ makes an error”)+
∑
`′<`

P(”h`′`” makes an error”) ≤ r(k−1)

• Thus if the pairwise classifiers are accurate enough, the risk of the

multiclass classifier can kept relatively low

16



Error-correcting codes



Error-correcting codes (ECOC)

• Error-correcting output codes (ECOC) is a general methods for

reducing multi-class problems to binary classification

• In the ECOC approach, each class ` is allocated a codeword m` of

length c > 1

• In the simplest case a binary vector can be used m` ∈ {−1,+1}c

• The code words of all k classes together form a matrix

M ∈ {−1,+1}k×c

17



Error-correcting codes

• Given the codeword matrix, a binary classifier fj : X 7→ {−1,+1} is

learned for each column j = 1, . . . , c of the codeword matrix

• The training data for the classifier of column j is relabeled with

surrogate labels ỹ
(j)
i =

{
m`j if yi = `

−m`j if yi 6= `

• The prediction of the ECOC model is taken as the class ` with the

fewest wrongly predicted columns of the keyword:

h(x) = argmink`=1

c∑
j=1

1fj (x)6=m`j

18



How to generate the codewords?

How to generate the codewords

• Deterministic code: decide on the length c and choose binary

vectors for each class so that the between class Hamming distance is

as large as possible

• Random code: draw code words randomly

• Use domain knowledge: each column could be a feature describing

the class

19



Why does ECOC work?

• The prediction of the ECOC model can be seen as correcting

incorrectly predicted bits of the codeword

• The corrected codeword is then the one in the codebook (matrix M)

that has the smallest Hamming distance to the predicted codeword

• If the between class Hamming distance of the codewords is at least

d , the upto b d−1
2 c one bit errors can be corrected

• Another explanation comes from ensemble learning: model averaging

between diverse classifiers fj happens by minimizing the Hamming

distance between codewords

20



Standalone multi-class classifiers



Standalone models

• Models that directly aim to minimize a multi-class loss function may

give better predictive performance than the approaches based on

aggregating binary classifiers

• Defining a combined model may be more efficient to train

• Multiclass models

• Multiclass SVM

• Multiclass boosting

21



Multi-class SVM



Multi-class SVM

• Multi-class SVM learns k hyperplanes f`(x) = wT
` x = 0

simultaneously

• The predicted class is the class with the highest score

h(x) = argmax`f`(x)

• The ideal objective would be to minimize the zero-one loss

L(h(x), yi ) =
1

m

m∑
i=1

1h(x) 6=yi

but like in binary classification, this is non-convex and NP-hard to

optimize

22



Multi-class SVM

• Instead, multi-class SVM focuses on the score differences between

pairs of classes

f`(x)− f`′(x) = wT
` xi −wT

`′xi

• In particular, the margins between the correct class yi and all the

incorrect classes ` 6= yi are optimized

• We aim the score of the correct class to be higher than all the other

classes by a margin (of 1)

wT
yi xi −wT

` xi ≥ 1− ξi , for all ` 6= yi

• Above, slack ξi ≥ 0 in used in the analogous way to binary SVMs to

allow some examples to not to have the required margin

23



Multi-class SVM

• Multi-class SVM has k weight vectors w1, . . . ,wk to control

• This is achieved by a regularizer that computes the sum of norms:∑k
`=1 ‖w`‖2

2

• The regularizer is motivated by controlling the empirical Rademacher

complexity R̂(H) of the hypothesis class H of multi-class SVMs:

R̂(H) ≤
√

r2Λ2

m
,

where
∑k

`=1 ‖w`‖2
2 ≤ Λ2 and ‖xi‖2

2 ≤ r2 for all i = 1, . . . ,m

• Thus, minimizing the sum of norms aids achieving good

generalization

24



Multi-class SVM

The Multi-class SVM optimization problem can be written as follows:

min
W,ξ

1

2

k∑
`=1

‖w`‖2 + C
m∑
i=1

ξi

s.t. wyi
Txi −w`

Txi ≥ 1− ξi ,
for all ` 6= yi

and for all i = 1, . . . ,m

ξi ≥ 0, i = 1, . . . ,m

• Above, we have denoted by W = [w1, . . . ,wk ] a matrix that

contains the weight vectors as columns

• The problem has quadratic objective and linear constraints

• Thus with small to medium sized data, it can be solver by Quadratic

Programming (QP) solvers

• For large data, gradient approaches are more suitable

25



Multi-class Hinge loss

• Rewrite the constraint

wT
yi xi −wT

` xi ≥ 1− ξi , for all ` 6= yi , ξi ≥ 0⇔
wT

yi xi −max
` 6=yi

wT
` xi ≥ 1− ξi , ξi ≥ 0⇔

ξi ≥ 1− [wT
yi xi −max

` 6=yi
wT

` xi ], ξi ≥ 0

• Minimizing ξi corresponds to minimizing the multi-class Hinge loss

LMCHinge(Wxi , yi ) = max{0, 1− [wT
yi xi −max

6̀=yi
wT

` xi ]}

• Intuitively, it measures by how much the score difference between

the correct class yi and all the other classes ` fails to have the

desired margin 1 (margin violation)

26



Multi-class SVM as a regularized loss minimization problem

• We can write the Multi-class SVM as regularized loss minimization

problem:

min
W,ξ

λ

2

k∑
`=1

‖w`‖2
2 +

m∑
i=1

max{0, 1− [wT
yi xi −max

6̀=yi
wT

` xi ]}

• This problem corresponds to the QP formulation by setting λ = 1/C

• The problem is convex but but the loss is piecewise linear, thus not

differentiable everywhere

27



Gradients of the Multi-class Hinge loss

• We need to differentiate the pieces of the loss function separately

• The pieces are defined by the class ¯̀ 6= yi which has the largest

margin violation:

LMCHinge(Wxi , yi ) = max{0, 1− [wT
yi xi −max

` 6=yi
wT

` xi ]}

equals 1− [wT
yi xi −wT

¯̀ xi ] when ¯̀ = argmax` 6=yi w
T
` xi and when

wT
yi xi −wT

¯̀ xi < 1 and its zero otherwise

• The gradients with respect to the weight vectors w` will therefore

satisfy

∂

∂wyi

LMCHinge(Wxi , yi ) = −xi

∂

∂w ¯̀
LMCHinge(Wxi , yi ) = xi

∂

∂w`
LMCHinge(Wxi , yi ) = 0 for ` 6= ¯̀, ` 6= yi

28



SGD update

• The gradients of the regularizer are given by

∂

∂w`

λ

2

k∑
`=1

‖w`‖2
2 = λw`

• Putting everything together we get an update direction towards the

negative gradient

• If wT
yi xi −wT

¯̀ xi < 1:

wyi = wyi − η(−xi + λwyi )

w ¯̀ = w ¯̀− η(xi + λw ¯̀)

w` = w` − η(λw`), for ` 6= ¯̀, ` 6= yi

• Otherwise:

w` = w` − η(λw`), for ` = 1, . . . , k

where η > 0 is a step-size

29



SGD pseudo-code for Multi-class SVM

Initialize w` = 0, ` = 1, . . . , k

repeat

Draw a training example (xi , yi ) uniformly at random

Find the worst margin violator: ¯̀ = argmax 6̀=yi w
T
` xi

Determine a stepsize η (e.g. diminishing stepsize)

Compute the update direction corresponding to the training example:

if wT
yi xi −wT

¯̀ xi < 1 then

wyi = wyi + ηxi
w ¯̀ = w ¯̀− ηxi

end if

Add regularization by shrinking the weight vectors:

w` = w` − ηλw`, ` = 1, . . . , k

until stopping criterion satisfied (e.g. relative improvement of

objective)

Output W = [w1, . . . ,wk ]

30



Multi-class SVM with kernels

• We can perform non-linear multi-class classification by using a kernel

κ(x, x′) = 〈φ(x), φ(x′)〉 over the data

• The kernelized version of the multi-class SVM optimizes dual

variables α = (αi,`) , i = 1 . . . ,m, ` = 1, . . . , k (one dual variable for

each training example i and possible class `)

• The optimization problem is given by

max
m∑
i=1

αi,yi −
1

2

k∑
`=1

m∑
i,i ′=1

αi,`αi ′,`κ(xi , xi ′)

s.t.
∑
`

αi,` = 0

αi,` ≤ 0, for ` 6= yi , 0 ≤ αi,yi ≤ C ,

• Model’s prediction in dual form:

ŷ(x) = argmax`=1,...,k

m∑
i=1

αi,`κ(xi , x)

31



Multi-class boosting



Adaboost for multi-class problems

• AdaBoost.MH is a variant of AdaBoost designed for multi-class

problems

• Like Adaboost, it learns a linear combination of base classifiers

fN(x) =
∑N

j=1 αjhj(x)

• The labels are represented as vectors

yi = (yi1, . . . , yik)T ∈ {−1,+1}k , where yi` = +1 for the correct

class and yi`′ = −1 for all incorrect classes `′

• The base classifiers also return vectors hj(x) ∈ {−1,+1}k ,

hj(x, `) ∈ {−1,+1}
• Prediction by taking the sign component-wise: h(x) = sgn (fN(x))

32



Adaboost for multi-class problems

• A distribution over the training examples and the possible classes is

maintained: Dt(i , `) is the weight of example xi and class ` at

iteration t

• The updates to the example weights is given by the formula:

Dj+1(i , `) =
Dj(i , `)exp(−αyi`hj(xi , `))

Zj
, ` = 1, . . . , k

• Zj is a normalization factor

• All weights Dj(i , `) where yi` 6= hj(xi , `) are exponentially

upweighted

• AdaBoost.MH can be seen to minimize an exponential loss which

upper bounds zero-one loss in a multi-class setting

m∑
i=1

k∑
`=1

1yi` 6=h(xi ,`) ≤
m∑
i=1

k∑
`=1

exp(−yi`h(xi , `))

33



Adaboost.MH pseudo-code

34



Summary

• Multi-class classification can be approached as an aggregation of

binary classification problems

• One-versus-All, One-versus-One, and Error-correcting codes

• Standalone models aim to directly minimize a multiclass loss

function

• SVM and Boosting models

• Also other models exist: Multi-class neural networks, Decision trees

35


	Multi-Class Classification
	One-versus-All Classification
	One-versus-One Classification
	Error-correcting codes
	Standalone multi-class classifiers
	Multi-class SVM
	Multi-class boosting

