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Multi-class classification

e Given a training data set {(x;, ¥i)}™, (X, yi) € X x Y

e Outputs belongs to a set of possible classes or labels:
vieY={12,...,k}

e In multi-class classification, one of the labels is considered to be
the correct label, the other ones incorrect!

e In multi-label classification, several of the labels can be correct for
a given input x;, the output space will be ) = {—1,+1}%, each
output y; is a k-dimensional vector (next Lectures)

e In both cases, we aim learning a function
f: X=)Y,

for predicting the outputs

IMohri et al. book calls this case mono-label multi-class classification, but that is
not standard vocabulary



Multi-class classification

Two basic strategies to solve the problem:

1. Aggregated methods using multiple binary classifiers:
e One-versus-all approach : Separate each class from all the others
e One-versus-one or all-pairs approach: Separate each class pair from
each other
e Error-correcting output code approach: Represent each class with a
binary code vector and predict the bits of the vector
2. Standalone models: learning to predict multiple classes directly

e Multiclass SVM
e Multiclass Boosting



One-versus-All Classification



One-versus-All Classification

e Given a training data set {(x;, y;)}™, (xi,yi) € X x Y

o If we have k > 2 classes we will train k binary hypotheses hq, ..., hg,
he: X — {41, -1}

e For training the /th hypothesis, new binary labels, called the

+1, ify; =14,

-1, ify;#¢

e A binary classifier is trained to predict the surrogate labels

surrogate labels are computed y.(e) = {

e The hypothesis class for the binary classifiers is not restricted: we
can use any that is deemed suitable



Geometry of the linear OVA model: separable case

n example with three classes in two-dimensional space (green crosses, red
circles and yellow boxes)

e Linear classifiers weTx + wyo are used
as the predictors (Note that the bias
terms wyg are written out excplicitly)

e In the linearly separable case, there is
a hyperplane Hp : w@Tx + wyo =0 so
that all x € G lie in the positive
halfspace and all other points lie in

the negative halfspace

e hy(x) = sgn (w[x + W[o) = +1 for a
single class /¢




OVA prediction

e In general, there may be more than one class ¢ for which hy(x) = +1

e Some arbitrary tie-breaking could be used, e.g. predict the class with
the smallest index ¢

e Better results can be obtained if the hypotheses also provide some

real-valued score f;(x) € R (confidence, margin, etc.) for the label
to be /.

e In that case, we can choose the label with the highest score

h(x) = argmax,f;(x)

e With linear models hy(x) = sgn (w/x) using the margin of the

example is a natural choice f;(x) = w/ x



OVA training pseudo-code

Input: Dataset S = {(x;, i)} xi € X, y; € Y ={1,...,k}
Output: Multiclass hypothesis h: X — )
for (€ {1,...,k} do
Generate training dataset with surrogate labels: {(x;,f/,(f))},’-":1
Train a binary hypothesis hy : X — {—1,+1}
Let fy(x) be the score for x given by the model hy
end for
h(x) = argmax,f;(x)



Pros and cons of the OVA approach

e OVA classification is simple to implement and therefore popular

e Training is relatively efficient with O(kt) time where t is the time to
train a single binary classifier, if k is not too large

e The method may suffer from the class imbalance of the training
sets for a given class /: there may be a low number of positive
examples and a high number of negative examples per class

e In general OVA approach suffers from a calibration problem: the
scores f;(x) returned by the individual classifiers may not be
comparable

e It does not always produce the optimal empirical error rate for the
dataset (example below)



Example: sub-optimality of OVA classification

. . A0% 20% 40%
e Consider a dataset with 3 classes (red,

Fa o

blue, green), with class frequencies
40%, 20%, 40%, respectively

e The classes are concentrated in

T
e
f
distinct clusters centered at \ /

(—1,1),(0,1), and 1,1), respectively




Example: sub-optimality of OVA classification

e Optimal linear classifies can separate
red and green classes from the other

two 40% 20% 40%
e However, the optimal linear classifier

Fa o
o

for the blue class classifies all data as
negative

T
a
f
e Combination of the three classifiers /'
will predict (incorrectly) blue cluster

to be either red or green, depending

on tie breaking optimal empirical error rate: 20%

e Empirical error rate is 20%



Example: sub-optimality of OVA classification

e However, the three classes are
separable by three hyperplanes
fo(x) = w/ x,

Wred = (—1v2,1v/2), wppe = (0,1) ”
and Wgreen = (1/v/2,1/4/2) using the f
rule h(x) = argmax,f(x) e \y

e Note that the hyperplane wy, is not

)

a good classifier as a independent ) B
optimal empirical error rate: 0%

model, its empirical error rate is 80%!

e Thus we see that independent training of the binary hypotheses
loses information and may result in sub-optimal error rates.
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One-versus-0One Classification



One-versus-one approach

e An alternative is one-versus-one (OVO) or all-pairs approach

e In OVO classification, we divide a multiclass problem into a set of
k(k — 1)/2 binary classification problems, one for each pair of
classes (¢,0'),1 <t <V <k

e This entails generating a new training set consisting of examples of
the pair of classes (¢, ¢') and generating a surrogate label

-1 ify="¢

e For each class pair, a binary hypothesis hy ¢ (x) : X — {=1,+1} is
trained using the generated training set
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OVO prediction

e In predicting, for each class ¢ we have k — 1 pairwise hypotheses,
one for each class containing ¢ (hy ¢ and he: g, for all ' # 0)

e In the ideal case, all of the k — 1 hypotheses involving class ¢ would
predict class /¢
e In practice this may not happen, we might have for some classes
g/ g//
)
e hyp(x) = +1 - predicting class ¢ for x
e hyr(x) = —1 - predicting class £ for x
e We need to resolve these discrepancies
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OVO prediction

A voting approach can be used:

e We count for each input x, how many pairwise hypotheses predict
class ¢ (the votes)

h(x) = argmax, 3 ih,,=+13 T D Lihyy=—1}
o< >0

e Ties can occur with several classes receiving the same number of
votes, we can break them arbitrarily (e.g. predicting the smallest
index ()
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Geometry of linear OVO classifier

An example with three classes and linear predictors w7 x + by for each
class pair (Again the bias terms by written out explicitly)

e A class £ is predicted within a region
of the feature space where the
number of votes for the class equal
the maximum

e Geometrically, the region is defined by
intersection of half-spaces

H&g/ = {X|WM/ Tx + bgpr > 0}7 forall ¢ < ¢
He o = {x|wg¢ "x + bprg < 0}, forall £ > ¢’

e The triangle in the middle represents
the region where all classes have one

vote 14



Pros an cons of the OVO model

e Compared to OVA, we are training many more binary classifiers:
O(k?) compared to O(k)

e However, the training sets are smaller since they only contain
examples of two classes at a time:

e Faster to train
e Increased chance of overfitting

e The OVA training sets are less likely to be imbalanced than in OVA

e Better theoretical justification through the voting approach

15



Generalization performance of OVO models

e OVO model has some theoretical justification through viewing it as a
kind of majority voting ensemble

e Assume that the pairwise hypotheses have generalization error of at
most r

e Now if an example x with true class ¢ is miclassified by the OVO
model, there must be at least one pairwise hypothesis hyy or hyry
that makes an error on x

e The probability of this event is at most

Z P(" hger makes an error”)+z P(" hy " makes an error”) < r(k—1)
o<t <t

e Thus if the pairwise classifiers are accurate enough, the risk of the
multiclass classifier can kept relatively low
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Error-correcting codes




Error-correcting codes (ECOC)

e Error-correcting output codes (ECOC) is a general methods for
reducing multi-class problems to binary classification

e In the ECOC approach, each class ¢ is allocated a codeword m, of
length ¢ >1

e In the simplest case a binary vector can be used my € {—1,+1}¢

e The code words of all k classes together form a matrix
M e {717+1}k><c

codes

ST -+ -1

(-1 ]-1]-1[-1]-1 Ji(x)| fa(z)|fa(x) |falz) |fs(2) [fu(z)
REEICIEIEIEE A A ]
& +1 [+ -1][-1]-1]1 new example
o
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Error-correcting codes

e Given the codeword matrix, a binary classifier f; : X — {—1,+1} is
learned for each column j =1,..., c of the codeword matrix
e The training data for the classifier of column j is relabeled with
U) _ my; if Yi = J4
—my  ify #£L
e The prediction of the ECOC model is taken as the class ¢ with the
fewest wrongly predicted columns of the keyword:

surrogate labels y;

(o
h(x) = argminf_, Z ety

=1

codes

S H 1A

(-1 ]-1]-1[-1]-1 Ji(@)| fa(x)|fa(x) [falx) |fs(2) [fulz)
ST -1 [+ -1 ST H [ +#1 ] -1 [+ +H
|+ -1 -1 ]-1)-1 new example

classes
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How to generate the codewords?

How to generate the codewords

e Deterministic code: decide on the length ¢ and choose binary
vectors for each class so that the between class Hamming distance is
as large as possible

e Random code: draw code words randomly

e Use domain knowledge: each column could be a feature describing
the class

codes

ST -1 #1101

+1|-1]-1]-1]-1]-1 Filz)| folx)|falz) |falz) |falz) [falz)
ST+ [+ -1 [+1]-1 ST F A T T
+1(+1|-1]-1(-11-1 new examplel"
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[+ A1 [+1]1
A+
FIEIEIEIEIE
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Why does ECOC work?

e The prediction of the ECOC model can be seen as correcting
incorrectly predicted bits of the codeword

e The corrected codeword is then the one in the codebook (matrix M)
that has the smallest Hamming distance to the predicted codeword

e If the between class Hamming distance of the codewords is at least
d, the upto | 952 one bit errors can be corrected

e Another explanation comes from ensemble learning: model averaging
between diverse classifiers f; happens by minimizing the Hamming
distance between codewords

codes

112]3|4[5|6
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Standalone multi-class classifiers




Standalone models

e Models that directly aim to minimize a multi-class loss function may
give better predictive performance than the approaches based on
aggregating binary classifiers

e Defining a combined model may be more efficient to train

e Multiclass models

e Multiclass SVM
e Multiclass boosting

21



Multi-class SVM




Multi-class SVM

e Multi-class SVM learns k hyperplanes fy(x) = w/x =0

simultaneously

e The predicted class is the class with the highest score
h(x) = argmax,fp(x)

e The ideal objective would be to minimize the zero-one loss

1 m
L(h(x).yi) = m Z Lhx)y,
=i

but like in binary classification, this is non-convex and NP-hard to

optimize
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Multi-class SVM

e Instead, multi-class SVM focuses on the score differences between
pairs of classes

fo(x) — fir(x) = W/ x; — wix;

e In particular, the margins between the correct class y; and all the
incorrect classes ¢ # y; are optimized

e We aim the score of the correct class to be higher than all the other
classes by a margin (of 1)

w;x; —w[x,- >1-¢;, forall £ # y;

e Above, slack & > 0 in used in the analogous way to binary SVMs to
allow some examples to not to have the required margin
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Multi-class SVM

e Multi-class SVM has k weight vectors wy, ..., wy to control

e This is achieved by a regularizer that computes the sum of norms:
iy lwellz

e The regularizer is motivated by controlling the empirical Rademacher
complexity 7%(H) of the hypothesis class H of multi-class SVMs:

R 2\2
R(H) < e
where 25:1 Hw1g||§ < A? and ||x,||§ <r’foralli=1,....,m

e Thus, minimizing the sum of norms aids achieving good
generalization

24



Multi-class SVM

The Multi-class SVM optimization problem can be written as follows:

. 1 k ) m
min > 2 llwe | + C;fi
s.t. Wy’,TX,' = WgTX,' >1-¢,
for all £ # y;
and foralli=1,....,m

&§>0,i=1...,m

Above, we have denoted by W = [wy, ..., wy] a matrix that
contains the weight vectors as columns

The problem has quadratic objective and linear constraints
Thus with small to medium sized data, it can be solver by Quadratic
Programming (QP) solvers

For large data, gradient approaches are more suitable
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Multi-class Hinge loss

e Rewrite the constraint
wxi —w/x; >1=¢, forall £y, & >0

w;x;—r[p;éawax,- >1-¢,6>0s
CFYi

&>1—[w)xi— rp;yfwzx,-],& >0

e Minimizing &; corresponds to minimizing the multi-class Hinge loss
Licringe(Wxi, yi) = max{0, 1 — [wy x; — T;yXWzTXi]}

e Intuitively, it measures by how much the score difference between
the correct class y; and all the other classes £ fails to have the
desired margin 1 (margin violation)

26



Multi-class SVM as a regularized loss minimization problem

e We can write the Multi-class SVM as regularized loss minimization
problem:

m

k
LA 2 T T
min — g wyl||5 + E max{0,1 — [w, x; — maxw, X;
w2 — weellz pt { [w, o 1

e This problem corresponds to the QP formulation by setting A =1/C

e The problem is convex but but the loss is piecewise linear, thus not
differentiable everywhere
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Gradients of the Multi-class Hinge loss

e We need to differentiate the pieces of the loss function separately
e The pieces are defined by the class ¢ # y; which has the largest
margin violation:

LiscHinge(Wxi, yi) = max{0,1 — [WyT,Xi = g;fyXWeTX/]}

T T 7_ Ty,
equals 1 — [wy, x; — wj x;] when ¢ = argmax,, w, x; and when

W)X — w(;rx,- < 1 and its zero otherwise
e The gradients with respect to the weight vectors wy will therefore
satisfy
WMLMCHinge(WXHYI) = =%
TWZLMCHinge(WXh)/i) = X;
0 _
aiLMCHinge(Wxiv)/i) =0for L # L, LF#y;
wy
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SGD update

e The gradients of the regularizer are given by

s Qanfng—Awf

e Putting everything together we get an update direction towards the
negative gradient
° Ifwyfx,-—we—Tx,- < 1:
Wy, = Wy, — n(—x; + )‘Wy,-)
W; = Wj; — 7}(X,‘ + )‘WZ)
wy = wp — 1(Awy), for £ # 1,0 # y,

e Otherwise:
we =wp —n(Awy), for £ =1,... k

where 7 > 0 is a step-size

29



SGD pseudo-code for Multi-class SVM

Initialize wy = 0,0 =1,...,k
repeat
Draw a training example (x;, y;) uniformly at random
Find the worst margin violator: 7 = argmax#yinTx,-
Determine a stepsize 7 (e.g. diminishing stepsize)
Compute the update direction corresponding to the training example:
if w)x; — wez-x,- < 1 then
Wy, = W, + 7X;
WZ = WZ — NX;
end if
Add regularization by shrinking the weight vectors:
Wg:W(—n)\Wg,EZ ].,...,k
until stopping criterion satisfied (e.g. relative improvement of
objective)
Output W = [wy, ..., wg]
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Multi-class SVM with kernels

We can perform non-linear multi-class classification by using a kernel

K(x,x") = (&(x), p(x")) over the data

The kernelized version of the multi-class SVM optimizes dual
variables o = (), i=1...,m ¢ =1,... k (one dual variable for
each training example i and possible class /)

The optimization problem is given by

max E Qjy: — 25 E Qj pQjr oK an:)

(=1 1i,i'=1
s.t. E 04;7520
¢

Qjp < 07 forf?é)/iao < Qjy; < C’

Model’s prediction in dual form:

y(x) = argmax,_; Z i ek(Xi, X)
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Multi-class boosting




Adaboost for multi-class problems

e AdaBoost.MH is a variant of AdaBoost designed for multi-class
problems

e Like Adaboost, it learns a linear combination of base classifiers
fiu(x) = 2 jhy(x)

e The labels are represented as vectors
yi= (i1, -, yix)" € {—1,+1} where y;, = +1 for the correct
class and y;p» = —1 for all incorrect classes ¢’

e The base classifiers also return vectors h;(x) € {—1,+1}%,
hj(X,f) S {—1, +1}
e Prediction by taking the sign component-wise: h(x) = sgn (fy(x))
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Adaboost for multi-class problems

e A distribution over the training examples and the possible classes is
maintained: D;(i, /) is the weight of example x; and class ¢ at
iteration t

e The updates to the example weights is given by the formula:

Dj+1(i,£) _ Dj(’vé)exp(;?‘yiéhj(xi>£))7£ =1,... .k
J

e Z; is a normalization factor
o All weights D;(i,¢) where yi; # hj(x;,¢) are exponentially
upweighted

e AdaBoost.MH can be seen to minimize an exponential loss which
upper bounds zero-one loss in a multi-class setting

m k m  k
D23 L < 32 3 expl—yieh(x )

i=1 (=1 i=1 ¢=1
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Adaboost.MH pseudo

ADABOOST.MH(S = (1, ¥1)s - - -+ (Tems Umm)))
1 fori+« 1tomdo
2 forl + 1 to k do
3 Dy(il) + ¢
4

for j «+ 1to N do
h; + base classifier in H with small error €; = P 1y, [hs (i, 1) # will]]

1—¢;

aj % log 5
7+ 2[ez(1 — Cj]]-} > normalization factor
for i + 1 to m do

for | + 1 to k do
10 Dy (i) 'Dj(h'f]exD(—;ju-'[i]h_f(x.uf)}

3
11 fy & Yol a5k,
12 return h = sgn(fwy)

o 0 -~ & o
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e Multi-class classification can be approached as an aggregation of
binary classification problems
e One-versus-All, One-versus-One, and Error-correcting codes
e Standalone models aim to directly minimize a multiclass loss
function
e SVM and Boosting models

e Also other models exist: Multi-class neural networks, Decision trees
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