

Lecture 10: Plasma equilibrium & (in-)stability

Today's menu

- Equilibrium and force balance
- Plasma beta
- Z-pinch
- Bennett relation
- Screw-pinch
- Magnetic safety factor and shear
- Grad-Shafranov equation
- Eigenvalue problem for instabilities
- Energy principle for instabilities

The various ways of being in equilibium

Qualitatively
different equilibria
depending on how
likely you are to
stay in it – with
small or large
perturbations

Equilibrium and force balance

Equilibrium \rightarrow no acceleration: $\frac{\partial}{\partial t} = 0$

Analyze the simpliest magnetic equilibrium: E = 0, $v \approx 0$, isothermal

$$\rightarrow 0 = -\nabla p + \mathbf{j} \times \mathbf{B}$$

And we get the force balance between kinetic and magnetic forces:

$$\nabla p = \boldsymbol{j} \times \boldsymbol{B}$$

Additional information: $\mathbf{j} \perp \nabla p \perp \mathbf{B}$

i.e., both the confining magnetic field and current are *perpendicular* to the pressure gradient that they are holding up.

Confining current

Note: the force balance gives the relationships for $\nabla p_i \mathbf{j}_i \mathbf{B}$.

What is the current needed to hold up ∇p in given magnetic field **B**?

$$\boldsymbol{j} = \boldsymbol{j}_{\perp} = \frac{\boldsymbol{B} \times \nabla p}{B^2} = (T_e + T_i) \frac{\boldsymbol{B} \times \nabla n}{B^2}$$

... and we have re-discovered the *diamagnetic current*!

Typical of plasma physics: the same observed phenomenon can be obtained both from the particle picture and fluid picture – with different interpretation:

- **Particle picture:** with $\nabla n \neq 0$ the gyro motions do not cancel out
- Fluid picture: ∇p generates j_{\perp} so that the $j_{\perp} \times B$ exactly balances the kinetic pressure on each fluid element

Magnetic (counter-) forces

But the current and magnetic field are also related by Maxwell's equations:

$$\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{j}$$

where κ is the *field line curvature*, $\kappa = \frac{B}{B} \cdot \nabla (\frac{B}{B})$, with $|\kappa| = 1/R_c$.

So the magnetic field exerts force to plasma in two ways:

- If the plasma tries to compress the field lines \rightarrow restoring force via magnetic pressure: $\frac{B^2}{2\mu_0}$
- If the plasma tries to bend the field lines \rightarrow restoring force via field line tension: $(B^2/\mu_0)\kappa$

Balancing the pressures

The field line tension that works to straighten out the field lines becomes important with *instabilities*, where the plasma tries to get out of control by (un-)bending field lines.

For 'straight' plasmas the equilibrium condition becomes

$$\nabla(p+\frac{B^2}{2\mu_0})=0$$

$$\Rightarrow p + \frac{B^2}{2\mu_0} = constant.$$

→ In equilibrium plasmas the sum of kinetic and magnetic pressures is constant!

Plasma beta

So if we want to have a pressure gradient (= plasma confinement), the magnetic field strength has to diminish as we go inward!

How does that happen???

Via diamagnetic effect. ©

The strength of the diamagnetic effect is given by a parameter called the *plasma beta*:

$$\beta \equiv \frac{\sum n_j T_j}{B^2 / 2\mu_0}$$

If β is NOT small, we cannot assume constant B.

Later: β is also a measure for the performance of B field.

Simplest case: axial field

So how would a real equilibrium look like?

Again, start with the simpliest geometry: linear device

But axial field is clearly no good due to unavoidable end losses

→ let's start pinching ...

The z-pinch

A different magnetic bottle

Since axial field is out of question, let's get going with axial current.

Polar/azimuthal (angle, field) ⇔ poloidal (angle, field)

Reason: in the first approximation, many phenomena in largeaspect ratio tokamaks are analyzed in the limit $A -> \infty$, and then torus -> cylinder: $R\varphi \rightarrow z$

Magnetic field in z-pinch

Ampere's law in z-pinch:
$$\mu_0 j = \frac{1}{r} \frac{d}{dr} r B_\theta \left(= \frac{1}{r} B_\theta + \frac{dB_\theta}{dr} \right)$$

Assume uniform current density, $j_z = const = j_0$, $dS = rd\theta dr = 2\pi rdr$

•
$$r > a$$
: $I_p(r) \equiv I_p(a) = j_0 \pi a^2 \implies B_\theta = \frac{\mu_0 I_p}{2\pi r}$

•
$$r < a : \frac{d}{dr} r B_{\theta} = \mu_0 j_0 r \implies r B_{\theta} = \frac{1}{2} \mu_0 j_0 r^2 + C$$
; B.C.@ $r = 0 \rightarrow C = 0$

$$B_{ heta} = rac{\mu_0 I_p}{2\pi r}, \qquad when \, r > a$$
 $B_{ heta} = rac{\mu_0 I_p}{2\pi a^2} r, \qquad when \, r < a$

Pressure profile in z-pinch

Force balance:
$$\frac{dp}{dr} = -j_z B_\theta = -\frac{1}{\mu_0 r} B_\theta^2 - \frac{1}{2\mu_0} \frac{dB_\theta^2}{dr}$$

$$r < a$$
: $B_{\theta} = \frac{\mu_0 I_p}{2\pi a^2} r \rightarrow \frac{dB_{\theta}^2}{dr} = \left(\frac{\mu_0 I_p}{2\pi a^2}\right)^2 2r$

⇒
$$p(r) = -\left(\frac{\mu_0 l_p}{2\pi a^2}\right)^2 \frac{r^2}{\mu_0} + const.$$
; B.C: $p(r = a) = 0$ → $const = \frac{\mu_0 l_p^2}{(2\pi a)^2}$

$$p = \frac{\mu_0 I_p^2}{(2\pi a)^2} \left(1 - \left(\frac{r}{a}\right)^2 \right)$$

Plasma beta in z-pinch

Let us calculate the *volume-averaged* pressure:

$$= \frac{1}{V} \int p dV$$

$$V = \pi a^2 L$$
, $dV = 2\pi r dr dz \implies \langle p \rangle = \frac{2}{a^2} \int_0^a p(r) r dr \implies \langle p \rangle = \frac{\mu_0 I_p^2}{4\pi^2 a^2} \frac{1}{2} \equiv \frac{B_\theta^2(r=a)}{2\mu_0}$

- → For z-pinch $β = \frac{\langle p \rangle}{B_{θ}^2/(2\mu_0)} = 1 !!!$
- → z-pinch utilizes the poloidal magnetic field with 100% efficiency.

Bennett relation

The relation $\langle p \rangle = \frac{\mu_0}{(2\pi a)^2} \frac{1}{2} I_p^2$ is called the *Bennett relation*.

Physics of the Bennett relation:

the good performance comes with a price ...

- If the total current I_p and averaged pressure are fixed, the plasma can exist only at a single radius value a!
- \rightarrow if you heat the plasma (= increase), the plasma will pinch!

Isn't a small plasma a good thing? Big magnets are expensive...

Pinching in imperfect world = first glimpse at instabilities ...

Any small perturbation can make the plasma in z-pinch unstable.

Kink instability:

If the cylinder is ever so slightly bent, the magnetic pressure is smaller at the kinking part perturbation grows.

Sausage instability:

If the contraction of plasma is not homogeneous, the pressure at 'waist line' is stronger, pinching it further → perturbation grows.

Now is the time to revive the so-far-neglected term in our force balance

$$\nabla p = -\nabla (B^2/2\mu_0) + (B^2/\mu_0) \kappa$$

→ if we introduce an axial field *in addition* to the poloidal field, this axial field will make the cylinder stiff = ensure stability of the z-pinch plasma.

To have a substantial restoring force on field lines, the *stabilizing* axial field has to be larger than the *confining* poloidal field.

... the field lines are now helical and we get a configuration called ...

The screw-pinch

The 'straight tokamak'

- Drive an axial current by, e.g., axial electric field
- \rightarrow poloidal field B_{θ}
- Wind coils poloidally around the plasma
- \rightarrow axial magnetic field $B_{z0} \approx constant$

But that is not all:

A pinching plasma implies radial motion (v_r)

$$ightharpoonup v_r imes B_z
ightharpoonup j_{\theta}
ightharpoonup ext{additional axial field: } rac{dB_{Z1}}{dr} = \mu_0 j_{\theta}$$

Physical interpretation:

Incompressibility of the axial magnetic field (ideal MHD)

Get 'real' ...

A uniform current profile is not very realistic (HW)

→ let's take a simple form where the current profile peaks at the center:

$$j_z = j_0 \left(1 - \frac{r^2}{a^2} \right)^{\alpha}$$

Then the *plasma current* inside a radius r becomes (HW)

$$I_p(r) = j_0 \frac{\pi a^2}{\alpha + 1} \left\{ 1 - \left[\left(1 - \frac{r^2}{a^2} \right)^{\alpha + 1} \right] \right\}$$

And the *confining* poloidal magnetic field is (HW)

$$B_{\theta}(r) = \frac{\pi a^2}{\alpha + 1} \frac{\mu_0 j_0}{2\pi r} \left\{ 1 - \left[\left(1 - \frac{r^2}{a^2} \right)^{\alpha + 1} \right] \right\}$$

Force balance & plasma beta are screwed

The force balance thus becomes

$$\frac{dp}{dr} = -\frac{1}{\mu_0 r} B_{\theta}^2 - \frac{1}{2\mu_0} \frac{d}{dr} (B_{\theta}^2 + B_z^2)$$

where $B_z^2 = B_{z0}^2 + B_{z1}^2$.

While B_{z0} and B_{θ} are externally imposed, B_{z1} is determined by the plasma.

- → additional degree of freedom
- \rightarrow equilibrium configuration can be found for any minor radius a!

But there is a price to pay:

Now the magnetic pressure has also a contribution from the axial field B_{z0} that does not contribute to confinement $\rightarrow \beta < 1$.

Helical field lines & magnetic safety factor

Suddenly the field lines are screwed = helical

The field line pitch is given by the so-called safety factor,

$$q \equiv \frac{\text{# of toroidal turns}}{\text{# of poloidal turns}}$$

. > safety factor = ratio of the toroidal to poloidal angle along the field line.

Along the field line:
$$\frac{B_{\theta}}{B_{z}} = \frac{r\Delta\theta}{R\Delta\varphi} \rightarrow q = \frac{\Delta\varphi}{\Delta\theta} = \frac{r}{R} \frac{B_{z}}{B_{\theta}}$$
; (remember $2\pi R \leftrightarrow L$)

The safety factor is not usually constant across the plasma

→ magnetic field lines are *sheared* radially.

The shear s can be calculated from the safety factor q: $s = \frac{r}{q} \frac{dq}{dr}$

What is so safe about the safety factor?

Remember:

the axial field was needed to *stabilize* the plasma against any bending. Clearly the safety factor increases with increasing axial field. High enough q thus keeps the plasma *safe* against such instability.

For instance, to stabilize the kink instability (in a tokamak) we need q > 1.

Typically $q(r = 0) \sim 1$, $q(r = a) \sim 3$ in a 'large' aspect ratio tokamak, R/a = 3

- $\rightarrow B_{tor} \sim 10 B_{pol}$
- lack tokamak eta's are only a few % : $eta=rac{<\!p>}{B_{tot}^2/(2\mu_0)}pproxrac{<\!p>}{B_{tor}^2/(2\mu_0)}pproxrac{1}{100}\,eta_{pol}$

Toroidal configurations

Toroidal plasma & flux surfaces

We already slipped into toroidal geometry – and there is no return:

By introducing the axial field to z-pinch we also re-introduced end losses. 🗵

- → let's eliminate the ends by going to torus!
- → each field line traces one concentric toroidal surface.

Recall:

$$\mathbf{B} \cdot \nabla p = \mathbf{B} \cdot \mathbf{j} \times \mathbf{B} = 0 = \mathbf{j} \cdot \nabla p$$

→ pressure gradient can exist only *perpendicular* to these surfaces.

The surfaces are called *flux surfaces* because they are defined by ...

Flux integrals

Toroidal magnetic flux:

Integrate toroidal field through a vertical surface spanned by one of the concentric plasma surfaces

→ flux surface label that steadily increases from magnetic axis

Poloidal magnetic flux:

- Integrate poloidal field through a horizontal surface that increases in size from edge towards magnetic axis
 - → flux surface label that steadily decreases from magnetic axis

Toroidal current: similarly
$$I_{tor} = \int \boldsymbol{j} \cdot d\boldsymbol{a}_{\varphi} = \frac{1}{\mu_0} \oint \boldsymbol{B} \cdot d\boldsymbol{l}_{\varphi}$$

Poloidal current: similarly
$$I_{pol} = \int \boldsymbol{j} \cdot d\boldsymbol{a}_{\theta} = \frac{1}{\mu_0} \oint \boldsymbol{B} \cdot d\boldsymbol{l}_{\boldsymbol{\theta}}$$

Either of the magnetic fluxes can be used as a generalized radial coordinate for plasmas with arbitrary cross section. ©

Toroidal flux

ψ, = [B · da_

Poloidal flux

 $\psi_{o} = -\int B \cdot da_{o}$

Please note that the z-coordinate z

A constant

 ψ , or ψ ,

surface

now is the vertical coordinate !!!

Magnetic field in terms of ...

$$\Psi_{pol} = 2\pi \int_0^R B_z(R',z)R'dR'$$

$$\Rightarrow B_Z(R, Z) = \frac{1}{2\pi R} \frac{\partial \Psi_{pol}(R, Z)}{\partial R}$$

Please note that the Zcoordinate is now the vertical coordinate!!!

Total magnetic field has to be divergence free: $\nabla \cdot \mathbf{B} = 0$

$$\Rightarrow B_R(R,z) = -\frac{1}{2\pi R} \frac{\partial \Psi_{pol}(R,z)}{\partial z}$$

→ the poloidal magnetic field can be expressed as

$$\Rightarrow \boldsymbol{B}_{pol} = B_R \nabla R + B_Z \nabla Z = \frac{1}{2\pi R} \left(-\frac{\partial \Psi_{pol}}{\partial Z} \nabla R + \frac{\partial \Psi_{pol}}{\partial R} \nabla Z \right) \equiv \frac{1}{2\pi} \nabla \Psi_{pol} \times \nabla \varphi$$

(In cylindrical coordinates: $R\nabla\varphi = \nabla z \times \nabla R$)

... the flux functions

How about the toroidal field?

Use the definition of poloidal current: $I_{pol} = \frac{1}{\mu_0} B_{tor} \cdot 2\pi R$

$$ightharpoonup B_{tor} = \frac{\mu_0 I_{pol}}{2\pi R}
ightharpoonup B_{tor} = \frac{\mu_0 I_{pol}}{2\pi} \nabla \varphi$$

→ Total magnetic field:
$$\boldsymbol{B}_{tot} = \frac{1}{2\pi} \left(\nabla \Psi_{pol} \times \nabla \varphi + \mu_0 I_{pol} \nabla \varphi \right)$$

This is associated with the current density given by Ampere's law:

$$\boldsymbol{j} = \frac{1}{\mu_0} \nabla \times \boldsymbol{B} = \dots$$
 which takes a little work to give ..

Grad-Shafranov equation

$$\boldsymbol{j} = \frac{1}{2\pi\mu_0} \left(\mu_0 \nabla I_{pol} \times \nabla \varphi - \Delta^* \Psi_{pol} \nabla \varphi \right)$$

Where $\Delta^* \Psi_{pol} \equiv R^2 \nabla \cdot \frac{\nabla \Psi_{pol}}{R^2}$ is the so-called *Stokes operator.*

In cylindrical coordinates: $\Delta^* = R \frac{\partial}{\partial R} \frac{1}{R} \frac{\partial}{\partial R} + \frac{\partial^2}{\partial z^2}$

For those brave of heart, plug these expressions into the force balance

$$\Delta^* \Psi_{pol} = -\mu_0 2\pi R j_{\varphi} = -\mu_0 (2\pi R)^2 p' - \mu_0^2 I'_{pol} I_{pol}$$

This is called the *Grad-Shafranov equation* and it gives the *equilibrium* (= flux surface structure Ψ_{pol}) dictated by the pressure profile and the currents.

Not a piece of cake: non-linear elliptic PDE – remember: $p = p(\Psi_{pol})$

How to determine the stability of our equilibria?

Stability of an equilibrium

Recall start of the lecture: equilibria can vary wrt their stability properties.

After solving for our equilibrium, how can we find whether it is stable or not?

At least two methods:

- 1. As an eigenvalue problem
- 2. Via energy principle

Intuitive approach to stability

Let's once again perturb our *equilibrium* and make a *linear stability analysis* by writing all terms as $f = f_0 + f_1$ and keeping only terms up to first order.

Here our primary quantity is the *plasma displacement*, ξ : $\mathbf{v}_1 = \frac{d\xi}{dt}$

This means that we have to *integrate in time* many of the MHD equations. Starting with our standard, simple plasma, the linearized equations become:

Continuity: $\rho_1 = -\nabla \cdot (\rho_0 \xi)$

Equation of state: $p_1 = -p_0 \gamma \nabla \cdot \xi - \xi \cdot \nabla p_0$

Faraday + Ohm: $\mathbf{B}_1 = \nabla \times (\boldsymbol{\xi} \times \mathbf{B}_0)$

Instability as an eigenvalue problem

And last but not least (using also Ampere's law) ...

The equation of motion:

$$\rho_0 \frac{\partial^2 \boldsymbol{\xi}}{\partial t^2} = \frac{1}{\mu_0} [(\nabla \times \boldsymbol{B}_0) \times \boldsymbol{B}_1 + (\nabla \times \boldsymbol{B}_1) \times \boldsymbol{B}_0] \nabla (p_0 \gamma \nabla \cdot \boldsymbol{\xi} + \boldsymbol{\xi} \cdot \nabla p_0)$$

This can be expresses as $\rho_0 \frac{\partial^2 \xi}{\partial t^2} = F(\xi)$

Now applying the Fourier decomposition gives $\omega^2 \rho_0 \xi = F(\xi)$

Which is an *eigenvalue problem* for ω^2 and gives the stability:

- $\omega^2 > 0 \rightarrow \text{stable}$
- $\omega^2 < 0 \rightarrow \text{unstable}$
- \rightarrow not only do we get the (in-)stability, but even the *growth rate*, $Im(\omega)$!

Energy principle in stability analysis

Unfortunately, the eigenvalue problems tend to be mathematically very complicated and can be solved only numerically.

However, if one is only interested whether a given equilibrium is stable or not, one can apply the *energy principle:*

Multiply the eigenvalue problem by ξ^* , the complex-conjugate of ξ , and integrate over the whole volume \rightarrow

$$\omega^2 \int |\boldsymbol{\xi}|^2 dV = -\int \boldsymbol{\xi}^* \cdot \boldsymbol{F}(\boldsymbol{\xi}) dV$$

LHS: clearly the *kinetic energy* of the system, $K(\xi, \xi^*)$

RHS: the *work* done against the force $F \rightarrow$ potential energy $\delta W(\xi, \xi^*)$

Understanding the energy principle

So we have a very simple-looking equation for ω^2 : $\omega^2 = \frac{\delta W(\xi, \xi^*)}{K(\xi, \xi^*)}$

But we don't have to solve that to find the stability: $K(\xi, \xi^*) > 0$ always \rightarrow Stability of the equilibrium is given by $\delta W(\xi, \xi^*)$:

- $\delta W(\xi, \xi^*) > 0 \rightarrow$ a stable equilibrium
- $\delta W(\xi, \xi^*) < 0 \rightarrow$ unstable equilibrium.

Looks easy? Not necessarily:

- There is a lot of sophisticated math skipped here
- One has to come up with an appropriate test function ξ
- δ W has actually three terms: plasma+vacuum+surface ...

