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Problem Set 6: Solutions

1. Solution

First of all, a solution exists by Weierstrass’s Theorem. The Kuhn-Tucker Lagrangian
is

L̃ = xay1−a − µ (pxx+ pyy − w) .

The first order conditions are

axa−1y1−a − µpx ≤ 0 (1)
(1− a)xay−a − µpy ≤ 0 (2)
x
(
axa−1y1−a − µpx

)
= 0 (3)

y
(
(1− a)xay−a − µpy

)
= 0 (4)

pxx+ pyy ≤ w (5)
µ (pxx+ pyy − w) = 0. (6)

Notice that a solution must be such that x > 0 and y > 0. If not, total utility is zero.
But then it would be feasible to attain strictly positive utility by choosing positive
quantities of both commodities while satisfying the budget constraint.

Since we must have x > 0 and y > 0, (3) and (4) imply that both (1) and (2)
hold with equality and, consequently, µ > 0, which in turn implies that the budget
constraint g(x, y) = pxx + pyy ≤ w is binding via (6). Combining (1) and (2), we
get y = px

py

(1−a)
a
x. Combining the latter expression with the budget constraint we

obtain x = aw
px

and y = (1−a)w
py

, which is the unique solution. NDCQ is satisfied, as
∂g
∂x

= px > 0 and ∂g
∂y

= py > 0.

2. Solution

(a) The first order conditions are

∂f

∂x
= r2 − 2x = 0

∂f

∂y
= 3s2 − 16y = 0
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The Hessian is
H =

(
−2 0
0 −16

)
and its leading principal minors are det(A1) = −2 < 0 and det(A2) = 32 > 0,
so the matrix is always negative definite. Therefore, given parameters r and s,
the objective function is concave (in x and y). Thus a solution exists. From the
first onder conditions we get the unique critical point

(x, y) =

(
r2

2
,
3

16
s2
)
,

which is the global maximizer.

(b) We can write the solution as x∗(r, s) = r2

2
and y∗(r, s) = 3

16
s2. The value func-

tion is

V (r, s) = f(x∗(r, s), y∗(r, s); r, s) =
r4

4
+

9

32
s4.

Then it is easy to check that:

dV

dr
(r, s) = r3

∂f

∂r
(x∗(r, s), y∗(r, s); r, s) = 2rx∗(r, s) = r3

dV

ds
(r, s) =

9s3

8
∂f

∂s
(x∗(r, s), y∗(r, s); r, s) = 6sy∗(r, s) =

9s3

8
.

3. Solution

(a) The Lagrangian is

L = x+ 2z − λ1 (x+ y + z − 1)− λ2
(
x2 + y2 + z − 7

4

)
.

The rank of the Jacobian of the two constraint functions is equal to 2 unless
x = y = 1

2
, in which case the rank is equal to 1. However, if x = y = 1

2
, then

from the first constraint we get z = 0. Now g2(x, y, z) =
1
2
6= 7

4
, so there is no

point in the constraint set in which x = y = 1
2
. Therefore, the NDCQ is satisfied.

The first order conditions are

1− λ1 − 2λ2x = 0 (7)
−λ1 − 2λ2y = 0 (8)
2− λ1 − λ2 = 0 (9)
x+ y + z = 1 (10)

x2 + y2 + z =
7

4
. (11)
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From (9) we obtain λ2 = 2− λ1, which inserted into (8) gives λ1(2y − 1) = 4y.
This equation implies that y 6= 1

2
, so λ1 = 4y

2y−1
. Inserting this into (7) with

λ2 = 2 − λ1 eventually yields y = 2x − 1
2
. Inserting the last expression into

the two constraints yields 3x + z = 3
2
and 5x2 − 2x + z = 3

2
. These two equa-

tions combined give z = 3
2
− 3x and 5x(x − 1) = 0. Thus, x = 0 or x = 1. If

x = 0, we obtain y = −1
2
, z = 3

2
, and λ1 = λ2 = 1. If x = 1, we get y = 3

2
,

z = −3
2
, λ1 = 3, and λ2 = −1. Evaluating f at these two critical points we get

f(0,−1/2, 3/2) = 3 and f(1, 3/2,−3/2) = −2. Thus the only candidate for a
solution is (0,−1/2, 3/2). Given λ1 = λ2 = 1, f is linear (and thus also concave),
λ1g1 is linear (and thus also convex), and λ2g2 is convex. Thefore the Lagran-
gian is a concave function in (x, y, z). So we can conclude that (0,−1/2, 3/2) is
the solution to this maximization problem.

(b) Let c1 = 1, c2 = 7
4
= 1.75, dc1 = −0.02, and dc2 = 0.05. In addition, let

V (c1, c2) be the problem’s value function. By the envelope theorem, ∂V
∂c1

(c1, c2) =

λ1(c1, c2) and ∂V
∂c2

(c1, c2) = λ2(c1, c2). Using the total differential, we have

dV =
∂V

∂c1
(1, 1.75)dc1 +

∂V

∂c2
(1, 1.75)dc2

= λ1(1, 1.75)× (−0.02) + λ2(1, 1.75)× 0.05

= 1× (−0.02) + 1× 0.05

= 0.03.

4. Solution

(a) The Lagrangian is

L = ax+ by + cz − λ(αx2 + βy2 + γz2 − L).

The first order conditions are

a− 2λαx = 0

b− 2λβy = 0

c− 2λγz = 0

λ(αx2 + βy2 + γz2 − L) = 0

λ ≥ 0

Because a, b and c are all positive, also λ, x, y, and z must all be positive
(otherwise the FOCs are not satisfied). Thus, λ > 0 and the constraint binds.
From the first three conditions we get λ = a

2αx
= b

2βy
= c

2γz
. Also, x∗ = a

2αλ
,

y∗ = b
2βλ

, and z∗ = c
2γλ

.

Substituting x∗, y∗, and z∗ into the constraint yields

α
( a

2λα

)2
+ β

(
b

2λβ

)2

+ γ

(
c

2λγ

)2

= L
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and by solving this for λ we get

λ =
1

2
L− 1

2

√
a2

α
+
b2

β
+
c2

γ
.

Because f is linear (and therefore also concave) and λg is convex, the Lagran-
gian is concave. Thus, (x∗, y∗, z∗) = ( a

2λα
, b
2λβ

, c
2λγ

) is the solution for the maxi-
mization problem.

(b) The value function V (L) is

V (L) = ax∗ + by∗ + cz∗ =
a2

2λα
+

b2

2λβ
+

c2

2λγ
.

Inserting λ = 1
2
L− 1

2

√
a2

α
+ b2

β
+ c2

γ
into the value function yields

V (L) =
√
L

√
a2

α
+
b2

β
+
c2

γ
.

Now we can verify that

dV

dL
(L) = L− 1

2

√
a2

α
+
b2

β
+
c2

γ
= λ(L).
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