LECTURE SCHEDULE #### **Date Topic** - 1. Wed 28.10. Course Introduction & Short Review of the Elements - 2. Fri 30.10. Periodic Properties & Periodic Table & Main Group Elements (starts) - 3. Fri 06.11. Short Survey of the Chemistry of Main Group Elements (continues) - 4. Wed 11.11. Ag, Au, Pt, Pd & Catalysis (Antti Karttunen) - 5. Fri 13.11. Redox Chemistry - 6. Mon 16.11. Transition Metals: General Aspects & Crystal Field Theory - 7. Wed 18.11. Zn, Ti, Zr, Hf & Atomic Layer Deposition (ALD) - 8. Fri 20.11. V, Nb, Ta & Metal Complexes and MOFs - 9. Mon 23.11. Cr, Mo, W & 2D materials - 10 Wed 25.11. Mn, Fe, Co, Ni, Cu & Magnetism and Superconductivity - 11. Fri 27.11. Resources of Elements & Rare/Critical Elements & Element Substitutions - 12. Mon 30.11. Lanthanoids + Actinoids & Pigments & Luminescence & Upconversion - 13. Wed 02.12. Inorganic Materials Chemistry Research EXAM: Thu Dec 10, 9:00-12:00 Ke1 #### PRESENTATION TOPICS/SCHEDULE Wed 18.11. Ti: Ahonen & Ivanoff Mon 23.11. Mo: Kittilä & Kattelus Wed 25.11. Mn: Wang & Tran Ru: Mäki & Juopperi Fri 27.11. In: Suortti & Räsänen Te: Kuusivaara & Nasim Mon 30.11. Eu: Morina U: Musikka & Seppänen #### **QUESTIONS: Lecture 7** - Why Zr and Hf are of the same size? Give an example of the consequence of the same size. - Which of the four elements (Zn, Ti, Zr, Hf) forms compounds at oxidation state +III ? - Coordination number preferences of Zn, Ti, Zr and Hf in their oxides ? - Which element can be used as a substituent to enhance electrical conductivity of ZnO? Would the conductivity be of n- or p-type? - Which element can be used as a substituent to create oxygen vacancies in ZrO₂? Why? - How thin is a thin film ? - Why in ALD technique: film thickness control is straightforward? - conformal coating is readily achieved? | Group →1
↓Period | | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | |---------------------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------------|-----------|------------|-----------|------------|------------| | 1 | 1
H | | | | | | | | | | | | | | | | | 2
He | | 2 | 3
Li | 4
Be | | | | | | | | | | | 5
B | 6
C | 7
N | 8 | 9
F | 10
Ne | | 3 | 11
Na | 12
Mg | | | | | | | | | | | 13
Al | 14
Si | 15
P | 16
S | 17
CI | 18
Ar | | 4 | 19
K | 20
Ca | 21
Sc | 22
Ti | 23
V | 24
Cr | 25
Mn | 26
Fe | 27
Co | 28
Ni | 29
Cu | 30
Zn | 31
Ga | 32
Ge | 33
As | 34
Se | 35
Br | 36
Kr | | 5 | 37
Rb | 38
Sr | 39
Y | 40
Zr | 41
Nb | 42
Mo | 43
Tc | 44
Ru | 45
Rh | 46
Pd | 47
Ag | 48
Cd | 49
In | 50
Sn | 51
Sb | 52
Te | 53
I | 54
Xe | | 6 | 55
Cs | 56
Ba | * | 72
Hf | 73
Ta | 74
W | 75
Re | 76
Os | 77
Ir | 78
Pt | 79
Au | 80
Hg | 81
Tl | 82
Pb | 83
Bi | 84
Po | 85
At | 86
Rn | | 7 | 87
Fr | 88
Ra | ** | 104
Rf | 105
Db | 106
Sg | 107
Bh | 108
Hs | 109
Mt | 110
Ds | 111
Rg | 112
Cn | 113
Uut | 114
Fl | 115
Uup | 116
Lv | 117
Uus | 118
Uuo | * | 57
La | 58
Ce | 59
Pr | 60
Nd | 61
Pm | 62
Sm | 63
Eu | 64
Gd | 65
Tb | 66
Dy | 67
Ho | 68
Er | 69
Tm | 70
Yb | 71
Lu | | | | | ** | 89
Ac | 90
Th | 91
Pa | 92
U | 93
Np | 94
Pu | 95
Am | 96
Cm | 97
Bk | 98
Cf | 99
Es | 100
Fm | 101
Md | 102
No | 103
Lr | | ``` ΑI 1s^2 2s^2 2p^6 3s^2 3p^1 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} Zn 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d² Ti 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d² Zr 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s² 4f¹⁴ 5d² Hf AI³⁺ 1s² 2s² 2p⁶ 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ Zn²⁺ Ti⁴⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ Zr⁴⁺ 1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 4f¹⁴ Hf⁴⁺ ``` # IONIC RADII (in Å) | | | Ti | Zr | Hf | Zn | Al | |----|------|------|------|------|------|------| | +2 | CN-4 | - | - | - | 0.60 | _ | | | CN-5 | - | - | - | 0.68 | - | | | CN-6 | 0.86 | - | - | 0.74 | - | | | CN-8 | - | - | - | 0.90 | - | | +3 | CN-4 | - | - | - | - | 0.39 | | | CN-5 | - | - | - | - | 0.48 | | | CN-6 | 0.67 | - | - | - | 0.54 | | +4 | CN-4 | 0.42 | 0.73 | 0.72 | - | - | | | CN-5 | 0.51 | - | - | - | - | | | CN-6 | 0.61 | 0.86 | 0.85 | - | - | | | CN-8 | 0.74 | 0.98 | 0.97 | - | - | http://abulafia.mt.ic.ac.uk/shannon/ptable.php #### OCCURRENCE of the METALS: Zn, Ti, Zr, Hf - Zn (d¹⁰, not transition metal) is the fourth most common metal in use (after Fe, Al and Cu) with an annual production of ca. 13 million tonns - Among the transition metals, most common_are: Fe, Ti, Mn, Cr, ... - Ti: ref. to the seminar presentation? - Zr is found in more than 40 minerals - Hf much more rare, no own minerals, in Zr minerals: Hf/Zr ≈ 2 % # TITANIUM: Use as a metal / in metal alloys - <u>Corrosion resistance</u>: pulp and marine industry, chemical processing, and energy production and storage application - High specific strength (strength/weight ratio): automotive industry, aerospace applications, sports equipment, jewelry, eyeglass frames - Inertness in human body: surgery/artificial implants - DISADVANTAGE: cost (Ti 6 times more expensive than AI) #### PRODUCTION OF TITANIUM - Oxide minerals: rutile (TiO₂) or ilmenite (FeO-TiO₂; 97-98 % TiO₂) - Oxides are transformed to TiCl₄ which is a liquid and can be distilled for purification, e.g. by chloride process: - $TiO_2 + 2CI_2 + 2C (800 °C) \rightarrow TiCI_4 + 2CO$ - $2\text{TiFeO}_3 + 7\text{Cl}_2 + 6\text{C} (900^{\circ}\text{C}) \rightarrow 2\text{TiCl}_4 + 2\text{FeCl}_3 + 6\text{CO}$ - TiCl₄ is reduced in argon with molten Mg (Kroll process) - TiCl₄ + 2Mg (1100 °C) \rightarrow Ti + 2MgCl₂ - MgCl₂ is reduced back to Mg such that it can be recycled - Product: Titanium sponge (porous) #### TiO₂:n valmistus #### Sulfaattiprosessi: Pori Raaka-aine (ilmeniitti) liuotetaan rikkihappoon ja syntyvästä liuoksesta titaani saostetaan titaanihydraattina. Hydraatti pestään, kalsinoidaan ja pintakäsitellään. Prosessi kestää 2 viikkoa. #### Kloridiprosessi: Raaka-aine (rutiili) kloorataan, jolloin muodostuu titaanitetrakloridia. Tetrakloridi hapetetaan (hapella) kaasufaasissa titaanidioksidiksi ja pintakäsitellään kuten sulfaattiprosessissakin. Kloridiprosessilla valmistetaan vain rutiilirakenteen omaavaa titaanidioksidia. ## Zr & Hf - Exactly the same size (due to shielding effect/lanthanide contraction) - Of all the 4d-5d transition metal pairs, Zr and Hf are the most similar - Separation of Hf from Zr very difficult - Hf was discovered as late as 1922 (Zr more than 100 years earlier) - Hf was the first element which was searched for and found based on the quantum theory (lat. Hafnia = Copenhagen) - Differencies: density (atomic weight ratio Zr:Hf = 1.0:2.0) - neutron absorbtion (Hf 600-times stronger): different (opposite) uses in nuclear power plants #### SEPARATION of Zr and Hf - Zr: very low neutron absorption → used to make containers for nuclear fuel - Hf: very high neutron absorption → used in control rods - For the use of Zr in nuclear fuel containers it is crucial to ensure that the Zr metal used has extremely low Hf content - Several techniques for the separation developed, below shown is a new advanced technique developed at University of Ghent ### Role of Zinc in the structure and function of proteins - Required for essential catalytic functions in enzymes - Stabilizes the folding of protein subdomains - Why Zinc? - widely available in environment - fixed oxidation state (+II): completely resistant to redox changes and thus not affected by redox potentials in the organisms - prefers tetrahedral coordination (unlike many other metals): tetrahedral coordination of the metal site seems to be a key feature in most zinc enzymes - d¹⁰ and thus **no crystal field effect**: environment around Zn²⁺ is flexible to allow for the precise adjustment to the surroundings without an energy penalty - Crystal structures: - rutile, anatase, brokite - Large refractive index: most important white pigment: paints, paper, plastics, cosmetics, foods, tooth pastes, ... - UV protection: - sunscreens, plastics Inert: filler material in pharmaceuticals Photocatalytic: Akira Fujishima 1970s - antibacterial effect: 3-times stronger compared to chlorine 1.5-times stronger compared to ozone - after UV radiation water does not form droplets but spreads on TiO₂ surfaces for a thin surface layer e.g. sauna mirrors # **SUPERHYDROPHOBICITY** - Water forms perfect droplets on surface - → surface extremely difficult to wet - → Lotus effect - Contact angle (θ_C): angle for liquid droplet at three-phase (liquid-gas-solid) boundary - ❖ SUPERHYDROPHOBICITY: contact angle > 150° # ZrO₂ - Used as industrial ceramics, protective coating (e.g. on TiO₂ pigment particles) and refractory material in e.g. insulation - 7-coordinated (monoclinic) structure at RT & 8-coordinated cubic structure at high temperatures - Y^{III}-forZr^{IV} substitution stabilizes the cubic ZrO₂ structure synthesized in various colours (gemstone & diamond simulant) - Yttrium-stabilized zirconia (YSZ) for oxygen sensors and fuel cells owing to its low electronic conductivity but high oxide ion conductivity (Y³+→ Zr⁴+ → oxygen vacancies) ### HfO₂ - Similar (7-coordination) crystal structure to that of ZrO₂ - Very high melting point → refractory material for insulation (e.g. in thermocouples) → operates up to 2500 °C - Multilayered HfO₂ coatings reflect sunlight & block heat conduction - → passive cooling of buildings - → several degrees cooler than surrounding materials - HfO₂ high-κ dielectrics → dielectric constant 5 times higher compared to SiO₂ → high-κ material in DRAM (dynamic random access memory) and CMOS (complementary metal-oxide semiconductor) microelectronics devices - Intel 2007 → replacement of SiO₂ as gate insulator in FETs (field-effect transistor) → deposition of high-quality amorphous films using ALD - Partial substitution of Hf by Si (or Al) increases the crystallization temperature # **CMOS** transistor smaller transistors \rightarrow lower gate voltage same electric fields \rightarrow thinner dielectric $SiO_2 \rightarrow HIGH-k$ DIELECTRICS #### **ZnO** - 4-coordination in hexagonal wurtzite or cubic zinc blende (diamond like) structure - Additive in various applications: rubbers, plastics, ceramics, glass, cement, lubricants, paints, ointments, adhesives, sealants, pigments, foods, batteries, ferrites, fire retardants, first-aid tapes, etc. - Wide-bandgap II-VI semiconductor - Native doping due to excess zinc/hydrogen or oxygen vacancies/ → n-type doping - Al³⁺-for-Zn²⁺ doping for enhanced n-type doping - Attractive properties for optoelectronics: wide bandgap, tunable electrical properties, high transparency, high electron mobility - → emerging applications in transparent electrodes, liquid crystal displays, energy-saving and heat-protecting windows, electronics as thin-film transistors and light-emitting diodes # OXIDES (Al₂O₃, ZnO, TiO₂, ZrO₂ & HfO₂) & ALD (atomic layer deposition) thin-film technology #### **EXAMPLES of APPLICATIONS** - ALD-HfO₂ (amorphous): high-k dielectrics - ALD-ZrO₂ (amorphous): barrier coating - ALD-TiO₂ (crystalline): photovoltaics - ALD-ZnO (crystalline): thermoelectric material - ALD-Al₂O₃ (amorphous): barrier and protective coating # **Atomic Layer Deposition (ALD) Thin-Film Technique** - Gaseous precursors - Self-limiting surface reactions - Conformal, homogeneous thin films with atomic-layer accuracy Instrumentarium/Finlux/Planar # HfO_2 -ALD $HfCI_4 + H_2O$ ### Conditions for high-k dielectrics - High enough dielectric constant k - Wide band gap for low leakage - Stable no reaction with Si - Good interface, low impurities # Atomic Layer Deposition of Al₂O₃ - Al-source (precursor): $Al(CH_3)_3$ - Oxygen source (co-reactant): H₂O - Substrate: Si is pulsed into the reactor **(3)** - (1) Substrate surface is initially covered with hydroxyl (OH) groups First trimethyl aluminum [TMA: Al(CH₃)₃] - (2) TMA reacts with the surface OH groups, producing methane (CH₄) as a byproduct Reaction continues until the surface is passivated (= covered with a TMA layer) TMA does not react with itself: this terminates the reaction to one layer Excess TMA and methane molecules are pumped away (purged with an N₂ pulse) Tri-methyl aluminum Al(CH₃)_{3(g)} Al CH Hydroxyl (OH) from surface adsorbed H₂O Substrate surface (e.g. Si) (4) Next, water vapour (H₂O) is pulsed into the reaction chamber (5) Water reacts with the surface methyl (CH₃) groups, forming Al-O bonds and surface OH groups Again methane is the byproduct Reaction continues until the surface is passivated Again the reaction is self-limited to one new layer (as H₂O does not react with itself) (6) Excess H₂O and CH₄ molecules are pumped away (purged with an N₂ pulse) - One TMA pulse (+ N₂ purge) and one H₂O pulse (+ N₂ purge) form one ALD cycle, producing one layer of Al₂O₃ (of ca. 1 Å in thickness) - Here the outcome of three ideal ALD cycles is shown - Each cycle takes approximately 5 to 10 seconds www.cambridgenanotech.com Reaction-1: $(Si/AI)-OH(s) + AI(CH₃)₃(g) \rightarrow (Si/AI)-O-AI(CH₃)₂(s) + CH₄(g)$ Reaction-2: $(Si/AI)-O-AI(CH_3)_2(s) + 2H_2O(g) \rightarrow (Si/AI)-O-AI(OH)_2(s) + 2CH_4(g)$ # **COMMON PRECURSORS in ALD** e.g. cyclopentadienyls # **Advantages of ALD** - Relatively inexpensive method - **Excellent repeatability** - Dense and pinhole-free films - Accurate and simple thickness control - Large area uniformity - Low deposition temperature - **Gentle deposition process** - **Organic/polymer films** - Inorganic/organic hybrid materials . O Kalevala Koru (Finland): traditional silver jewelry Dense, pinhole-free & highly conformal ALD-Al₂O₃-nanocoating efficiently protects silver jewelries from tarnishing | Bio-based | d Packaging Materials Investigated | |-----------|--------------------------------------| | B(PLA) | Polylactide-coated board | | PLA | Polylactide film | | NFC | Nano-fibrillated cellulose film | | B(GGM) | Galactoclugomannan-coated board | | PHB | Polyhydroxy butyrate film | | Pectin | Pectin film made by solution casting | 10 000 ### O₂- and H₂O-vapour transmission - ♦ Biopolymer - → Biopolymer + 25 nm ALD-Al₂O₃ T. Hirvikorpi, M. Vähä-Nissi, J. Nikkola, A. Harlin & M. Karppinen, Surf. Coat. Technol. 205, 5088 (2011). #### **CICADA WING** - Peculiar surfacenanostructure 200-nm high nanopillars coated with a waxy layer - superhydrofobic #### **ZnO** ■ Reversible change from hydrofobic to hydrophilic upon UV-radiation #### CICADA WING + ZnO - Conformal coating of the wing by a thin layer of ZnO (~20 nm) by means of ALD - Reversible change from superhydrofobic to superhydrophilic upon UV-radiation J. Malm, E. Sahramo, M. Karppinen & R. Ras, Chem. Mater. 22, 3349 (2010). 100 cycles (20 nm) 300 cycles (60 nm) 500 cycles (100 nm)