LECTURE SCHEDULE

Date Topic

- 1. Wed 28.10. Course Introduction & Short Review of the Elements
- 2. Fri 30.10. Periodic Properties & Periodic Table & Main Group Elements (starts)
- 3. Fri 06.11. Short Survey of the Chemistry of Main Group Elements (continues)
- 4. Wed 11.11. Ag, Au, Pt, Pd & Catalysis (Antti Karttunen)
- 5. Fri 13.11. Redox Chemistry
- 6. Mon 16.11. Transition Metals: General Aspects & Crystal Field Theory
- 7. Wed 18.11. Zn, Ti, Zr, Hf & Atomic Layer Deposition (ALD)
- 8. Fri 20.11. V, Nb, Ta & Metal Complexes and MOFs
- 9. Mon 23.11. Cr, Mo, W & 2D materials
- 10 Wed 25.11. Mn, Fe, Co, Ni, Cu & Magnetism and Superconductivity
- 11. Fri 27.11. Resources of Elements & Rare/Critical Elements & Element Substitutions
- 12. Mon 30.11. Lanthanoids + Actinoids & Pigments & Luminescence & Upconversion
- 13. Wed 02.12. Inorganic Materials Chemistry Research

EXAM: Thu Dec 10, 9:00-12:00 Ke1

PRESENTATION TOPICS/SCHEDULE

Wed 18.11. Ti: Ahonen & Ivanoff

Mon 23.11. Mo: Kittilä & Kattelus

Wed 25.11. Mn: Wang & Tran

Ru: Mäki & Juopperi

Fri 27.11. In: Suortti & Räsänen

Te: Kuusivaara & Nasim

Mon 30.11. Eu: Morina

U: Musikka & Seppänen

QUESTIONS: Lecture 7

- Why Zr and Hf are of the same size? Give an example of the consequence of the same size.
- Which of the four elements (Zn, Ti, Zr, Hf) forms compounds at oxidation state +III ?
- Coordination number preferences of Zn, Ti, Zr and Hf in their oxides ?
- Which element can be used as a substituent to enhance electrical conductivity of ZnO? Would the conductivity be of n- or p-type?
- Which element can be used as a substituent to create oxygen vacancies in ZrO₂?
 Why?
- How thin is a thin film ?
- Why in ALD technique: film thickness control is straightforward?
 - conformal coating is readily achieved?

Group →1 ↓Period		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1	1 H																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8	9 F	10 Ne
3	11 Na	12 Mg											13 Al	14 Si	15 P	16 S	17 CI	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

```
ΑI
                              1s^2 2s^2 2p^6 3s^2 3p^1
                              1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10}
Zn
                              1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>2</sup>
Ti
                              1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> 5s<sup>2</sup> 4d<sup>2</sup>
Zr
                              1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> 5s<sup>2</sup> 4d<sup>10</sup> 5p<sup>6</sup> 6s<sup>2</sup> 4f<sup>14</sup> 5d<sup>2</sup>
Hf
AI<sup>3+</sup>
                         1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup>
                         1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 3d<sup>10</sup>
Zn<sup>2+</sup>
Ti<sup>4+</sup>
                      1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup>
                 1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup>
Zr<sup>4+</sup>
                         1s<sup>2</sup> 2s<sup>2</sup> 2p<sup>6</sup> 3s<sup>2</sup> 3p<sup>6</sup> 4s<sup>2</sup> 3d<sup>10</sup> 4p<sup>6</sup> 5s<sup>2</sup> 4d<sup>10</sup> 5p<sup>6</sup> 4f<sup>14</sup>
Hf<sup>4+</sup>
```

IONIC RADII (in Å)

		Ti	Zr	Hf	Zn	Al
+2	CN-4	-	-	-	0.60	_
	CN-5	-	-	-	0.68	-
	CN-6	0.86	-	-	0.74	-
	CN-8	-	-	-	0.90	-
+3	CN-4	-	-	-	-	0.39
	CN-5	-	-	-	-	0.48
	CN-6	0.67	-	-	-	0.54
+4	CN-4	0.42	0.73	0.72	-	-
	CN-5	0.51	-	-	-	-
	CN-6	0.61	0.86	0.85	-	-
	CN-8	0.74	0.98	0.97	-	-

http://abulafia.mt.ic.ac.uk/shannon/ptable.php

OCCURRENCE of the METALS: Zn, Ti, Zr, Hf

- Zn (d¹⁰, not transition metal) is the fourth most common metal in use (after Fe, Al and Cu) with an annual production of ca. 13 million tonns
- Among the transition metals, most common_are: Fe, Ti, Mn, Cr, ...
- Ti: ref. to the seminar presentation?
- Zr is found in more than 40 minerals
- Hf much more rare, no own minerals, in Zr minerals: Hf/Zr ≈ 2 %

TITANIUM: Use as a metal / in metal alloys

- <u>Corrosion resistance</u>: pulp and marine industry, chemical processing, and energy production and storage application
- High specific strength (strength/weight ratio): automotive industry, aerospace applications, sports equipment, jewelry, eyeglass frames
- Inertness in human body: surgery/artificial implants
- DISADVANTAGE: cost (Ti 6 times more expensive than AI)

PRODUCTION OF TITANIUM

- Oxide minerals: rutile (TiO₂) or ilmenite (FeO-TiO₂; 97-98 % TiO₂)
- Oxides are transformed to TiCl₄ which is a liquid and can be distilled for purification, e.g. by chloride process:
 - $TiO_2 + 2CI_2 + 2C (800 °C) \rightarrow TiCI_4 + 2CO$
 - $2\text{TiFeO}_3 + 7\text{Cl}_2 + 6\text{C} (900^{\circ}\text{C}) \rightarrow 2\text{TiCl}_4 + 2\text{FeCl}_3 + 6\text{CO}$
- TiCl₄ is reduced in argon with molten Mg (Kroll process)
 - TiCl₄ + 2Mg (1100 °C) \rightarrow Ti + 2MgCl₂
- MgCl₂ is reduced back to Mg such that it can be recycled
- Product: Titanium sponge (porous)

TiO₂:n valmistus

Sulfaattiprosessi: Pori

Raaka-aine (ilmeniitti) liuotetaan rikkihappoon ja syntyvästä liuoksesta titaani saostetaan titaanihydraattina. Hydraatti pestään, kalsinoidaan ja pintakäsitellään. Prosessi kestää 2 viikkoa.

Kloridiprosessi:

Raaka-aine (rutiili) kloorataan, jolloin muodostuu titaanitetrakloridia. Tetrakloridi hapetetaan (hapella) kaasufaasissa titaanidioksidiksi ja pintakäsitellään kuten sulfaattiprosessissakin. Kloridiprosessilla valmistetaan vain rutiilirakenteen omaavaa titaanidioksidia.

Zr & Hf

- Exactly the same size (due to shielding effect/lanthanide contraction)
- Of all the 4d-5d transition metal pairs, Zr and Hf are the most similar
- Separation of Hf from Zr very difficult
- Hf was discovered as late as 1922 (Zr more than 100 years earlier)
- Hf was the first element which was searched for and found based on the quantum theory (lat. Hafnia = Copenhagen)
- Differencies: density (atomic weight ratio Zr:Hf = 1.0:2.0)
 - neutron absorbtion (Hf 600-times stronger):
 different (opposite) uses in nuclear power plants

SEPARATION of Zr and Hf

- Zr: very low neutron absorption → used to make containers for nuclear fuel
- Hf: very high neutron absorption → used in control rods
- For the use of Zr in nuclear fuel containers it is crucial to ensure that the Zr metal used has extremely low Hf content
- Several techniques for the separation developed, below shown is a new advanced technique developed at University of Ghent

Role of Zinc in the structure and function of proteins

- Required for essential catalytic functions in enzymes
- Stabilizes the folding of protein subdomains
- Why Zinc?
 - widely available in environment
 - fixed oxidation state (+II): completely resistant to redox changes and thus not affected by redox potentials in the organisms
 - prefers tetrahedral coordination (unlike many other metals): tetrahedral coordination of the metal site seems to be a key feature in most zinc enzymes
 - d¹⁰ and thus **no crystal field effect**: environment around Zn²⁺ is flexible to allow for the precise adjustment to the surroundings without an energy penalty

- Crystal structures:
- rutile, anatase, brokite
- Large refractive index: most important white pigment: paints, paper, plastics, cosmetics, foods, tooth pastes, ...
- UV protection:

- sunscreens, plastics

Inert:

filler material in pharmaceuticals

Photocatalytic:

Akira Fujishima 1970s

- antibacterial effect:

3-times stronger compared to chlorine

1.5-times stronger compared to ozone

- after UV radiation

 water does not form droplets but spreads on TiO₂ surfaces for a thin surface layer

e.g. sauna mirrors

SUPERHYDROPHOBICITY

- Water forms perfect droplets on surface
 - → surface extremely difficult to wet
 - → Lotus effect
- Contact angle (θ_C): angle for liquid droplet at three-phase (liquid-gas-solid) boundary
- ❖ SUPERHYDROPHOBICITY: contact angle > 150°

ZrO₂

- Used as industrial ceramics, protective coating (e.g. on TiO₂ pigment particles) and refractory material in e.g. insulation
- 7-coordinated (monoclinic) structure at RT &
 8-coordinated cubic structure at high temperatures
- Y^{III}-forZr^{IV} substitution stabilizes the cubic ZrO₂ structure synthesized in various colours (gemstone & diamond simulant)
- Yttrium-stabilized zirconia (YSZ) for oxygen sensors and fuel cells owing to its low electronic conductivity but high oxide ion conductivity (Y³+→ Zr⁴+ → oxygen vacancies)

HfO₂

- Similar (7-coordination) crystal structure to that of ZrO₂
- Very high melting point → refractory material for insulation (e.g. in thermocouples)
 → operates up to 2500 °C
- Multilayered HfO₂ coatings reflect sunlight & block heat conduction
 - → passive cooling of buildings
 - → several degrees cooler than surrounding materials
- HfO₂ high-κ dielectrics → dielectric constant 5 times higher compared to SiO₂
 → high-κ material in DRAM (dynamic random access memory) and CMOS (complementary metal-oxide semiconductor) microelectronics devices
- Intel 2007 → replacement of SiO₂ as gate insulator in FETs (field-effect transistor)
 → deposition of high-quality amorphous films using ALD
- Partial substitution of Hf by Si (or Al) increases the crystallization temperature

CMOS transistor

smaller transistors \rightarrow lower gate voltage same electric fields \rightarrow thinner dielectric $SiO_2 \rightarrow HIGH-k$ DIELECTRICS

ZnO

- 4-coordination in hexagonal wurtzite or cubic zinc blende (diamond like) structure
- Additive in various applications: rubbers, plastics, ceramics, glass, cement, lubricants, paints, ointments, adhesives, sealants, pigments, foods, batteries, ferrites, fire retardants, first-aid tapes, etc.
- Wide-bandgap II-VI semiconductor
- Native doping due to excess zinc/hydrogen or oxygen vacancies/ → n-type doping
- Al³⁺-for-Zn²⁺ doping for enhanced n-type doping
- Attractive properties for optoelectronics: wide bandgap, tunable electrical properties, high transparency, high electron mobility
 - → emerging applications in transparent electrodes, liquid crystal displays, energy-saving and heat-protecting windows, electronics as thin-film transistors and light-emitting diodes

OXIDES (Al₂O₃, ZnO, TiO₂, ZrO₂ & HfO₂) & ALD (atomic layer deposition) thin-film technology

EXAMPLES of APPLICATIONS

- ALD-HfO₂ (amorphous): high-k dielectrics
- ALD-ZrO₂ (amorphous): barrier coating
- ALD-TiO₂ (crystalline): photovoltaics
- ALD-ZnO (crystalline): thermoelectric material
- ALD-Al₂O₃ (amorphous): barrier and protective coating

Atomic Layer Deposition (ALD) Thin-Film Technique

- Gaseous precursors
- Self-limiting surface reactions
- Conformal, homogeneous thin films with atomic-layer accuracy

Instrumentarium/Finlux/Planar

HfO_2 -ALD $HfCI_4 + H_2O$

Conditions for high-k dielectrics

- High enough dielectric constant k
- Wide band gap for low leakage
- Stable no reaction with Si
- Good interface, low impurities

Atomic Layer Deposition of Al₂O₃

- Al-source (precursor): $Al(CH_3)_3$
- Oxygen source (co-reactant): H₂O
- Substrate: Si

is pulsed into the reactor

(3)

- (1) Substrate surface is initially covered with hydroxyl (OH) groups

 First trimethyl aluminum [TMA: Al(CH₃)₃]
- (2) TMA reacts with the surface OH groups, producing methane (CH₄) as a byproduct

Reaction continues until the surface is

passivated (= covered with a TMA layer)

TMA does not react with itself: this terminates the reaction to one layer

Excess TMA and methane molecules are

pumped away (purged with an N₂ pulse)

Tri-methyl aluminum Al(CH₃)_{3(g)}

Al

CH

Hydroxyl (OH) from surface adsorbed H₂O

Substrate surface (e.g. Si)

(4) Next, water vapour (H₂O) is pulsed into the reaction chamber

(5) Water reacts with the surface methyl (CH₃) groups, forming Al-O bonds and surface OH groups Again methane is the byproduct Reaction continues until the surface is passivated

Again the reaction is self-limited to one new layer (as H₂O does not react with itself)

(6) Excess H₂O and CH₄ molecules are pumped away (purged with an N₂ pulse)

- One TMA pulse (+ N₂ purge) and one H₂O pulse (+ N₂ purge) form one ALD cycle, producing one layer of Al₂O₃ (of ca. 1 Å in thickness)
- Here the outcome of three ideal ALD cycles is shown
- Each cycle takes approximately 5 to 10 seconds

www.cambridgenanotech.com

Reaction-1: $(Si/AI)-OH(s) + AI(CH₃)₃(g) \rightarrow (Si/AI)-O-AI(CH₃)₂(s) + CH₄(g)$

Reaction-2: $(Si/AI)-O-AI(CH_3)_2(s) + 2H_2O(g) \rightarrow (Si/AI)-O-AI(OH)_2(s) + 2CH_4(g)$

COMMON PRECURSORS in ALD

e.g. cyclopentadienyls

Advantages of ALD

- Relatively inexpensive method
- **Excellent repeatability**
- Dense and pinhole-free films
- Accurate and simple thickness control
- Large area uniformity

- Low deposition temperature
- **Gentle deposition process**
- **Organic/polymer films**
- Inorganic/organic hybrid materials . O

Kalevala Koru (Finland):

traditional silver jewelry

Dense, pinhole-free & highly conformal ALD-Al₂O₃-nanocoating efficiently protects silver jewelries from tarnishing

Bio-based	d Packaging Materials Investigated
B(PLA)	Polylactide-coated board
PLA	Polylactide film
NFC	Nano-fibrillated cellulose film
B(GGM)	Galactoclugomannan-coated board
PHB	Polyhydroxy butyrate film
Pectin	Pectin film made by solution casting

10 000

O₂- and H₂O-vapour transmission

- ♦ Biopolymer
- → Biopolymer + 25 nm ALD-Al₂O₃

T. Hirvikorpi, M. Vähä-Nissi, J. Nikkola, A. Harlin & M. Karppinen, Surf. Coat. Technol. 205, 5088 (2011).

CICADA WING

- Peculiar surfacenanostructure
 200-nm high nanopillars coated with a waxy layer
- superhydrofobic

ZnO

■ Reversible change from hydrofobic to hydrophilic upon UV-radiation

CICADA WING + ZnO

- Conformal coating of the wing by a thin layer of ZnO (~20 nm) by means of ALD
- Reversible change from superhydrofobic to superhydrophilic upon UV-radiation

J. Malm, E. Sahramo, M. Karppinen & R. Ras, Chem. Mater. 22, 3349 (2010).

100 cycles (20 nm)

300 cycles (60 nm)

500 cycles (100 nm)

