
ELEC-E5440 Statistical Signal Processing.
Homework set #2

due December 14, 2020, at 18:00

1. MS and MAP Estimators
Consider the model Y = X+N , where X and N are random variables with density functions

fX(x) =
1

2
δ(x) +

1

2
δ(x− 1)

and

fN(n) =
1

2
e−|n|

respectively, and δ(·) is the unit impulse function. Find x̂MS, the minimum mean-square error
estimator and x̂MAP, the maximum a posteriori estimator of X from the observation Y .

2. MS and MAP Estimators
Suppose that Θ is a random parameter and that, given Θ = θ, the real random variable X

has the conditional density:

p(x|θ) =

(
n

x

)
θx(1− θ)n−x, x = 0, 1, . . . , n, 0 ≤ θ ≤ 1 (1)

Suppose further that Θ has the prior density:

p(θ) = 3(1− θ)2, 0 ≤ θ ≤ 1 (2)

a) Find the maximum a posteriori estimate of θ

b) Find the mean square estimate for θ

Hint: The computation is straight forward, if you consider that the Beta distribution, with
parameters α and β has the form:

Betaα,β(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, with 0 ≤ θ ≤ 1 and α, β > 0. (3)

where the Gamma function is:

Γ(k) =

∫ ∞
0

xk−1e−xdx. (4)

Just remind that the Gamma function has the following recursive relationship:

Γ(k + 1) = kΓ(k). (5)
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3. Direction of Arrival estimation using real-world data

Apply the MUSIC and ESPRIT methods to the real-world data in the file submarine.mat,
which can be found at the course web pages. These data are underwater measurements collected
by the Swedish Defence Agency in the Baltic Sea. The 6-element array of hydrophones used in
the experiment can be assumed to be a ULA with inter-spacing element equal to 0.9m. The
wavelength of the signals is approximately 5.32m. Can you find the submarine(s)? Compare
the performance of MUSIC and TLS-ESPRIT.

4. Target tracking using Kalman filter
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Kalman filtering example: Target tracking

A radar tracks a target in two-dimensional space. The target state ~x is modeled using a second-order
model such that

~x =
(
x ẋ ẍ y ẏ ÿ

)
where (x, y) is position, (ẋ, ẏ) is velocity, and (ẍ, ÿ) is acceleration. The states are predicted and
filtered using a Kalman filter. The state transition matrix is derived from kinematics assuming that x
and y axes are decoupled such that

~F = ~I ⊗

1 ∆t 1
2∆t2

0 1 ∆t
0 0 1


where ∆t = 1 is time interval between measurements and ⊗ is Kronecker product. Assume that
the target state transitions can be modeled as a Wiener process such that ~xk+1 = ~F~xk + ~gw, where
w ∈ N (0, σ2

w). Therefore, the process covariance matrix is

~Q = ~I ⊗ σ2
w

 1
4∆t4 1

2∆t3 1
2∆t2

1
2∆t3 ∆t2 ∆t
1
2∆t2 ∆t 1


The sensor measures the target position such that the measurement matrix is

~H = ~I ⊗
(
1 0 0

)
The measurements are corrupted by zero mean Gaussian noise with a covariance matrix

~R = σ2
v
~I

where σv = 500 is the standard deviation of the measurement noise.

Variable Description

meas pos Radar measurements of target positions with interval ∆t.
real pos Real target positions at the measurement time instances.
x init Initial state estimate.
P init Initial estimation covariance matrix.

Table 1: Description of variables in exercise data.mat.

Exercise data is given as a file exercise data.mat which contains the variables described in Table 1.

a) Implement Kalman filtering steps (prediction and filtering) using MATLAB. Set the parameter
σw = 0.22. Visualize measured, predicted, filtered and real target positions in the same figure.
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b) The selection of the process noise σw is difficult in real-world scenarios because the motion model
may not be optimal or σw is unknown. Experiment with different σw values using 0.1, 2.2 and
100. How does the parameter σw affect the prediction and filtering performance when comparing
estimation error, posterior error, and measurement error as a function of time? The error used
here is Euclidean distance to the real target position. Explain intuitively the results.
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