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Glossary

Markov process
A process characterized by a set of probabilities to go from a certain state at
time t to another state at time t+1. These transition probabilities are inde-
pendent of the history of the process and only depend on a fixed probability
assigned to the transition.

Critical properties and scaling
The behavior of equilibrium and many non-equilibrium systems in steady
states contain critical points where the systems display scale invariance and
the correlation functions exhibit an algebraic behavior characterized by so-
called critical exponents. A characteristics of this type of behavior is the
lack of finite length and time scales (also reminiscent of fractals). The be-
havior near the critical points can be described by scaling functions that are
universal and that do not depend on the detailed microscopic dynamics.

Avalanches
When a system is perturbed in such a way that a disturbance propagates
throughout the system one speaks on an avalanche. The local avalanche
dynamics may either conserve energy (particles) or dissipate energy. The
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avalanche may also loose energy when it reaches the system boundary. In
the neighborhood of a critical point the avalanche distribution is described
by a power-law distribution.

Self-organized criticality (SOC)
SOC is the surprising ”critical” state in which many systems from physics
to biology to social ones find themselves. In physics jargon, they exhibit
scale-invariance, which means that the dynamics - consisting of avalanches -
has no typical scale in time or space. The really necessary ingredient is that
there is a hidden, fine-tuned balance between how such systems are driven
to create the dynamic response, and how they dissipate the input (”energy”)
to still remain in balance.

1 Definition & Introduction

Consider the fate of a human population on a small, isolated island. It
consists of a certain number of individuals, and the most obvious question,
of importance in particular for the inhabitants of the island, is whether this
number will go to zero. Humans die and reproduce in steps of one, and
therefore one can try to analyze this fate mathematically by writing down
what is called master equations, to describe the dynamics as a ”branching
process” (BP). The branching here means that if at time t = 0 there are N
humans, at the next step t = 1 there can be N − 1 (or N + 1 or N + 2 if
the only change from t = 0 was that a pair of twins was born). The outcome
will depend in the simplest case on a ”branching number”, or the number of
offspring λ that a human being will have [1, 2, 3, 4].

If the offspring created are too few, then the population will decay, or
reach an ”absorbing state” out of which it will never escape. Likewise if
they are many (the Malthusian case in reality, perhaps), exponential growth
in time will ensue in the simplest case. In between, there is an interesting
twist: a phase transition that separates these two outcomes at a critical
value of λc. As is typical of such transitions in statistical physics one runs
into scalefree behaviour. The lifetime of the population suddenly has no
typical scale, and its total size will be a stochastic quantity, described by a
probability distribution that again has no typical scale exactly at λc.

The example of a small island also illustrates the many different twists
that one can find in branching processes. The population can be ”spatially
dispersed” such that the individuals are separated by distance. There are
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in fact two interacting populations, called ”male” and ”female”, and if the
number of one of the populations becomes zero the other one will die out soon
as well. The people on the island eat, and there is thus a hidden variable
in the dynamics, the availability of food. This causes a history effect which
makes the dynamics of human population what is called ”non-Markovian”.
Imagine as above, that we look at the number of persons on the island at
discrete times. A Markovian process is such that the probabilities to go from
a state (say of)N to stateN+δ depends only on the fixed probability assigned
to the ”transition” N → N + δN . Clearly, any relatively faithful description
of the death and birth rates of human beings has to consider the average
state of nourishment, or whether there is enough food for reproduction.

Branching processes are often perfect models of complex systems, or in
other words exhibit deep complexity themselves. Consider the following ex-
ample of a one-dimensional model of activated random walkers [5]. Take
a line of sites xi, i = 1 . . . L. Fill the sites randomly to a certain density
n = N/L, where N is the pre-set number of individuals performing the ran-
dom walk. Now, let us apply the simple rule, that if there are two or more
walkers at the same xj, two of them get ”activated” and hop to j − 1 or
j + 1, again at random. In other words, this version of drunken bar-hoppers
problem has the twist that they do not like each other.

If the system is ”periodic” or i = 1 is connected to i = L, then the
dynamics is controlled by the density n. For a critical value nc (estimated
by numerical simulations to be about 0.9488... [6]) a phase transition takes
place, such that for n < nc the asymptotic state is the ”absorbing one”, where
all the walkers are immobilized since Ni = 1 or 0. In the opposite case for
n > nc there is an active phase such that (in the infinite L-limit) the activity
persists forever. This particular model is unquestionably non-Markovian if
one only considers the number of active walkers or their density ρ. One needs
to know the full state of Ni to be able to write down exact probabilities for
how ρ changes in a discrete step of time.

The most interesting things happen if one opens up the one-dimensional
lattice by adapting two new rules. If a walker walks out (to i = 0 or i = L+1),
it disappears. Second, if there are no active ones (ρ = 0), one adds one new
walker randomly to the system. Now the activity ρ(t) is always at a marginal
value, and the long-term average of n becomes a (possibly L-dependent)
constant such that the first statement is true. With these rules, the model
of activated random walkers is also known as the Manna model after the
Indian physicist [5], and it exhibits the phenomenon dubbed ”Self-Organized
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Criticality” (SOC) [7]. Figure 1 shows an example of the dynamics by using
what is called an ”activity plot”, where those locations xi are marked both
in space and time which happen to contain just-activated walkers. One can
now apply several kinds of measures to the system, but the figure already
hints about the reasons why these simple models have found much interest.
The structure of the activity is a self-affine fractal.
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Figure 1: We follow the ”activity” in a one-dimensional system of random
activated walkers. The walkers stroll around the x-axis, and the pattern
becomes in fact scale-invariant. This system is such that some of the walkers
disappear (by escaping through open boundaries) and to maintain a constant
density new ones are added. One question one may ask is what is the waiting
time, that another (or the same) walker gets activated at the same location
after a time of inactivity. As one can see from the figure, this can be a result
of old activity getting back, or a new ”avalanche” starting from the addition
of an outsider (courtesy of Lasse Laurson).

The main enthusiasm about SOC comes from the avalanches. These are
in other words the bursts of activity that separate quiescent times (when
ρ = 0). The silence is broken by the addition of a particle or a walker, and

it creates an integrated quantity (volume) of activity, s =
∫ T

0
ρ(t)dt, where

for 0 < t < T , ρ > 0 and ρ = 0 at the endpoints t and T . The original boost
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to SOC took place after Per Bak, Chao Tang, and Kay Wiesenfeld published
in 1987 a highly influential paper in the premium physics journal Physi-
cal Review Letters, and introduced what is called the Bak-Tang-Wiesenfeld
(BTW) sandpile model - of which the Manna one is a relative [7]. The BTW
and Manna models and many others exibit the important property that the
avalanche sizes s have scale-free probability distribution, which is usually
written as

P (s) ∼ s−τsfs(s/L
Ds), (1)

here all the subscripts refer to the fact that we look at avalanches. τs and Ds

define the avalanche exponent and the cut-off exponent, respectively. fs is a
cut-off function that together with Ds includes the fact that the avalanches
are restricted somehow by the system size (in the one-dimensional Manna
model, if s becomes too large many walkers are lost, and first n drops and
then ρ goes to zero). Similar statements can be made about the avalanche
durations (T ), area or support A, and so forth [8, 9, 10, 11, 12].

The discovery of simple-to-define models, yet of very complex behavior
has been a welcome gift since there are many, many phenomena that ex-
hibit apparently scalefree statistics and/or bursty or intermittent dynamics
similar to SOC models. These come from natural sciences - but not only,
since economy and sociology are also giving rise to cases that need explana-
tions. One particular field where these ideas have found much interest is the
physics of materials ranging from understanding earthquakes to looking at
the behavior of vortices in superconductors. The Gutenberg-Richter law of
earthquake magnitudes is a power-law, and one can measure similar statistics
from fracture experiments even on normal paper [13].

Whenever comparing with real, empirical phenomena models based on
branching processes give a paradigm on two levels. In the case of SOC this
is given by a combination of ”internal dynamics” and ”an ensemble”. Of
these, the first means e.g. that activated walkers or particles of type A are
moved around with certain rules, and of course there is an enormous variety
of possible models. E.g. in the Manna-model this is obvious if one splits
the walkers into categories A (active) and B (passive). Then, there is the
question of how the balance (assuming this is true) is maintained. The SOC
models do this by a combination of dissipation (by e.g. particles dropping
off the edge of a system) and drive (by addition of B’s), where the rates are
chosen actually pretty carefully.

For the theory of complex systems branching processes thus give rise to
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two questions: what classes of models are there? What kinds of truly different
ensembles are there? The theory of reaction-diffusion systems has tried to
answer to the first question since the 70’s, and the developments reflect the
idea of universality in statistical physics. There, this means that the behavior
of systems at ”critical points” - such as defined by the λc and nc from above
- follows from the dimension at hand and the ”universality class” at hand.
The activated walkers’ model, it has recently been established, belongs to
the ”fixed energy sandpile” one, and is closely related to other seemingly far-
fetched ones such as the depinning/pinning of domain walls in magnets (see
e.g. [14]). The second question can be stated in two ways: forgetting about
the detailed model at hand, when can one expect complex behavior such as
power-law distributions, avalanches etc.? Second, and more technically, can
one derive the exponents such as τs and Ds from those of the same model at
its ”usual” phase transition?

The theory of branching processes provide many answers to these ques-
tions, and in particular help to illustrate the influence of boundary conditions
and modes of driving on the expected behavior. Thus, one gets a clear idea
of the kind of complexity one can expect to see in the many different kinds
of systems where avalanches and intermittency and scaling is observed.

2 Branching Processes

The mathematical branching process is defined for a set of objects that do
not interact. At each iteration, each object can give rise to new objects
with some probability p (or in general it can be a set of probabilities). By
continuing this iterative process the objects will form what is referred to as
a cluster or an avalanche. We can now ask questions of the following type:
Will the process continue for ever? Will the process maybe die out and stop
after a finite number of iterations? What will the average lifetime be? What
is the average size of the clusters? And what is (the asymptotic form of) the
probability that the process is active after a certain number of iterations, etc.

2.1 BP definition

We will consider a simple discrete BP denoted the Galton-Watson process.
For other types of BPs (including processes in continuous time) we refer to
the book by Harris [1]. We will denote the number of objects at generation
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n as: z0, z1, z2, ..., zn, . . .. The index n is referred to as time and time t = 0
corresponds to the 0th generation where we take z0 = 1, i.e., the process
starts from one object. We will assume that the transition from generation
n to n + 1 is given by a probability law that is independent of n, i.e., it is
assumed that it forms a Markov process. And finally it will be assumed that
different objects do not interact with one another.

The probability measure for the process is characterized by probabilities
as follows: pk is the probability that an object in the nth generation will have
k offsprings in the n+ 1th generation. We assume that pk is independent of
n. The probabilities pk thus reads pk = Prob(z1 = k) and fulfills:

∑

k

pk = 1. (2)

Figure 2 shows an example of the tree structure for a branching process and
the resulting avalanche.

}σ ( p , t )

p

p
p

1 − p

1 − p

3

Figure 2: Schematic drawing of an avalanche in a system with a maximum
of n = 3 avalanche generations corresponding to N = 2n+1 − 1 = 15 sites.
Each black site relaxes with probability p to two new black sites and with
probability 1 − p to two white sites (i.e., p0 = 1 − p, p1 = 0, p2 = p). The
black sites are part of an avalanche of size s = 7, whereas the active sites at
the boundary yield a boundary avalanche of size σ3(p, t) = 2.
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One can define the probability generating function f(s) associated to the
transition probabilities:

f(s) =
∑

k

pks
k. (3)

The first and second moments of the number z1 are denoted as:

m = Ez1, σ2 = Var z1. (4)

By taking derivatives of the generating function at s = 1 it follows that:

Ezn = mn, Var zn = nσ2. (5)

For the BP defined in Fig. 2, it follows that m = 2p and σ2 = 4p(1− p).
An important quantity is the probability for extinction q. It is obtained

as follows:

q = P (zn → 0) = P (zn = 0 for some n) = lim
n
P (zn = 0). (6)

It can be shown that for m ≤ 1 : q = 1 ; and for m > 1 : there exists a
solution that fulfills q = f(q), where 0 < q < 1 [1]. It is possible to show
that limn P (zn = k) = 0, for k = 1, 2, 3, ..., and that zn → 0 with probability
q, and zn → ∞, with probability 1 − q. Thus, the sequence {zn} does not
remain positive and bounded [1].

The quantity 1 − q is similar to an order parameter for systems in equi-
librium and its behavior is schematically shown in Fig. 3. The behavior
around the value mc = 1, the so-called critical value for the BP (see below),
can in analogy to second order phase transitions in equilibrium systems be
described by a critical exponent β defined as follows (β = 1, cf. [1]):

Prob(survival) =

{

0, m ≤ mc

(m−mc)
β, m > mc.

(7)

2.2 Avalanches and Critical Point

We will next consider the clusters, or avalanches, in more detail and obtain
the asymptotic form of the probability distributions. The size of the cluster
is given by the sum z = z1 + z2 + z3 + .... One can also consider other types
of clusters, e.g., the activity σ of the boundary (of a finite tree) and define
the boundary avalanche (cf. Fig. 2).
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Figure 3: Schematic drawing of the behavior of the probability of extinction,
q, of the branching process. The quantity 1 − q is similar to the order
parameter for systems in equilibrium at their critical points and the quantity
mc is referred to as the critical point for the BP.

For concreteness, we consider the BP defined in Fig. 2. The quantities
Pn(s, p) and Qn(σ, p) denote the probabilities of having an avalanche of size
s and boundary size σ in a system with n generations. The corresponding
generating functions are defined by [1]

fn(x, p) ≡
∑

s

Pn(s, p)x
s, (8)

gn(x, p) ≡
∑

σ

Qn(σ, p)x
σ. (9)

Due to the hierarchical structure of the branching process, it is possible to
write down recursion relations for Pn(s, p) and Qn(σ, p):

fn+1(x, p) = x
[

(1− p) + pf 2

n(x, p)
]

, (10)

gn+1(x, p) = (1− p) + pg2n(x, p), (11)

where f0(x, p) = g0(x, p) = x.
The avalanche distribution D(s) is determined by Pn(s, p) by using the

recursion relation (10). The solution of Eq. (10) in the limit n ≫ 1 is given
by

f(x, p) =
1−

√

1− 4x2p(1− p)

2xp
. (12)
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By expanding Eq. (12) as a series in x, and comparing with the defini-
tion (8), we obtain for sizes such that 1 ≪ s . n

Pn(s, p) =

√

2(1− p)/πp

s3/2
exp (−s/sc(p)) . (13)

The cutoff sc(p) is given by sc(p) = −2/ ln 4p(1− p). As p→ 1/2, sc(p) → ∞,
thus showing explicitly that the critical value for the branching process
is pc = 1/2 (i.e., mc = 1), and that the mean-field avalanche exponent,
cf. Eq. (1), for the critical branching process is τ = 3/2.

The expression (13) is only valid for avalanches which do not feel the finite
size of the system. For avalanches with n . s . N , it is possible to solve the
recursion relation (10), and then obtain Pn(s, p) for p ≥ pc by the use of a
Tauberian theorem [15, 16, 17]. By carrying out such an analysis one obtains
after some algebra Pn(s, p) ≈ A(p) exp (−s/s0(p)) , with functions A(p) and
s0(p) which can not be determined analytically. Nevertheless, we see that
for any p the probabilities Pn(s, p) will decay exponentially. One can also
calculate the asymptotic form of Qn(σ, p) for 1 ≪ σ . n and p ≥ pc by the
use of a Tauberian theorem [15, 16, 17]. We will return to study this in the
next section where we will also define and investigate the distribution of the
time to extinction.

3 Self-Organized Branching Processes

We now return to discussing the link between self-organized criticality as
mentioned in the introduction and branching processes. The simplest theo-
retical approach to SOC is mean-field theory [18], which allows for a qualita-
tive description of the behavior of the SOC state. Mean-field exponents for
SOC models have been obtained by various approaches [18, 19, 20, 21] and
it turns out that their values (e.g., τ = 3/2) are the same for all the models
considered thus far. This fact can easily be understood since the spreading
of an avalanche in mean-field theory can be described by a front consisting
of non-interacting particles that can either trigger subsequent activity or die
out. This kind of process is reminiscent of a branching process. The con-
nection between branching processes and SOC has been investigated, and it
has been discussed that the mean-field behavior of sandpile models can be
described by a critical branching process [22, 23, 24].
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For a branching process to be critical one must fine tune a control pa-
rameter to a critical value. This, by definition, cannot be the case for a SOC
system, where the critical state is approached dynamically without the need
to fine tune any parameter. In the so-called self-organized branching-process
(SOBP), the coupling of the local dynamical rules to a global condition drives
the system into a state that is indeed described by a critical branching pro-
cess [25]. It turns out that the mean-field theory of SOC models can be
exactly mapped to the SOBP model.

In the mean-field description of the sandpile model (d→ ∞) one neglects
correlations, which implies that avalanches do not form loops and hence
spread as a branching process. In the SOBP model, an avalanche starts with
a single active site, which then relaxes with probability p, leading to two new
active sites. With probability 1 − p the initial site does not relax and the
avalanche stops. If the avalanche does not stop, one repeats the procedure
for the new active sites until no active site remains. The parameter p is the
probability that a site relaxes when it is triggered by an external input. For
the SOBP branching process, there is a critical value, pc = 1/2, such that
for p > pc the probability to have an infinite avalanche is non-zero, while for
p < pc all avalanches are finite. Thus, p = pc corresponds to the critical case,
where avalanches are power law distributed.

In this description, however, the boundary conditions are not taken into
account—even though they are crucial for the self-organization process. The
boundary conditions can be introduced in the problem in a natural way by
allowing for no more than n generations for each avalanche. Schematically,
we can view the evolution of a single avalanche of size s as taking place on a
tree of size N = 2n+1 − 1 (see Fig. 2). If the avalanche reaches the boundary
of the tree, one counts the number of active sites σn (which in the sandpile
language corresponds to the energy leaving the system), and we expect that
p decreases for the next avalanche. If, on the other hand, the avalanche stops
before reaching the boundary, then p will slightly increase. The number of
generations n can be thought of as some measure of the linear dimension of
the system.

The above avalanche scenario is described by the following dynamical
equation for p(t):

p(t+ 1) = p(t) +
1− σn(p, t)

N
, (14)

where σn, the size of an avalanche reaching the boundary, fluctuates in time
and hence acts as a stochastic driving force. If σn = 0, then p increases
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(because some energy has been put into the system without any output),
whereas if σn > 0 then p decreases (due to energy leaving the system).
Equation (14) describes the global dynamics of the SOBP, as opposed to the
local dynamics which is given by the branching process. One can study the
model for a fixed value of n, and then take the limit n → ∞. In this way,
we perform the long-time limit before the “thermodynamic” limit, which
corresponds exactly to what is done in sandpile simulations.

We will now show that the SOBP model provides a mean-field theory of
self-organized critical systems. Consider for simplicity the sandpile model of
activated random walkers from the Introduction [5]: When a particle is added
to a site zi, the site will relax if zi = 1. In the limit d → ∞, the avalanche
will never visit the same site more than once. Accordingly, each site in the
avalanche will relax with the same probability p = P (z = 1). Eventually,
the avalanche will stop, and σ ≥ 0 particles will leave the system. Thus, the
total number of particles M(t) evolves according to

M(t+ 1) =M(t) + 1− σ. (15)

The dynamical equation (14) for the SOBP model is recovered by noting that
M(t) = NP (z = 1) = Np. By taking the continuum time limit of Eq. (14),
it is possible to obtain the following expression:

dp

dt
=

1− (2p)n

N
+
η(p, t)

N
, (16)

where η = 〈σn〉 − σn = (2p)n − σn(p, t) describes the fluctuations in the
steady state. Without the last term, Eq. (16) has a fixed point (dp/dt = 0)
for p = pc = 1/2. On linearizing Eq. (16), one sees that the fixed point
is attractive, which demonstrates the self organization of the SOBP model
since the noise η/N will have vanishingly small effect in the thermodynamic
limit [25].

Fig. 4 shows the value of p as a function of time. Independent of the initial
conditions, one finds that after a transient p(t) reaches the self-organized
state described by the critical value pc = 1/2 and fluctuates around it with
short-range correlations (of the order of one time unit). By computing the
variance of p(t), one finds that the fluctuations can be very well described
by a Gaussian distribution, φ(p) [25]. In the limit N → ∞, the distribution
φ(p) approaches a delta function, δ(p− pc).
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Figure 4: The value of p as a function of time for a system with n = 10
generations. The two curves refer to two different initial conditions, above
pc (•) and below pc (◦). After a transient, the control parameter p(t) reaches
its critical value pc and fluctuates around it with short-range correlations.

3.1 Avalanche distributions

Figure 5 shows the avalanche size distribution D(s) for different values of
the number of generations n. One notices that there is a scaling region
(D(s) ∼ s−τ with τ = 3/2), whose size increases with n, and characterized
by an exponential cutoff. This power-law scaling is a signature of the mean-
field criticality of the SOBP model. The distribution of active sites at the
boundary, D(σ), for different values of the number of generations falls off
exponentially [25].

In the limit where n≫ 1 one can obtain various analytical results and e.g.
calculate the avalanche distribution D(s) for the SOBP model. In addition,
one can obtain results for finite, but large, values of n. The distribution
D(s) can be calculated as the average value of Pn(s, p) with respect to the
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Figure 5: Log-log plot of the avalanche distribution D(s) for different system
sizes. The number of generations n increases from left to right. A line with
slope τ = 3/2 is plotted for reference, and it describes the behavior of the
data for intermediate s values, cf. Eq. (18). For large s, the distributions fall
off exponentially.

probability density φ(p), i.e., according to the formula

D(s) =

∫

1

0

dp φ(p)Pn(s, p). (17)

The simulation results in Fig. 4 yields that φ(p) for N ≫ 1 approaches
the delta function δ(p − pc). Thus, from Eqs. (13) and (17) we obtain the
power-law behavior

D(s) =

√

2

π
s−τ , (18)

where τ = 3/2, and for s & n we obtain an exponential cutoff exp(−s/s0(pc)).
These results are in complete agreement with the numerical results shown
in Fig. 5. The deviations from the power-law behavior (18) are due to the
fact that Eq. (13) is only valid for 1 ≪ s . n. One can also calculate the
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asymptotic form of Qn(σ, p) for 1 ≪ σ . n and p ≥ pc by the use of a
Tauberian theorem [15, 16, 17]; the result show that the boundary avalanche
distribution is

D(σ) =

∫

1

0

dp φ(p)Qn(σ, p) =
8

n2
exp (−2σ/n) , (19)

which agrees with simulation results for n≫ 1, cf. [25].
The avalanche lifetime distribution L(t) ∼ t−y yields the probability to

have an avalanche that lasts for a time t. For a system with m generations
one obtains L(m) ∼ m−2 [1]. Identifying the number of generations m of
an avalanche with the time t, we thus obtain the mean-field value y = 2,
in agreement with simulations of the SOBP model [25]. In summary, the
self-organized branching process captures the physical features of the self-
organization mechanism in sandpile models. By explicitly incorporating the
boundary conditions it follows that the dynamics drives the system into a
stationary state, which in the thermodynamic limit corresponds to the critical
branching process.

4 Scaling and Dissipation

Sometimes it can be difficult to determine whether the cutoff in the scaling is
due to finite-size effects or due to the fact that the system is not at but rather
only close to the critical point. In this respect, it is important to test the
robustness of critical behavior by understanding which perturbations destroy
the critical properties. It has been shown numerically [26, 27, 28] that the
breaking of the conservation of particle numbers leads to a characteristic size
in the avalanche distributions. We will now allow for dissipation in branching
processes and show how the system self-organizes into a sub-critical state.
In other words, the degree of nonconservation is a relevant parameter in the
renormalization group sense [29].

Consider again the two-state model introduced by Manna [5]. Some de-
gree of nonconservation can be introduced in the model by allowing for energy
dissipation in a relaxation event. In a continuous energy model this can be
done by transferring to the neighboring sites only a fraction (1 − ǫ) of the
energy lost by the relaxing site [26]. In a discrete energy model, such as the
Manna two-state model, one can introduce dissipation as the probability ǫ
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that the two particles transferred by the relaxing site are annihilated [27].
For ǫ = 0 one recovers the original two-state model.

Numerical simulations [26, 27] show that different ways of considering dis-
sipation lead to the same effect: a characteristic length is introduced into the
system and the criticality is lost. As a result, the avalanche size distribution
decays not as a pure power law but rather as

D(s) ∼ s−τ hs(s/sc). (20)

Here hs(x) is a cutoff function and the cutoff size scales as

sc ∼ ǫ−ϕ. (21)

The size s is defined as the number of sites that relax in an avalanche. We de-
fine the avalanche lifetime T as the number of steps comprising an avalanche.
The corresponding distribution decays as

D(T ) ∼ T−y hT (T/Tc), (22)

where hT (x) is another cutoff function and Tc is a cutoff that scales as

Tc ∼ ǫ−ψ. (23)

The cutoff or “scaling” functions hs(x) and hT (x) fall off exponentially for
x≫ 1.

To construct the mean-field theory one proceeds as follows [30]: When
a particle is added to an arbitrary site, the site will relax if a particle was
already present, which occurs with probability p = P (z = 1), the probability
that the site is occupied. If a relaxation occurs, the two particles are trans-
ferred with probability 1− ǫ to two of the infinitely many nearest neighbors,
or they are dissipated with probability ǫ (see Fig. 6).

The avalanche process in the mean-field limit is a branching process.
Moreover, the branching process can be described by the effective branching
probability

p̃ ≡ p(1− ǫ), (24)

where p̃ is the probability to create two new active sites. We know that there
is a critical value for p̃ = 1/2, or

p = pc ≡
1

2(1− ǫ)
. (25)

Thus, for p > pc the probability to have an infinite avalanche is non-zero,
while for p < pc all avalanches are finite. The value p = pc corresponds to
the critical case where avalanches are power law distributed.
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Figure 6: Schematic drawing of an avalanche in a system with a maximum of
n = 3 avalanche generations corresponding to N = 2n+1−1 = 15 sites. Each
black site (•) can relax in three different ways: (i) with probability p(1−ǫ) to
two new black sites, (ii) with probability 1− p the avalanche stops, and (iii)
with probability pǫ two particles are dissipated at a black site, which then
becomes a marked site (⊕), and the avalanche stops. The black sites are part
of an avalanche of size s = 6, whereas the active sites at the boundary yield
σ3(p, t) = 2. There was one dissipation event such that κ = 2.

4.1 The properties of the steady state

To address the self-organization, consider the evolution of the total number
of particles M(t) in the system after each avalanche:

M(t+ 1) =M(t) + 1− σ(p, t)− κ(p, t). (26)

Here σ is the number of particles that leave the system from the boundaries
and κ is the number of particles lost by dissipation. Since (cf. Sec. 3)M(t) =
NP (z = 1) = Np, we obtain an evolution equation for the parameter p:

p(t+ 1) = p(t) +
1− σ(p, t)− κ(p, t)

N
. (27)
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This equation reduces to the SOBP model for the case of no dissipation
(κ = 0). In the continuum limit one obtains [30]

dp

dt
=

1

N
[1− (2p(1− ǫ))n − pǫH(p(1− ǫ))] +

η(p, t)

N
. (28)

Here, we defined the function H(p(1− ǫ)), that can be obtained analytically,
and introduced the function η(p, t) to describe the fluctuations around the
average values of σ and κ. It can be shown numerically that the effect of this
“noise” term is vanishingly small in the limit N → ∞ [30].

Without the noise term one can study the fixed points of Eq. (28) and
one finds that there is only one fixed point,

p∗ = 1/2, (29)

independent of the value of ǫ; the corrections to this value are of the order
O(1/N). By linearizing Eq. (28), it follows that the fixed point is attractive.
This result implies that the SOBP model self-organizes into a state with p =
p∗. In Fig. 7 is shown the value of p as a function of time for different values
of the dissipation ǫ. We find that independent of the initial conditions after
a transient p(t) reaches the self-organized steady-state described by the fixed
point value p∗ = 1/2 and fluctuates around it with short-range correlations
(of the order of one time unit). The fluctuations around the critical value
decrease with the system size as 1/N . It follows that in the limit N → ∞
the distribution φ(p) of p approaches a delta function φ(p) ∼ δ(p− p∗).

By comparing the fixed point value (29) with the critical value (25), we
obtain that in the presence of dissipation (ǫ > 0) the self-organized steady-
state of the system is subcritical. Fig. 8 is a schematic picture of the phase
space of the model, including the line p = pc of critical behavior (25) and the
line p = p∗ of fixed points (29). These two lines intersect only for ǫ = 0.

4.2 Avalanche and lifetime distributions

In analogy to the results in Sec. 3, we obtain similar formulas for the avalanche
size distributions but with p̃ replacing p. As a result we obtain the distribu-
tion

D(s) =

√

2

π

1 + ǫ+ . . .

sτ
exp (−s/sc(ǫ)) . (30)
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Figure 7: The value of the control parameter p(t) as a function of time for
a system with different levels of dissipation. After a transient, p(t) reaches
its fixed-point value p∗ = 1/2 and fluctuates around it with short-range time
correlations.

We can expand sc(p̃(ǫ)) = −2/ln 4p̃(1− p̃) in ǫ with the result

sc(ǫ) ∼
2

ǫϕ
, ϕ = 2. (31)

Furthermore, the mean-field exponent for the critical branching process is
obtained setting ǫ = 0, i.e.,

τ = 3/2. (32)

These results are in complete agreement with the SOBP model and the
simulation of D(s) for the SOBP model with dissipation (cf. Fig. 9). The
deviations from the power-law behavior (30) are due to the fact that Eq. (13)
is only valid for 1 ≪ s . n.

Next, consider the avalanche lifetime distribution D(T ) characterizing
the probability to obtain an avalanche which spans m generations. It can be
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Figure 8: Phase diagram for the SOBP model with dissipation. The dashed
line shows the fixed points p∗ = 1/2 of the dynamics, with the flow being
indicated by the arrows. The solid line shows the critical points, cf. Eq. (25).

shown that the result can be expressed in the scaling form [1, 30]

D(T ) ∼ T−y exp(−T/Tc), (33)

where
Tc ∼ ǫ−ψ, ψ = 1. (34)

The lifetime exponent y was defined in Eq. (22), wherefrom we confirm the
mean-field result

y = 2. (35)

In Fig. 10, we show the data collapse produced by Eq. (33) for the lifetime
distributions for different values of ǫ.

In summary, the effect of dissipation on the dynamics of the sandpile
model in the mean-field limit (d → ∞) is described by a branching process.
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Figure 9: Log-log plot of the avalanche distribution D(s) for different levels
of dissipation. A line with slope τ = 3/2 is plotted for reference, and it
describes the behavior of the data for intermediate s values, cf. Eq. (30). For
large s, the distributions fall off exponentially. The data collapse is produced
according to Eq. (30).

The evolution equation for the branching probability has a single attractive
fixed point which in the presence of dissipation is not a critical point. The
level of dissipation ǫ therefore acts as a relevant parameter for the SOBP
model. These results show, in the mean-field limit, that criticality in the
sandpile model is lost when dissipation is present.

5 Final remarks

In these notes we have given some ideas of how to understand complexity
via the tool of branching processes. The main issue has been that they are
an excellent means of understanding ”criticality” and ”complexity” in many
systems. Many other important fields where BP-based ideas find use are
not overviewed, from biology and the dynamics of species and molecules to
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Figure 10: Log-log plot of the lifetime distribution D(T ) for different levels
of dissipation. A line with slope y = 2 is plotted for reference. Note the
initial deviations from the power law for ǫ = 0 due to the strong corrections
to scaling. The data collapse is produced according to Eq. (33).

geophysics and the spatial and temporal properties of say earthquakes. An
example is the so-called ETAS model used for their modelling (see eg. [31]).

The inclusion of spatial effects and temporal memory dynamics is an-
other interesting and important future avenue. Essentially, one searches for
complicated variants of usual BP’s to be able to model avalanching systems
or cases where one wants to compute the typical time to reach an absorbing
state, and the related distribution. Or, the question concerns the supercriti-
cal state (λ > λc) and the spreading from a seed. This can be complicated by
the presence of non-Poissonian temporal statistics. Another exciting future
task is the description of non-Markovian phenomena, as when for instance
the avalanche shape is non-symmetrical [32, 33] This indicates that there is
an underlying mechanism which needs to be incorporated into the BP model.
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