
CS-E4710 Machine Learning: Supervised

Methods

Lecture 11: Preference learning

Juho Rousu

November 24, 2020

Department of Computer Science

Aalto University

Preference learning1

Preferences play a key role in various fields of application:

• Social networks (facebook,

google+,...)

• Recommender systems

(Netflix,last.fm,...)

• Review web sites

(tripadvisor,goodpubguide,...)

• Internet banner advertizing

• Electronic commerce (Amazon,...)

• Adaptive retrieval systems (e.g.

Google personalized search)

1Huellermeyer & Fuernkrantz, Preference Learning: An Introduction, 2010

1

Preference learning

• Goal: learn a predictive preference

model from observed preference

information.

• Notation: A is preferred over B:

A � B, alternatively we can say A is

ranked above B

2

Preference learning tasks

• Object ranking: Given a set of inputs (objects), predict their order.

Example: web search ranks results based on predicted relevance to a

query

• Label ranking: Given an input, and a set of potential labels, predict

the (relevance) order of the labels - generalization of multi-class

classification

• Rating (also called Instance ranking): Given an input, assign it to

one of pre-ordered categories, e.g. (very good, good, neutral, bad,

very bad) - this task is otherwise known as ordinal regression

3

Representing preferences

Absolute preferences

• Absolute preferences: each object has

a preference score

• Binary preferences: object is

preferred/not preferred (c.f. binary

classification)

• Ordinal scale preferences: order or

objects is defined (”very satisfied” �
”satisfied”) but distance is not

• Numeric scale: order and distance is

defined

(Source: Huellermeyer &

Fuernkrantz, 2010)

4

Relative preferences

• Relative preferences: Preference

information comes as known pairwise

comparisons: A � B

• Total order: all objects are ranked

from the most preferred to the least

preferred (e.g. ranking for all lunch

restaurants in Otaniemi)

• Partial order: order is known only for

a subset of objects: (e.g. ”Fat Lizard”

� ”Maukas”)

(Source: Huellermeyer &

Fuernkrantz, 2010)

5

Representing rankings

• Assume a set of objects (inputs) S = {xi}mi=1

• Ranking function for S is a bijective function

σ : S 7→ {1, . . . ,m}

that assigns a unique rank 1 ≤ σ(x) ≤ m to

each object in S

• The inverse mapping σ−1(j) : {1, . . . ,m} 7→ S

gives the object of S at given rank j

In the Figure:

• σ(A) = 4, σ(B) = 2, σ(C) = 3, σ(D) = 5, σ(E) = 1

• σ−1(1) = E , σ−1(2) = B, σ−1(3) = C , σ−1(4) = A, σ−1(5) = D

6

Representing rankings

• A ranking for S is a permutation of S sorted in

ascending order of σ:

σ−1(1), σ−1(2), . . . σ−1(m)

• The ranking corresponds to a sequence of

pairwise preferences:

σ−1(1) � σ−1(2) � · · · � σ−1(m)

• Note: high preference equals low ranking and

vice versa; the most preferred object has rank

1, the least preferred rank m

In the Figure:

• σ−1(1) = E , σ−1(2) = B, σ−1(3) = C , σ−1(4) = A, σ−1(5) = D

• E � B � C � A � D

7

Kendall’s distance

• Kendall’s distance compares a predicted ranking σ′(x) to a ground

truth ranking σ(x)

• It counts the pairs that are inverted in the predicted ranking

dK (σ, σ′) =|{(j , l)|σ(xj) > σ(xl) and σ′(xj) < σ′(xl)}|

• dk takes values between dK (σ, σ′) = 0 and dK (σ, σ′) = m(m− 1)/2,

where m is the number of items

• Figure:

• Predicted ranking σ′ (left) has four inverted

pairs (A,B), (A,E), (A,C), (B,E) compared

to ground truth

• Kendall’s distance dK (σ, σ
′) = 4

8

Other loss functions for ranking

• Spearman’s footrule: sum of absolute distances in ranks

dSF (σ, σ′) =
m∑
i=1

|σ(xi)− σ′(xi)|

• Position error: the number of wrong items that are predicted before

the target item x∗:

dPE (σ, σ′) = σ′(x∗)− 1, where σ(x∗) = 1

• Discounted error: down-weights ranking errors of items with a lower

true rank, with some factor vi

dDE (σ, σ′) =
m∑
i=1

vidxi (σ, σ
′),

where is some distance of rankings of single item xi in σ and σ′

9

Object ranking

Object ranking

Given a training set of (input) objects {xi}mi=1 and set of pairwise

preferences P = {(i , j)|xi � xj} our aim is to learn a ranking function σ

that can order new sets of objects {x′j}nj=1

10

Two-step scheme for object ranking

We can approach object ranking through a two-step process:

1. Learn a model that assigns preference score f (x, x′) for the

preferences x � x′ for any pair of inputs (x, x′)

2. For a set of new points to be ranked {xi}ni=1 find the ranking σ that

maximizes the agreement between the ranking and the predicted

preference score:

AGREE (σ, f) =
∑

σ(xi)<σ(xj)

f (xi , xj),

that is, the sum of preference scores consistent with σ′

Cohen, W.W., Schapire, R.E. and Singer, Y., 1999. Learning to order things. Journal of artificial intelligence research, 10, pp.243-270.

11

First step: Learning to order pairs

• We can convert the problem of ordering pairs into a binary

classification problem with input data given by the pairs of objects

• As training data we assume a set of inputs {xi}mi=1 and set of

preferences P = {(i , j)|xi � xj}.
• A classifier should predict for a given a pair of inputs (x, x′)

h(x, x′) =

{
1 if x � x′

−1 if x′ � x

• We can use any classification algorithm on the pairwise data to learn

the predictor

• If the classifier outputs real valued scores (e.g. probabilities,

margins, etc.) f (xi , xj), we can use the scores instead of the

predicted binary labels

12

Second step: Extracting a ranking

• For a set of new inputs x1, . . . , xn we will obtain a pairwise

preference f (xi , xj) for each pair (xi , xj)

• These predictions can be contradictory, e.g. we may have cycle

A � B � C � A

• To extract a ranking for the objects, pairwise predictions that are

not consistent with the chosen order need to be ignored

• The problem is to find a ranking σ̂ that maximizes the agreement

with f : σ̂ = argmaxσAGREE (σ, f)

• However: Finding the highest scoring ranking is a NP-hard

optimization problem (Cohen et al. 1999)

Cohen, W.W., Schapire, R.E. and Singer, Y., 1999. Learning to order things. Journal of artificial intelligence research, 10, pp.243-270.

13

Second step: Extracting a ranking

• A approximate solution can be found by a graph based solution

• In the graph, objects correspond to nodes and pairwise preferences

to directed edges

• Edge weights are preference scores f (xi , xj) which are scaled to

interval [0, 1] and satisfy f (xi , xj) + f (xj , xi) = 1

• Our goal is to maximize the

agreement between the preference

scores and the chosen ranking

AGREE (σ′, f) =
∑

σ′(xi)<σ′(xj)

f (xi , xj),

• This amounts to keeping all edges

consistent with the chosen order and

ignoring the conflicting ones

14

Cohen’s algorithm

Cohen’s algorithm (Cohen et al. 1999) builds a preference graph with

nodes corresponding to the input data points (in figure: S = {a, b, c , d})

• Weighted edges correspond to the

predicted preference scores f (x, x′)

and f (x′, x)

• The algorithm maintains for each

node the net preference score

π(x) =
∑

x′ f (x, x′)−
∑

x′ f (x′, x)

which is the sum of outgoing edge

weights (pairwise preferences x � x′)

minus the sum of incoming edge

weights (pairwise preferences x′ � x)
Cohen, W.W., Schapire, R.E. and Singer, Y., 1999. Learning to order things. Journal of artificial intelligence research, 10, pp.243-270.

15

Cohen’s algorithm

• The net preference scores for the full

graph are:

π(a) = 0 + 1/4 + 1/8− (1 + 3/4 + 7/8) = −18/8

π(b) = 1 + 1 + 1− 0 = 3

π(c) = 0 + 3/4 + 1/8− (1 + 1/4 + 7/8) = −10/8

π(d) = (0 + 7/8 + 7/8)− (1 + 1/8 + 1/8) = 4/8

• The most preferred node is computed,

it is b

• We set σ′(b) = 1

16

Cohen’s algorithm

• The most preferred node is

deleted and the net

preference scores π(x) are

updated to reflect the new

graph

π(a) = −18/8 + (1− 0) = −10/8

π(c) = −10/8 + (1− 0) = −2/8

π(d) = 4/8 + (1− 0) = 12/8

• The most preferred node is

again computed: (d) and it

gets the first available rank:

σ(d) = 2

17

Cohen’s algorithm

• The most preferred node d is deleted

and the net preference scores are

updated to reflect the new graph

π(a) = −10/8 + (7/8− 1/8) = −2/4

π(c) = −2/8 + (7/8− 1/8) = 2/4

• The most preferred node is c , we set

σ(c) = 3

18

Cohen’s algorithm

• One node a remains in the graph with

net preference score

π(a) = −2/4 + (3/4− 1/4) = 0

• We set σ(a) = 4, and terminate the

algorithm

• The extracted total order is then

b � d � c � a

19

Cohen’s algorithm: pseudocode

Input: A set of objects S = {xi}i=1n , preference function f (x, x′)

t=1

Set π(x) as the net preference score of for all x ∈ S :

π(x) =
∑

x′∈S f (x, x′)−
∑

x′∈S f (x′, x)

while S 6= ∅ do
Find the object with largest net preference:

x∗ = argmaxx∈Sπ(x)

S = S − x∗

σ(x∗) = t;

Remove the contribution of x∗ from the net preference scores:

π(x) = π(x) + (f (x∗, x)− f (x, x∗)) for all x ∈ S

t = t + 1;

end while

Output: (σ(x1), σ(x2), . . . , σ(xn))

20

Preference learning through

ranking loss minimization

Preference learning through ranking loss minimization

• The above described scheme is two-step preference learning scheme

(binary classification and post-processing to extract a ranking)

• Although it simple and can be effective, it does not directly optimize

a loss function for ranking

• In the following we examine algorithms that directly to optimize the

quality of the ranking

21

Preference learning through linear models

• Consider learning a linear model f (x) = wTx that assigns a

preference score f (x) to each input x

• As training data we assume a set of inputs {xi}mi=1 and set of

preferences P = {(i , j)|xi � xj}.
• The pair (xi , xj), (i , j) ∈ P is consistently predicted if and only if

f (xi) ≥ f (xj)

or alternatively if and only if

f (xi)− f (xj) = wT (xi − xj) = wT∆xij ≥ 0

where ∆xij = xi − xj is the difference vector of xi and xj

22

Preference learning through linear models

• We can denote the preferences by labels

yij =

+1 if (i , j) ∈ P
−1 if(j , i) ∈ P
0 otherwise

• Then a pair is consistently predicted if it has a non-negative margin

yijw
T∆xij ≥ 0

• This is a hyperplane classifier with difference vectors ∆xij as inputs

and the preferences encoded into the labels yij

• Data points with yij = 0 correspond to the pairs with no preferred

order. They are always consistently classified.

23

Preference learning through linear discrimination

• Recall that finding the hyperplane that minimizes the zero-one loss

of training set is NP-hard

• In our case, and error happens when the pair has a negative margin

yijw
T∆xij < 0

in other words when the model puts the pair in inverted order

wTxi < wTxj , xi � xj

• Thus, minimizing the number of inverted pairs - the Kendall

distance - is hard as well

24

Hinge loss for preference learning

• Similarly to the binary classification,

replacing the zero-one loss with a

convex upper bound, such as Hinge

loss, leads to efficient optimization

• Hinge loss for a pair (i , j):

max(0, 1− yijw
T∆xij)

• Loss is incurred if the functional margin yijwT∆xij < 1

• Average Hinge loss over all pairs:

1

m(m − 1)

∑
(i,j),i 6=j

max(0, 1− yijw
T∆xij)

• RankSVM minimizes the above loss, while controlling the norm of

the weight vector

25

RankSVM

• RankSVM (Joachims, 2002) solves the following regularised learning

problem:

min
w,ξ

1

2
‖w‖2 +

C

|P|
∑

(i,j)∈P

ξij

s.t. wTxi −wTxj ≥ 1− ξij , for all (i , j) ∈ P
ξij ≥ 0, for all (i , j) ∈ P

• The objective is to minimize the combination of the norm is of the

weight weight vector (regularizer) and the loss (given by ξij)

• Note that only the preferred order (i , j) ∈ P is considered, not the

opposite order (j , i). This is ok, since:

yijw
T∆xij = −yijwT∆xji = yjiw

T∆xji

• That is, satisfying the constraints for (i , j) ∈ P, the constraints for

(j , i) are automatically satisfied

T. Joachims: Optimizing search engines using clickthrough data, KDD 2002
26

RankSVM with kernels

• We can use kernel functions to perform non-linear ranking

• This is solved by the dual RankSVM problem:

max
α

g(α) =
∑

(i,j)∈P

αij −
1

2

∑
(i,j)∈P

∑
(r ,s)∈P

αij∆xTij ∆xrsαrs

s.t.0 ≤ αij ≤
C

|P|
, for all i � j

• It is a constrained Quadratic Programme

• The inner product ∆xTij ∆xrs can be replaced with any kernel

κ(∆xij ,∆xrs) acting on the difference vectors ∆xij = xi − xj

• The number of dual variables is proportional to the set of pairwise

preferences, at worst quadratic in number of objects

27

Boosting for ranking

RankBoost algorithm

• RankBoost is an algorithm that applies the AdaBoost framework to

the ranking problem

• It gets as input a training sample S = {(xi , x ′i , yi)} where

yi =

+1 if x′i � xi

0 if x′i , xj have the same preference or are incomparable

−1 if xi � x′i
• It learns a linear combination

f (xi) =
T∑
t=1

αtht(xi)

of base rankers or weak rankers ht

• Base rankers are assumed to output a binary preference

(preferred/not preferred): ht(x) ∈ {0, 1} learned by minimizing the

weighted ranking errors Dt(i)1yi (ht(x′i)−ht(xi))<0 in the training set

28

Weak ranker?

• The weak learning assumption that the base rankers are assumed to

satisfy is that they rank correctly more pairs than incorrectly

• Denote by

ε+
t =

m∑
i=1

Dt(i)1yi (ht(x′i)−ht(xi))≥0

the proportion of correctly ranked pairs, by

ε−t =
m∑
i=1

Dt(i)1yi (ht(x′i)−ht(xi))<0

the proportion of the incorrectly ranked pairs and by

ε0
t =

m∑
i=1

Dt(i)1yi (ht(x′i)−ht(xi))=0

the proportion of the non-ranked pairs

• A weak ranker is thus required to satisfy: ε+
t − ε−t > 0

29

Weights of the weak rankers

• The weights of the weak learner is given by αt = 1
2 log

ε+
t

ε−t
which

represents the log-odds ratio between the weak learner being correct

or incorrect on the training sample

• When the weak ranking assumption ε+
t − ε−t > 0 is satisfied, we

have
ε+
t

ε−t
> 1

• Thus αt > 0 in this case

30

Re-weighting of examples

• The weight distribution of examples is updated by

Dt+1(i) =
Dt(i)e

−αtyi (ht(x
′
i)−ht(xi))

Zt

• The exponent will be positive when the weak ranker (with αt > 0)

makes a ranking mistake (yi (ht(x
′
i)− ht(xi)) < 0) on the pair ⇒

up-weighting the example for the next iteration

• Correctly classified pairs result in down-weighting

• For pairs for which the weak ranker cannot decide on ranking

(h(xi)− h(x′i) = 0), weights are unchanged

• Zt =
∑

i=m Dt(i)e
−αtyi (ht(x

′
i)−ht(xi)) = ε0

t + 2(ε+
t ε
−
t)1/2 is a

normalization factor

31

RankBoost pseudocode

32

RankBoost error

• RankBoost can be shown to minimize the loss function

m∑
i=1

e−yi (fN (x′i)−fN (xi))

• It is a convex upper bound of the empirical risk defined as the

number of inverted pairs R̂(h) =
∑m

i=1 1fN (x′i)−fN (xi)≤0 i.e. Kendall’s

distance

• If all weak rankers satisfy
ε+
t −ε

−
t

2 ≤ γ ≥ 0 then R̂(h) ≤ exp(−2γ2T)

• The empirical risk goes exponentially down in the boosting iterations

T ,

• A larger edge ε+
t − ε−t - how many more pairs are correct than

incorrect - gives faster decrease of the risk

33

Summary

• Preference learning covers a number of machine learning tasks where

the aim is to order, rank or rate objects

• In object ranking the goal is to rank new objects with a ranking

function learned from existing preference data

• Two-stage approach for object ranking consists of using a binary

classifier to order pairs, followed by a phase where the best

consistent order for the whole dataset is extracted

• RankSVM and RankBoost are examples of models that aim to

directly minimize a ranking loss function

34

	Representing preferences
	Object ranking
	Preference learning through ranking loss minimization
	Boosting for ranking

