CS-E4710 Machine Learning: Supervised
Methods

Lecture 11: Preference learning

Juho Rousu
November 24, 2020

Department of Computer Science
Aalto University

Preference learni

Preferences play a key role in various fields of application:

e Social networks (facebook,
google+,...)

e Recommender systems
(Netflix,last.fm,...)

e Review web sites

Personalized Searih

— Google

(tripadvisor,goodpubguide,...)
e Internet banner advertizing

e Electronic commerce (Amazon,...)

e Adaptive retrieval systems (e.g.

Google personalized search)

1Huellermeyer & Fuernkrantz, Preference Learning: An Introduction, 2010

Preference learning

e Goal: learn a predictive preference
model from observed preference

information.

Personalized Searih

— Google

e Notation: A is preferred over B:
A >~ B, alternatively we can say A is
ranked above B

Preference learning tasks

e Object ranking: Given a set of inputs (objects), predict their order.
Example: web search ranks results based on predicted relevance to a
query

e Label ranking: Given an input, and a set of potential labels, predict
the (relevance) order of the labels - generalization of multi-class
classification

e Rating (also called Instance ranking): Given an input, assign it to
one of pre-ordered categories, e.g. (very good, good, neutral, bad,
very bad) - this task is otherwise known as ordinal regression

Representing preferences

Absolute preferences: each object has
a preference score

Binary preferences: object is
preferred/not preferred (c.f. binary
classification)

Ordinal scale preferences: order or

objects is defined (" very satisfied” >
"satisfied") but distance is not

Numeric scale: order and distance is
defined

Absolute preferences

ABCD
17100

gradual

ordinal

A B CD
+ + - 0

numeric

A B CD
9 8 1 3

(Source: Huellermeyer &
Fuernkrantz, 2010)

Relative preferences

e Relative preferences: Preference
information comes as known pairwise

comparisons: A >~ B

e Total order: all objects are ranked .
total order partial order
from the most preferred to the least

- B
preferred (e.g. ranking for all lunch Ar-B>C>D A‘i o D
restaurants in Otaniemi)
e Partial order: order is known only for (Source: Huellermeyer &
a subset of objects: (e.g. "Fat Lizard” Fuernkrantz, 2010)
= "Maukas")

Representing rankings

e Assume a set of objects (inputs) S = {x;}7,

e Ranking function for S is a bijective function

:‘}-i\

=

oc:S—{1,...,m} [\

>

that assigns a unique rank 1 < g(x) < m to
each object in S

e The inverse mapping o~ 1(j) : {1,...,m} — S
gives the object of S at given rank j

In the Figure:

e 0(A)=4,0(B)=2,0(C)=3,0(D)=5,0(E)=1
e o Y (1)=E,07}(2)=B,0713)=C,07'(4) = A, 07 }5)=D

Representing rankings

e A ranking for S is a permutation of S sorted in
ascending order of o:
o 1(1),0712),...071(m)

e The ranking corresponds to a sequence of [\\\
pairwise preferences: \ ¥

\ |/

o (1) =07 1(2) = =07 m) \

e Note: high preference equals low ranking and
vice versa; the most preferred object has rank
1, the least preferred rank m

In the Figure:

e 07 (1)=E,0c7'(2)=B,07!(38)=C,07*(4) = A, 07 1(5)=D
e £E-B>~C~A-D

Kendall’s distance

e Kendall's distance compares a predicted ranking ¢’(x) to a ground

truth ranking o(x)
e |t counts the pairs that are inverted in the predicted ranking

d(0,0") ={U, Nlo(x;) > o(xi) and o'(x;) < o’ (x))}|

e dj takes values between dk(c,0’) = 0 and dx(o,0’) = m(m —1)/2,
where m is the number of items

e Figure:

e Predicted ranking o’ (left) has four inverted
pairs (A, B), (A, E), (A, C), (B, E) compared
to ground truth

e Kendall's distance dx(o,0') = 4

—

Other loss functions for ranking

e Spearman'’s footrule: sum of absolute distances in ranks

dse(o,0") Z|0 (xi)]

e Position error: the number of wrong items that are predicted before

the target item x,:
dpe(o,0') = 0/ (x,) — 1, where o(x,) =1

e Discounted error: down-weights ranking errors of items with a lower

true rank, with some factor v;

m
dpe(o,0’) = Z vidy, (0, 0'),
i=1

where is some distance of rankings of single item x; in o and ¢’

Object ranking

Object ranking

Given a training set of (input) objects {x;}7, and set of pairwise
preferences P = {(/,)|x; > x;} our aim is to learn a ranking function o

that can order new sets of objects {x;}7_,

Training

(0.74,1,25,165) > (0.45,0,35, 155)
(0.47,1,46,183) = (0.57,1,61,177)
(0.25,0,26,199) = (0.73,0,46, 185)

=—
= @&

Prediction (ranking a new set of objects)

Pairwise
preferences

between objects
(instances)

Q= {wla Ty, L3, L4, T5, L5, L7, T8, L9, L10,L11,L12, 9313}

Tyg~— Ty~ Ly - X = L1 =~ L9 = Ty~ L13 — Lg =~ T3 = LT12 — L5 - LT

10

Two-step scheme for object ranking

We can approach object ranking through a two-step process:

1. Learn a model that assigns preference score f(x,x’) for the
preferences x = x’ for any pair of inputs (x,x’)

2. For a set of new points to be ranked {x;}7_; find the ranking o that
maximizes the agreement between the ranking and the predicted
preference score:

AGREE(o,f)= Y f(xi,x)),

o(x;)<o(x;)
that is, the sum of preference scores consistent with ¢’

Cohen, W.W., Schapire, R.E. and Singer, Y., 1999. Learning to order things. Journal of artificial intelligence research, 10, pp.243-270

11

First step: Learning to order pairs

e We can convert the problem of ordering pairs into a binary
classification problem with input data given by the pairs of objects

e As training data we assume a set of inputs {x;}™; and set of
preferences P = {(i,/)|x; > x;}.

e A classifier should predict for a given a pair of inputs (x,x’)

1 if x = x’
no_
hlxx) = {—1 if x> x

e We can use any classification algorithm on the pairwise data to learn
the predictor

e If the classifier outputs real valued scores (e.g. probabilities,
margins, etc.) f(x;,x;), we can use the scores instead of the
predicted binary labels

12

Second step: Extracting a ranking

e For a set of new inputs X1, ..., x, we will obtain a pairwise
preference f(x;,x;) for each pair (x;, x;)

e These predictions can be contradictory, e.g. we may have cycle
A-B>~C>A

e To extract a ranking for the objects, pairwise predictions that are
not consistent with the chosen order need to be ignored

e The problem is to find a ranking & that maximizes the agreement
with f: & = argmax, AGREE (o, f)

e However: Finding the highest scoring ranking is a NP-hard
optimization problem (Cohen et al. 1999)

Cohen, W.W., Schapire, R.E. and Singer, Y., 1999. Learning to order things. Journal of artificial intelligence research, 10, pp.243-270.

13

Second step: Extracting a ranking

e A approximate solution can be found by a graph based solution

e In the graph, objects correspond to nodes and pairwise preferences
to directed edges

o Edge weights are preference scores f(x;,x;) which are scaled to
interval [0,1] and satisfy f(x;,x;) + f(xj,x;) =1

e Qur goal is to maximize the
agreement between the preference

scores and the chosen ranking

AGREE(o’.f)= > f(xi,x)),

o' (x;)<o'(x;)

e This amounts to keeping all edges

consistent with the chosen order and

ignoring the conflicting ones

14

Cohen’s algorithm

Cohen's algorithm (Cohen et al. 1999) builds a preference graph with
nodes corresponding to the input data points (in figure: S = {a, b, c, d})

e Weighted edges correspond to the
predicted preference scores f(x,x’)
and f(x,x)

e The algorithm maintains for each
node the net preference score

m(x) = 20 F(xX) = 20, F(x',)

which is the sum of outgoing edge

weights (pairwise preferences x > x')

minus the sum of incoming edge
weights (pairwise preferences x’ > x)

Cohen, W.W., Schapire, R.E. and Singer, Y., 1999. Learning to order things. Journal of artificial intelligence research, 10, pp.243-270

15

Cohen’s algorithm

e The net preference scores for the full

graph are:
m(a)=0+1/4+1/8—(1+3/4+7/8)=-18/8
m(b)=1+1+1-0=3
m(c)=0+3/4+1/8—(1+1/4+7/8)=-10/8
m(d)=(0+7/8+7/8)—(1+1/8+1/8)=4/8

e The most preferred node is computed,
itis b
o We set o/(b) =1

16

Cohen’s algorithm

e The most preferred node is
deleted and the net
preference scores m(x) are
updated to reflect the new

graph "

m(a) = —18/8 + (1 — 0) = —10/8 @ ()
7m(c)=-10/8+ (1 —-0) = —2/8 \ 1/8
(d) = 4/8 + (1—0) = 12/8 N

e The most preferred node is
again computed: (d) and it
gets the first available rank:
o(d)=2

17

Cohen’s algorithm

e The most preferred node d is deleted
and the net preference scores are
updated to reflect the new graph

n(a) = —10/8 + (7/8 — 1/8) = —2/4
n(c) = —2/8+ (7/8 — 1/8) = 2/4

e The most preferred node is ¢, we set
o(c)=3

1/4

\ b 18
718

18

Cohen’s algorithm

e One node a remains in the graph with
net preference score

w(a)=-2/4+(3/4-1/4)=0 1/4

e We set o(a) = 4, and terminate the
algorithm

e The extracted total order is then
b>d>c>a

19

Cohen’s algorithm: pseudocode

Input: A set of objects S = {x,},—1, preference function f(x,x")
t=1
Set 7(x) as the net preference score of for all x € S:
7(0) = Fyes F(x,X) = Yyoes FX'X)
while S # () do
Find the object with largest net preference:
X* = argmax, g7(x)
S$5=5-—-x*
o(x*) =1t
Remove the contribution of x* from the net preference scores:
m(x) = m(x) + (F(x*,x) — f(x,x*)) for all x € S
t=t+1,;
end while
Output: (0(x1),0(x2),...,0(xs))

20

Preference learning through
ranking loss minimization

Preference learning through ranking loss minimization

e The above described scheme is two-step preference learning scheme
(binary classification and post-processing to extract a ranking)

e Although it simple and can be effective, it does not directly optimize
a loss function for ranking

e In the following we examine algorithms that directly to optimize the
quality of the ranking

21

Preference learning through linear models

e Consider learning a linear model f(x) = w’x that assigns a
preference score f(x) to each input x

e As training data we assume a set of inputs {x;}7; and set of
preferences P = {(i,))|x; > x;}.
e The pair (x;,x;), (i,j) € P is consistently predicted if and only if

f(xi) = f(x;)
or alternatively if and only if
f(xi) — f(x;) =w'(x; —x;) =w'Ax; >0

where Ax;; = x; — x; is the difference vector of x; and x;

22

Preference learning through linear models

e We can denote the preferences by labels

+1 if(i,j)eP
yi=4§-1 if(j,i)eP
0 otherwise
e Then a pair is consistently predicted if it has a non-negative margin

y,'J'WTAX,'j >0

e This is a hyperplane classifier with difference vectors Ax;; as inputs
and the preferences encoded into the labels y;

e Data points with y;; = 0 correspond to the pairs with no preferred
order. They are always consistently classified.

23

Preference learning through linear discrimination

e Recall that finding the hyperplane that minimizes the zero-one loss
of training set is NP-hard

e In our case, and error happens when the pair has a negative margin
T
yiw' Ax; <0

in other words when the model puts the pair in inverted order
WTX,' < WTXJ', Xj = Xj

e Thus, minimizing the number of inverted pairs - the Kendall
distance - is hard as well

24

Hinge loss for preference learning

e Similarly to the binary classification,
replacing the zero-one loss with a

convex upper bound, such as Hinge
loss, leads to efficient optimization

Hinge loss for a pair (/,):

max(0,1 — y;w " Ax;)

e Loss is incurred if the functional margin y;w’ Ax; < 1
e Average Hinge loss over all pairs:
1 T
m Z n’1aX(07 1-— y,JW AXU)

(id)i#i

RankSVM minimizes the above loss, while controlling the norm of

the weight vector

25

RankSVM

e RankSVM (Joachims, 2002) solves the following regularised learning
problem:

1 > C
min 5 [[wl|” + 1P| Z &ij
(ij)eP
st.wix;—w'x;>1—¢&;, forall (i,j)€P
&j >0, forall (i,j) e P
e The objective is to minimize the combination of the norm is of the
weight weight vector (regularizer) and the loss (given by &)
e Note that only the preferred order (i,) € P is considered, not the
opposite order (j, 7). This is ok, since:
yiw! Ax; = —y;w’ Ax; = yiw " Ax;

e That is, satisfying the constraints for (i, /) € P, the constraints for
(j, 7) are automatically satisfied

T. Joachims: Optimizing search engines using clickthrough data, KDD 2002 2

RankSVM with kernels

e We can use kernel functions to perform non-linear ranking

e This is solved by the dual RankSVM problem:

.
maxg E @y = E E a,-ij,-ij,sa,s

(ij)eP (i,j)EP (r,s)eP

s.t.0 <oy < forall i > j

C
=Pl
e It is a constrained Quadratic Programme

e The inner product Ax;] Ax,s can be replaced with any kernel
k(Ax;j, Ax,s) acting on the difference vectors Ax;; = x; — X;

e The number of dual variables is proportional to the set of pairwise
preferences, at worst quadratic in number of objects

27

Boosting for ranking

RankBoost algorithm

e RankBoost is an algorithm that applies the AdaBoost framework to
the ranking problem

e It gets as input a training sample S = {(x;, x/, ;) } where

+1 ifxi > x;
Yi=40 if x,x; have the same preference or are incomparable
-1 if x; = X

e |t learns a linear combination
—
f(x,') = Zatht(x;)
t=1

of base rankers or weak rankers h;

e Base rankers are assumed to output a binary preference
(preferred/not preferred): hy(x) € {0,1} learned by minimizing the
weighted ranking errors Dt(")ly,-(ht(x/)—ht(x,-))<0 in the training set

28

e The weak learning assumption that the base rankers are assumed to
satisfy is that they rank correctly more pairs than incorrectly

e Denote by

Z Di() 1y, (he(x/)=he(x))>0

the proportion of correctly ranked pairs, by

€ = ZDt 1y (he(x!)—he(xi))<0

the proportion of the incorrectly ranked pairs and by

Z —h¢(x;))=0

the proportion of the non-ranked pairs

o A weak ranker is thus required to satisfy: ¢ —¢; >0

29

Weights of the weak rankers

o

e The weights of the weak learner is given by a; = % Iog £ which
represents the log-odds ratio between the weak Iearner belng correct
or incorrect on the training sample

e When the weak ranking assumption €; — ¢; > 0 is satisfied, we
have >1

° Thus ozt > 0 in this case

30

Re-weighting of examples

e The weight distribution of examples is updated by

Dt(i)e*"‘tyf(hf(xil)*ht(Xi))

Diy1(i) = Z

e The exponent will be positive when the weak ranker (with o > 0)
makes a ranking mistake (y;(h:(x/) — h:(x;)) < 0) on the pair =
up-weighting the example for the next iteration

e Correctly classified pairs result in down-weighting

e For pairs for which the weak ranker cannot decide on ranking
(h(x;) — h(x}) = 0), weights are unchanged

© Zi=> i Dy(i)e~ilh(x)=he(x)) = 0 4 (et e)2 is a
normalization factor

31

RankBoost pseudocode

RANKBOOST(S = ((xlax/h Y1), (xm7x;n7 Ym)))

1 for i+ 1tomdo

2 Dy(i) + L

3 fort<+1to 7T do

4 ht < base ranker in H with smallest ¢, — ¢ = —]]% [yi (he(a}) — ht(arl))]

1 P inDy

5 a; < 3 log é

6 Zy €2 + 2[6:6;]% > normalization factor

7 for i <~ 1 to m do

C maat e Mmoo -ne)

9 fe 2T ah
10 return f

32

RankBoost error

e RankBoost can be shown to minimize the loss function

E e Vi (fn(x;)—fu(xi))

e It is a convex upper bound of the empirical risk defined as the
number of inverted pairs /%(h) =", 16, ()~ fu(x)<o i-e. Kendall's
distance

R(h) < exp(—2+2T)

e The empirical risk goes exponentlally down in the boosting iterations
T,

e A larger edge ¢ — ¢; - how many more pairs are correct than
incorrect - gives faster decrease of the risk

33

e Preference learning covers a number of machine learning tasks where
the aim is to order, rank or rate objects

e In object ranking the goal is to rank new objects with a ranking
function learned from existing preference data

e Two-stage approach for object ranking consists of using a binary
classifier to order pairs, followed by a phase where the best
consistent order for the whole dataset is extracted

e RankSVM and RankBoost are examples of models that aim to
directly minimize a ranking loss function

34

	Representing preferences
	Object ranking
	Preference learning through ranking loss minimization
	Boosting for ranking

