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Agenda
• How a graph encodes conditional independence statements


• When a conditional independence ideal is equal to a parametrized graphical model


• This lecture will connect


• monomial parametrizations of discrete exponential families


• toric ideals


• conditional independence (ideals)


• Next time: Maximum likelihood estimation for undirected graphical models



Graphical models example



Correlation vs causation

• Genes regulated as 


•  and  are correlated, but do not interact directly

X → Y → Z

X Z



Graphs

• Graph 


• Nodes or vertices 


• Edges 


• A graph is undirected if  implies that 


• Corresponding random vector 

G = (V, E)

V

E ⊆ V × V

(u, v) ∈ E (v, u) ∈ E

X = (Xv : v ∈ V)



Graphical models

In the graphical model associated to a graph , an edge  of the graph 
 expresses some sort of dependence between the vertices  and .

G (u, v)
G u v



Separator

• A path between vertices  and  in a graph  is a sequence of vertices 
 such that each .


• A pair of vertices  is separated by a set of vertices  
if every path from  to  contains a vertex in .


• Let  be disjoint subsets of . Then  and  are separated by , if 
 and  are separated by  for any  and .

u w G
u = v1, v2, …, vk = w (vi−1, vi) ∈ E

a, b ∈ V C ⊆ V \{a, b}
a b C

A, B, C V A B C
a b C a ∈ A b ∈ B



Separator
Poll: Let  be a graph with nodes  and edges 

. Which of the following sets are separators for the 
nodes  and ?


1. 


2. 


3. 


4.

G {1,2,3,4}
(1,2), (2,3), (2,4), (3,4)

1 4

{2}

{3}

{2,3}

{1,2,3,4}



Separator
Poll: Let  be a graph with nodes  and edges 

. Which of the following sets are separators for the 
nodes  and ?


1.  - Correct


2. 


3.  - Correct


4.

G {1,2,3,4}
(1,2), (2,3), (2,4), (3,4)

1 4

{2}

{3}

{2,3}

{1,2,3,4}



Conditional independence
Def: Let  be pairwise disjoint subsets. We say that  is 
conditionally independent of  given  if and only if


 


for all .


• The notation  (or ) denotes that the random vector 
 satisfies the conditional independence (CI) statement that  is 

conditionally independent of  given  .

A, B, C ⊆ [m] XA
XB XC

fA∪B|C(xA, xB |xC) = fA|C(xA |xC)fB|C(xB |xC)

xA, xB, xC

XA ⊥⊥ XB |XC A ⊥⊥ B |C
X XA

XB XC



Pairwise Markov property
Let  be an undirected graph.


Def: The pairwise Markov property associated to  consists of all conditional independence 
statements , where  is not an edge of .


Example: The pairwise Markov property associated to  is:


1. 


2. 


3. 


4. 

G = (V, E)

G
Xu ⊥⊥ Xv |XV \{u,v} (u, v) G

G

{1 ⊥⊥ 3 | (2,4),1 ⊥⊥ 4 | (2,3)}

{1 ⊥⊥ 3 |2,1 ⊥⊥ 4 |2}

{1 ⊥⊥ 3 | (2,4)}

{1 ⊥⊥ 4 | (2,3)}



Pairwise Markov property
Let  be an undirected graph.


Def: The pairwise Markov property associated to  consists of all conditional independence 
statements , where  is not an edge of .


Example: The pairwise Markov property associated to  is:


1.  - Correct


2. 


3. 


4. 

G = (V, E)

G
Xu ⊥⊥ Xv |XV \{u,v} (u, v) G

G

{1 ⊥⊥ 3 | (2,4),1 ⊥⊥ 4 | (2,3)}

{1 ⊥⊥ 3 |2,1 ⊥⊥ 4 |2}

{1 ⊥⊥ 3 | (2,4)}

{1 ⊥⊥ 4 | (2,3)}



Multivariate Gaussian random variables

• The CI statement  is equivalent to the matrix  
having rank  or equivalently .


• This is equivalent to .


• The pairwise Markov property holds for a Gaussian distribution if and only 
if the entries of the concentration matrix corresponding to non-edges are 
zero.

Xu ⊥⊥ Xv |XV \{u,v} ΣV \{u},V \{v}
|V \{u, v} | det(ΣV \{u},V \{v}) = 0

(Σ−1)u,v = 0



Multivariate Gaussian random variables
Which form do the concentration matrices of a Gaussian distribution obeying the pairwise 
Markov property have?


1. 


2.

k11 0 k13 k14

0 k22 0 0
k13 0 k33 0
k14 0 0 k44

k11 k12 0 0
k12 k22 k23 k24

0 k23 k33 k34

0 k24 k34 k44



Multivariate Gaussian random variables
Which form do the concentration matrices of a Gaussian distribution obeying the pairwise 
Markov property have?


1. 


2.  - Correct

k11 0 k13 k14

0 k22 0 0
k13 0 k33 0
k14 0 0 k44

k11 k12 0 0
k12 k22 k23 k24

0 k23 k33 k34

0 k24 k34 k44



Global Markov property
Def: The global Markov property associated to  consists of all conditional 
independence statements  for all disjoint sets , , and  
such that  separates  and  in .


Example: The global Markov property associated to  is:


1. 


2. 


3. 

G
XA ⊥⊥ XB |XC A B C

C A B G

G

{1 ⊥⊥ (3,4) |2}

{1 ⊥⊥ 3 | (2,4),1 ⊥⊥ 4 | (2,3)}

{1 ⊥⊥ 3 | (2,4),1 ⊥⊥ 4 | (2,3),1 ⊥⊥ (3,4) |2}



Global Markov property
Def: The global Markov property associated to  consists of all conditional 
independence statements  for all disjoint sets , , and  
such that  separates  and  in .


Example: The global Markov property associated to  is:


1. 


2. 


3.  - Correct

G
XA ⊥⊥ XB |XC A B C

C A B G

G

{1 ⊥⊥ (3,4) |2}

{1 ⊥⊥ 3 | (2,4),1 ⊥⊥ 4 | (2,3)}

{1 ⊥⊥ 3 | (2,4),1 ⊥⊥ 4 | (2,3),1 ⊥⊥ (3,4) |2}



Markov properties

• It always holds .


Example:


• 


•

𝒞pairs ⊆ 𝒞global

𝒞pairs = {1 ⊥⊥ 3 | (2,4),1 ⊥⊥ 4 | (2,3)}

𝒞global = 𝒞pairs ∪ {1 ⊥⊥ (3,4) |2}



Intersection axiom

Prop (Intersection axiom): Suppose that  for all . Then


.


• The condition  for all  is stronger than necessary. 


• For discrete random variables, precise conditions can be given which 
guarantee that the intersection axiom holds. This is done using algebra!

f(x) > 0 x

XA ⊥⊥ XB |XC∪D and XA ⊥⊥ XC |XB∪D ⟹ XA ⊥⊥ XB∪C |XD

f(x) > 0 x



Markov properties

Theorem: If the distribution  of a random vector  satisfies the intersection 
axiom, then  obeys the pairwise Markov property for  if and only if it 
obeys the global Markov property for .

P X
P G

G



Multivariate Gaussian random variables

For multivariate Gaussian random variables with non-singular covariance 
matrix, the density function is strictly positive.


 the intersection axiom holds


 the Markov properties are equivalent in this class of distributions

⟹

⟹



Factorization property

• Next we want to characterize all the distributions that satisfy the Markov 
properties for a given graph.


• Hammersley-Clifford theorem relates the implicit description of a graphical 
model through Markov properties to a parametric description.



Factorization property

• Let  be an undirected graph.


• A subset of vertices  is a clique if  for all . 


• The set of maximal cliques of  is denoted .


• For each , we introduce a continuous nonnegative potential 
function .

G = (V, E)

C ⊆ V (i, j) ∈ E i, j ∈ C

G 𝒞(G)

C ∈ 𝒞(G)
ϕC : 𝒳C → ℝ≥0



Maximal cliques

Example: Which are maximal cliques of ?


1. 


2. 


3. 


4. 

G

{1}

{1,2}

{1,2,3}

{2,3,4}



Maximal cliques

Example: Which are maximal cliques of ?


1. 


2.  - Correct


3. 


4.  - Correct

G

{1}

{1,2}

{1,2,3}

{2,3,4}



Factorization property
Def: The distribution of  factorizes according to the graph  if its 
probability density function  can be written as


,


where  are some potential functions and  is the normalizing 
constant.


X G
f(x)

f(x) =
1
Z ∏

C∈𝒞(G)

ϕC(xC)

ϕC Z < ∞



Factorization property

 


Example: A distribution factorizes according to  if its density  can be 
written as 


.

f(x) =
1
Z ∏

C∈𝒞(G)

ϕC(xC)

G f(x)

f(x) =
1
Z

ϕ12(x1, x2)ϕ234(x2, x3, x4)



Hammersley-Clifford
Theorem (Hammersley-Clifford): A distribution with positive and continuous 
density  satisfies the pairwise Markov property on the graph  if and only if 
it factorizes according to .


• The Gaussian case is completely covered by the Hammersley-Clifford 
theorem.


• All distributions on a discrete space are considered continuous.


• What happens in the discrete case?

f G
G



Discrete distributions

• Let  be a discrete random vector with state space . 


• Write . 


• Then we can write  as .


•  becomes 

X ℛ =
m

∏
j=1

[rj]

iC := (ij)j∈C ∈ RC

ϕC(xC) θ(C)
iC

f(x) =
1
Z

ϕ12(x1, x2)ϕ234(x2, x3, x4) pi1i2i3i4 =
1
Z

θ(12)
i1i2

θ(234)
i2i3i4



Discrete distributions
• The distribution  of  factors according to  if


,


which is a monomial parametrization. 


• Hence the set of distributions that factorize according to a graph  form a 
hierarchical log-linear model. 


• We will denote this model by .

p X G

pi1i2⋯im =
1

Z(θ) ∏
C∈𝒞(G)

θ(C)
iC

G

IG



Discrete distributions

• 


• 


•

𝒞pairs = {1 ⊥⊥ 3 | (2,4),1 ⊥⊥ 4 | (2,3)}

𝒞global = 𝒞pairs ∪ {1 ⊥⊥ (3,4) |2}

p(x) =
1
Z

θ(12)
i1i2

θ(234)
i2i3i4



Discrete conditional independence models

Prop: If  is a discrete random vector, then the conditional independence statement 
 holds if and only if


 


for all  and .


•  The notation  denotes the probability  which 
can be written as


. 

X
XA ⊥⊥ XB |XC

piA,iB,iC,+ ⋅ pjA,jB,iC,+ − piA,jB,iC,+ ⋅ pjA,iB,iC,+ = 0

iA, jA ∈ ℛA, iB, jB ∈ ℛB iC ∈ ℛC

piA,iB,iC,+ P(XA = iA, XB = iB, XC = iC)

piA,iB,iC,+ = ∑
j[m]\A∪B∪C∈ℛ[m]\A∪B∪C

piA,iB,iC,j[m]\A∪B∪C



Pairwise Markov property
• 


• Poll: How many polynomials generate the corresponding CI ideal?


• 


• 


• The conditional independence ideal for each statement is generated by two 
minors of  and two minors of 

𝒞pairs = {1 ⊥⊥ 3 | (2,4),1 ⊥⊥ 4 | (2,3)}

M1 = (p0000 p0001 p0010 p0011
p1000 p1001 p1010 p1011)

M2 = (p0100 p0101 p0110 p0111
p1100 p1101 p1110 p1111)

M1 M2





Global Markov property
• 


• 


• 


• The conditional independence ideal  is generated by all  
minors of  and 

𝒞global = 𝒞pairs ∪ {1 ⊥⊥ (3,4) |2}

M1 = (p0000 p0001 p0010 p0011
p1000 p1001 p1010 p1011)

M2 = (p0100 p0101 p0110 p0111
p1100 p1101 p1110 p1111)

𝒞global 2 × 2
M1 M2



Factorization according to G
• 


• Poll: How many parameters does this parametrization map have?


• 


• We obtain the toric ideal  by eliminating the variables :


pi1i2i3i4 =
1
Z

θ(12)
i1i2

θ(234)
i2i3i4

pijkl = aijbjkl

IG aij, bjkl

IG = ⟨pijkl − aijbjkl : (i, j, k, l) ∈ {0,1}4⟩ ∩ ℝ[p]





Comparison of ideals
In this example:


• 


•  is different


•  has 9 primary components, one of them is 


• Each of the other eight components contains at least one variable 


• This means that the corresponding irreducible varieties intersect the boundary of 
the probability simplex 

IG = Iglobal(G)

Ipairwise(G)

Ipairwise(G) IG = Iglobal(G)

pijkl

Δ15



Comparison of ideals
• This shows that the positivity assumption in the Hammersley-Clifford 

Theorem is necessary


• One primary component is 



• It represents the family of distributions such that .


• All such distributions satisfy the pairwise Markov property, but they are 
not in the model characterized by .

⟨p0,0,0,0, p1,0,0,0, p1,0,1,1, p0,0,1,1, p1,1,0,0, p0,1,0,0, p0,1,1,1, p1,1,1,1⟩

P(X3 = X4) = 1

G



Comparison of ideals

• In the previous example, the polynomials implied by the global Markov 
property characterize .


• This is not true in general.


• A graph  is chordal if every induced cycle of length 4 or larger has a 
chord.


Theorem:  if and only if  is a chordal graph. 

IG

G

IG = Iglobal(G) G



Conclusion

• Implicit description of an undirected graphical model through Markov 
properties


• Parametric description of an undirected graphical model through 
factorization according to a graph


• Hammersley-Clifford theorem when a graphical model is given by pairwise 
Markov properties


• The failure of the Hammersley-Clifford theorem



Next time

• Maximum likelihood estimation for undirected graphical models


• Bachelor and Master thesis topics presentation
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