Undirected graphical models

Kaie Kubjas, 25.11.2020

Agenda

- How a graph encodes conditional independence statements
- When a conditional independence ideal is equal to a parametrized graphical model
- This lecture will connect
- monomial parametrizations of discrete exponential families
- toric ideals
- conditional independence (ideals)
- Next time: Maximum likelihood estimation for undirected graphical models

Graphical models example

* genes $A_{1} B_{1} C$
* Relation ships
- A regulates C
- B regulates C

BIOLOGY

$$
\begin{aligned}
& P(A, B, C)= \\
= & P(A) P(B) P(C \mid A, B)
\end{aligned}
$$

Genes \leftrightarrow Relationships \Leftrightarrow

PROBABILISTIC MODEL
GRAPH
Vertices \Leftrightarrow Random variables Edges \rightarrow Statistical dependencies

Correlation vs causation

- Genes regulated as $X \rightarrow Y \rightarrow Z$
- X and Z are correlated, but do not interact directly

Graphs

- Graph $G=(V, E)$
- Nodes or vertices V

- Edges $E \subseteq V \times V$
- A graph is undirected if $(u, v) \in E$ implies that $(v, u) \in E$
- Corresponding random vector $X=\left(X_{v}: v \in V\right)$

Graphical models

In the graphical model associated to a graph G, an edge (u, v) of the graph G expresses some sort of dependence between the vertices u and v.

Separator

- A path between vertices u and w in a graph G is a sequence of vertices $u=v_{1}, v_{2}, \ldots, v_{k}=w$ such that each $\left(v_{i-1}, v_{i}\right) \in E$.
- A pair of vertices $a, b \in V$ is separated by a set of vertices $C \subseteq V \backslash\{a, b\}$ if every path from a to b contains a vertex in C.
- Let A, B, C be disjoint subsets of V. Then A and B are separated by C, if a and b are separated by C for any $a \in A$ and $b \in B$.

Separator

Poll: Let G be a graph with nodes $\{1,2,3,4\}$ and edges
$(1,2),(2,3),(2,4),(3,4)$. Which of the following sets are separators for the nodes 1 and 4 ?

1. $\{2\}$
2. $\{3\}$
3. $\{2,3\}$
4. $\{1,2,3,4\}$

Separator

Poll: Let G be a graph with nodes $\{1,2,3,4\}$ and edges
$(1,2),(2,3),(2,4),(3,4)$. Which of the following sets are separators for the nodes 1 and 4 ?

1. $\{2\}$-Correct
2. $\{3\}$
3. $\{2,3\}$ - Correct
4. $\{1,2,3,4\}$

Conditional independence

Def: Let $A, B, C \subseteq[m]$ be pairwise disjoint subsets. We say that X_{A} is conditionally independent of X_{B} given X_{C} if and only if

$$
f_{A \cup B \mid C}\left(x_{A}, x_{B} \mid x_{C}\right)=f_{A \mid C}\left(x_{A} \mid x_{C}\right) f_{B \mid C}\left(x_{B} \mid x_{C}\right)
$$

for all x_{A}, x_{B}, x_{C}.

- The notation $X_{A} \Perp X_{B} \mid X_{C}$ (or $A \Perp B \mid C$) denotes that the random vector X satisfies the conditional independence (CI) statement that X_{A} is conditionally independent of X_{B} given X_{C}.

Pairwise Markov property

Let $G=(V, E)$ be an undirected graph.
Def: The pairwise Markov property associated to G consists of all conditional independence statements $X_{u} \Perp X_{v} \mid X_{V \backslash\{u, v\rangle}$, where (u, v) is not an edge of G.

Example: The pairwise Markov property associated to G is:

1. $\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$
2. $\{1 \Perp 3|2,1 \Perp 4| 2\}$
3. $\{1 \Perp 3 \mid(2,4)\}$

4. $\{1 \Perp 4 \mid(2,3)\}$

Pairwise Markov property

Let $G=(V, E)$ be an undirected graph.
Def: The pairwise Markov property associated to G consists of all conditional independence statements $X_{u} \Perp X_{v} \mid X_{V \backslash\{u, v\}}$, where (u, v) is not an edge of G.

Example: The pairwise Markov property associated to G is:

1. $\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}-$ Correct
2. $\{1 \Perp 3|2,1 \Perp 4| 2\}$
3. $\{1 \Perp 3 \mid(2,4)\}$

4. $\{1 \Perp 4 \mid(2,3)\}$

Multivariate Gaussian random variables

- The Cl statement $X_{u} \Perp X_{v} \mid X_{V \backslash\{u, v\}}$ is equivalent to the matrix $\Sigma_{V \backslash\{u\}, V \backslash\{v\}}$ having rank $|V \backslash\{u, \nu\}|$ or equivalently $\operatorname{det}\left(\Sigma_{V \backslash\{u\}, V \backslash\{v\}}\right)=0$.
- This is equivalent to $\left(\Sigma^{-1}\right)_{u, v}=0$.
- The pairwise Markov property holds for a Gaussian distribution if and only if the entries of the concentration matrix corresponding to non-edges are zero.

Multivariate Gaussian random variables

Which form do the concentration matrices of a Gaussian distribution obeying the pairwise Markov property have?

1. $\left(\begin{array}{cccc}k_{11} & 0 & k_{13} & k_{14} \\ 0 & k_{22} & 0 & 0 \\ k_{13} & 0 & k_{33} & 0 \\ k_{14} & 0 & 0 & k_{44}\end{array}\right)$
2. $\left(\begin{array}{cccc}k_{11} & k_{12} & 0 & 0 \\ k_{12} & k_{22} & k_{23} & k_{24} \\ 0 & k_{23} & k_{33} & k_{34} \\ 0 & k_{24} & k_{34} & k_{44}\end{array}\right)$

Multivariate Gaussian random variables

Which form do the concentration matrices of a Gaussian distribution obeying the pairwise Markov property have?

1. $\left(\begin{array}{cccc}k_{11} & 0 & k_{13} & k_{14} \\ 0 & k_{22} & 0 & 0 \\ k_{13} & 0 & k_{33} & 0 \\ k_{14} & 0 & 0 & k_{44}\end{array}\right)$
2. $\left(\begin{array}{cccc}k_{11} & k_{12} & 0 & 0 \\ k_{12} & k_{22} & k_{23} & k_{24} \\ 0 & k_{23} & k_{33} & k_{34} \\ 0 & k_{24} & k_{34} & k_{44}\end{array}\right)$ - Correct

Global Markov property

Def: The global Markov property associated to G consists of all conditional independence statements $X_{A} \Perp X_{B} \mid X_{C}$ for all disjoint sets A, B, and C such that C separates A and B in G.

Example: The global Markov property associated to G is:

1. $\{1 \Perp(3,4) \mid 2\}$
2. $\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$
3. $\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3), 1 \Perp(3,4) \mid 2\}$

Global Markov property

Def: The global Markov property associated to G consists of all conditional independence statements $X_{A} \Perp X_{B} \mid X_{C}$ for all disjoint sets A, B, and C such that C separates A and B in G.

Example: The global Markov property associated to G is:

1. $\{1 \Perp(3,4) \mid 2\}$
2. $\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$
3. $\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3), 1 \Perp(3,4) \mid 2\}$ - Correct

Markov properties

- It always holds $\mathscr{C}_{\text {pairs }} \subseteq \mathscr{C}_{\text {global }}$.

Example:

- $\mathscr{C}_{\text {pairs }}=\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$
- $\mathscr{C}_{\text {global }}=\mathscr{C}_{\text {pairs }} \cup\{1 \Perp(3,4) \mid 2\}$

Intersection axiom

Prop (Intersection axiom): Suppose that $f(x)>0$ for all x. Then

$$
X_{A} \Perp X_{B} \mid X_{C \cup D} \text { and } X_{A} \Perp X_{C}\left|X_{B \cup D} \Longrightarrow X_{A} \Perp X_{B \cup C}\right| X_{D} .
$$

- The condition $f(x)>0$ for all x is stronger than necessary.
- For discrete random variables, precise conditions can be given which guarantee that the intersection axiom holds. This is done using algebra!

Markov properties

Theorem: If the distribution P of a random vector X satisfies the intersection axiom, then P obeys the pairwise Markov property for G if and only if it obeys the global Markov property for G.

Multivariate Gaussian random variables

For multivariate Gaussian random variables with non-singular covariance matrix, the density function is strictly positive.
\Longrightarrow the intersection axiom holds
\Longrightarrow the Markov properties are equivalent in this class of distributions

Factorization property

- Next we want to characterize all the distributions that satisfy the Markov properties for a given graph.
- Hammersley-Clifford theorem relates the implicit description of a graphical model through Markov properties to a parametric description.

Factorization property

- Let $G=(V, E)$ be an undirected graph.
- A subset of vertices $C \subseteq V$ is a clique if $(i, j) \in E$ for all $i, j \in C$.
- The set of maximal cliques of G is denoted $\mathscr{C}(G)$.
- For each $C \in \mathscr{C}(G)$, we introduce a continuous nonnegative potential function $\phi_{C}: \mathscr{X}_{C} \rightarrow \mathbb{R}_{\geq 0}$.

Maximal cliques

Example: Which are maximal cliques of G ?

1. $\{1\}$
2. $\{1,2\}$
3. $\{1,2,3\}$

4. $\{2,3,4\}$

Maximal cliques

Example: Which are maximal cliques of G ?

1. $\{1\}$
2. $\{1,2\}$ - Correct
3. $\{1,2,3\}$
4. $\{2,3,4\}$ - Correct

Factorization property

Def: The distribution of X factorizes according to the graph G if its probability density function $f(x)$ can be written as

$$
f(x)=\frac{1}{Z} \prod_{C \in \mathscr{C}(G)} \phi_{C}\left(x_{C}\right)
$$

where ϕ_{C} are some potential functions and $Z<\infty$ is the normalizing constant.

Factorization property

$$
f(x)=\frac{1}{Z} \prod_{C \in \mathscr{C}(G)} \phi_{C}\left(x_{C}\right)
$$

Example: A distribution factorizes according to G if its density $f(x)$ can be written as

$$
f(x)=\frac{1}{Z} \phi_{12}\left(x_{1}, x_{2}\right) \phi_{234}\left(x_{2}, x_{3}, x_{4}\right) .
$$

Hammersley-Clifford

Theorem (Hammersley-Clifford): A distribution with positive and continuous density f satisfies the pairwise Markov property on the graph G if and only if it factorizes according to G.

- The Gaussian case is completely covered by the Hammersley-Clifford theorem.
- All distributions on a discrete space are considered continuous.
- What happens in the discrete case?

Discrete distributions

. Let X be a discrete random vector with state space $\mathscr{R}=\prod_{j=1}^{m}\left[r_{j}\right]$.

- Write $i_{C}:=\left(i_{j}\right)_{j \in C} \in R_{C}$.
- Then we can write $\phi_{C}\left(x_{C}\right)$ as $\theta_{i_{C}}^{(C)}$.
- $f(x)=\frac{1}{Z} \phi_{12}\left(x_{1}, x_{2}\right) \phi_{234}\left(x_{2}, x_{3}, x_{4}\right)$ becomes $p_{i_{1} i_{3} j_{4}}=\frac{1}{Z} \theta_{i_{1} i_{2}}^{(12)} \theta_{i 2 j_{3} i_{4}}^{(233)}$

Discrete distributions

- The distribution p of X factors according to G if

$$
p_{i_{1} i_{2} \cdots i_{m}}=\frac{1}{Z(\theta)} \prod_{C \in \mathscr{C}(G)} \theta_{i_{C}}^{(C)},
$$

which is a monomial parametrization.

- Hence the set of distributions that factorize according to a graph G form a hierarchical log-linear model.
- We will denote this model by I_{G}.

Discrete distributions

- $\mathscr{C}_{\text {pairs }}=\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$
- $\mathscr{C}_{\text {global }}=\mathscr{C}_{\text {pairs }} \cup\{1 \Perp(3,4) \mid 2\}$
- $p(x)=\frac{1}{Z} \theta_{i_{1} i_{2}}^{(12)} \theta_{i_{2} i_{3} i_{4}}^{(234)}$

Discrete conditional independence models

Prop: If X is a discrete random vector, then the conditional independence statement $X_{A} \Perp X_{B} \mid X_{C}$ holds if and only if

$$
p_{i_{A}, i_{B}, i_{C},+} \cdot p_{j_{A}, j_{B}, i_{C},+}-p_{i_{A}, j_{B}, i_{C},+} \cdot p_{j_{A}, i_{B}, i_{C},+}=0
$$

for all $i_{A}, j_{A} \in \mathscr{R}_{A}, i_{B}, j_{B} \in \mathscr{R}_{B}$ and $i_{C} \in \mathscr{R}_{C}$.

- The notation $p_{i_{A}, i_{B}, i_{C},+}$ denotes the probability $P\left(X_{A}=i_{A}, X_{B}=i_{B}, X_{C}=i_{C}\right)$ which can be written as

$$
p_{i_{A}, i_{B}, i_{C},+}=\sum_{j_{[m] \mid A \cup B \cup C} \in \mathscr{R}_{[m] A \cup B \cup C}} p_{i_{A}, i_{B}, i_{C}, j_{[m]] A \cup B U C} .}
$$

Pairwise Markov property

- $\mathscr{C}_{\text {pairs }}=\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$
- Poll: How many polynomials generate the corresponding Cl ideal?
. $M_{1}=\left(\begin{array}{llll}p_{0000} & p_{0001} & p_{0010} & p_{0011} \\ p_{1000} & p_{1001} & p_{1010} & p_{1011}\end{array}\right)$
. $M_{2}=\left(\begin{array}{llll}p_{0100} & p_{0101} & p_{0110} & p_{0111} \\ p_{1100} & p_{1101} & p_{1110} & p_{1111}\end{array}\right)$
- The conditional independence ideal for each statement is generated by two minors of M_{1} and two minors of M_{2}
i1 : R1 = $Q Q\left[p_{-}(0,0,0,0) \ldots p_{-}(1,1,1,1)\right]$
$01=\mathrm{R} 1$
01 : PolynomialRing
i2 : M1 = matrix $\left\{\left\{p_{_}(0,0,0,0), p_{-}(0,0,0,1), p_{-}(0,0,1,0), p_{-}(0,0,1,1)\right\},\left\{p_{-}(1,0,0,0), p_{-}(1,0,0,1), p_{-}(1,0,1,0), p_{-}(1,0,1,1)\right\}\right\}$
$02=\mid p_{-}(0,0,0,0) p_{-}(0,0,0,1) p_{-}(0,0,1,0) p_{-}(0,0,1,1)$ $\mathrm{p}_{-}(1,0,0,0) \mathrm{p}_{-}(1,0,0,1) \mathrm{p}_{-}(1,0,1,0) \mathrm{p}_{-}(1,0,1,1)$

02 : Matrix R1 ${ }^{2}<--{ }^{4}$
i3 : M2 $=\operatorname{matrix}\left\{\left\{p_{-}(0,1,0,0), p_{-}(0,1,0,1), p_{-}(0,1,1,0), p_{-}(0,1,1,1)\right\},\left\{p_{-}(1,1,0,0), p_{-}(1,1,0,1), p_{-}(1,1,1,0), p_{-}(1,1,1,1)\right\}\right\}$
$03=\left|p_{-}(0,1,0,0) \quad p_{-}(0,1,0,1) \quad p_{-}(0,1,1,0) \quad p_{-}(0,1,1,1)\right|$ $\left|p_{-}(1,1,0,0) p_{-}(1,1,0,1) p_{-}(1,1,1,0) p_{-}(1,1,1,1)\right|$

03 : Matrix R1 ${ }^{2}<--$ R1 ${ }^{4}$
$14: I P=\operatorname{ideal}\left(\operatorname{det}\left(M 1 _\{0,2\}\right), \operatorname{det}\left(M 1 _\{1,3\}\right), \operatorname{det}\left(M 2 _\{0,2\}\right), \operatorname{det}\left(M 2 _\{1,3\}\right), \operatorname{det}\left(M 1 _\{0,1\}\right), \operatorname{det}\left(M 1 _\{2,3\}\right), \operatorname{det}\left(M 2 _\{0,1\}\right), \operatorname{det}\left(M 2 _\{2,3\}\right)\right)$
$04=\operatorname{ideal}\left(-p_{0,0,1,0} p_{1,0,0,0}+p_{0,0,0,0} p_{1,0,1,0}{ }^{-p_{0,0,1,1}} p_{1,0,0,1}+\right.$
$p_{0,0,0,11_{1,0,1,1}} \mathrm{p}_{0,1,1,0} \mathrm{p}_{1,1,0,0}+p_{0,1,0,0} \mathrm{p}_{1,1,1,0}{ }^{\prime}$
$p_{0,1,1,1} p_{1,1,0,1}+p_{0,1,0,1} p_{1,1,1,1}^{\prime}-p_{0,0,0,1} p_{1,0,0,0}$
$p_{0,0,0,0} p_{1,0,0,1},-p_{0,0,1,1} p_{1,0,1,0}+p_{0,0,1,0} p_{1,0,1,1},-$
$p_{0,1,0,1} p_{1,1,0,0}+p_{0,1,0,0} p_{1,1,0,1} \quad-p_{0,1,1,11,1,1,0}+$
$\square \mathrm{p}_{0,1,1,0} \mathrm{p}_{1,1,1,1}{ }^{\mathrm{p}}$
04 : Ideal of R1

Global Markov property

- $\mathscr{C}_{\text {global }}=\mathscr{C}_{\text {pairs }} \cup\{1 \Perp(3,4) \mid 2\}$
. $M_{1}=\left(\begin{array}{llll}p_{0000} & p_{0001} & p_{0010} & p_{0011} \\ p_{1000} & p_{1001} & p_{1010} & p_{1011}\end{array}\right)$
. $M_{2}=\left(\begin{array}{llll}p_{0100} & p_{0101} & p_{0110} & p_{0111} \\ p_{1100} & p_{1101} & p_{1110} & p_{1111}\end{array}\right)$
- The conditional independence ideal $\mathscr{C}_{\text {global }}$ is generated by all 2×2 minors of M_{1} and M_{2}

Factorization according to G

- $p_{i_{1} i_{3} i_{i}}=\frac{1}{Z} \theta_{i_{1} i_{2}}^{(12)} \theta_{i_{2} i_{3} i_{4}}^{(23)}$
- Poll: How many parameters does this parametrization map have?
- $p_{i j k l}=a_{i j} b_{j k l}$
- We obtain the toric ideal I_{G} by eliminating the variables $a_{i j}, b_{j k l}$:

$$
I_{G}=\left\langle p_{i j k l}-a_{i j} b_{j k l}:(i, j, k, l) \in\{0,1\}^{4}\right\rangle \cap \mathbb{R}[p]
$$

i6 : R3 = $Q Q\left[p_{-}(0,0,0,0) \ldots p_{-}(1,1,1,1), a_{-}(0,0) . . a_{-}(1,1), b_{-}(0,0,0) . . b_{-}(1,1,1)\right]$
$06=$ R3
06 : PolynomialRing

o7 : Ideal of R3
i8 : JF = eliminate(IF,join(toList(a_(0,0)..a_(1,1)), toList(b_(0,0,0)..b_(1,1,1))))

	$\text { ideal }\left(p_{0,1,1,1} p_{1}\right.$	$1,1,0{ }^{-p, 1,1,0}{ }^{p}$	$p_{1,1,1,1}, p_{0,1,1,1} p_{1}$,1,0,1
	$p_{0,1,0,1} p_{1,1,1,1}$	$p_{0,1,1,0}{ }_{1,1,0,1}$	$-p_{0,1,0,1} p_{1,1,1,0},$	$p_{0,1,1,1} p_{1,1,0,0}-$
	$p_{0,1,0,0}^{p} 1,1,1,1$	$p_{0,1,1,0}{ }_{1,1,0,0}$	$-p_{0,1,0,0} p_{1,1,1,0},$	$p_{0,1,0,1} p_{1,1,0,0}-$
	$p_{0,1,0,0} p_{1,1,0,1}$	$p_{0,0,1,1} p_{1,0,1,0}$	$-p_{0,0,1,0} p_{1,0,1,1}^{\prime}$	$p_{0,0,1,1}{ }^{p} 1,0,0,1{ }^{-}$
	$p_{0,0,0,1} p_{1,0,1,1}$	$p_{0,0,1,0}{ }_{1,0,0,1}$	$-p_{0,0,0,1} p_{1,0,1,0},$	$p_{0,0,1,1} p_{1,0,0,0}-$
	$p_{0,0,0,0} p_{1,0,1,1}$	$p_{0,0,1,0} p_{1,0,0,0}$	$-p_{0,0,0,0} p_{1,0,1,0},$	$p_{0,0,0,1} p_{1,0,0,0}-$
	$p_{0,0,0,0} p_{1,0,0,1}$			

[8 : Ideal of R3

Comparison of ideals

In this example:

- $I_{G}=I_{\operatorname{global}_{(G)}}$
- $I_{\text {pairwise }{ }_{(G)}}$ is different
- $I_{\text {pairwise }(G)}$ has 9 primary components, one of them is $I_{G}=I_{\text {global }_{(G)}}$
- Each of the other eight components contains at least one variable $p_{i j k l}$
- This means that the corresponding irreducible varieties intersect the boundary of the probability simplex Δ_{15}

Comparison of ideals

- This shows that the positivity assumption in the Hammersley-Clifford Theorem is necessary
- One primary component is $\left\langle p_{0,0,0,0}, p_{1,0,0,0}, p_{1,0,1,1}, p_{0,0,1,1}, p_{1,1,0,0}, p_{0,1,0,0}, p_{0,1,1,1}, p_{1,1,1,1}\right\rangle$
- It represents the family of distributions such that $P\left(X_{3}=X_{4}\right)=1$.
- All such distributions satisfy the pairwise Markov property, but they are not in the model characterized by G.

Comparison of ideals

- In the previous example, the polynomials implied by the global Markov property characterize I_{G}.
- This is not true in general.
- A graph G is chordal if every induced cycle of length 4 or larger has a chord.

Theorem: $I_{G}=I_{\operatorname{global}(G)}$ if and only if G is a chordal graph.

Conclusion

- Implicit description of an undirected graphical model through Markov properties
- Parametric description of an undirected graphical model through factorization according to a graph
- Hammersley-Clifford theorem when a graphical model is given by pairwise Markov properties
- The failure of the Hammersley-Clifford theorem

Next time

- Maximum likelihood estimation for undirected graphical models
- Bachelor and Master thesis topics presentation

Literature

- Lauritzen "Graphical Models"
- Maathuis, Drton, Lauritzen, Wainwright "Handbook of Graphical Models"
- Koller and Friedman "Probabilistic Graphical Models"
- Peters, Danzig, Schölkopf "Elements of Causal Inference"

