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Agenda

How a graph encodes conditional independence statements

When a conditional independence ideal is equal to a parametrized graphical model
This lecture will connect

 monomial parametrizations of discrete exponential families

» toric ideals

e conditional independence (ideals)

Next time: Maximum likelihood estimation for undirected graphical models



Graphical models example

P (A B, C)=
_ o PP (C|AB)



Correlation vs causation

« Genesregulatedas X — ¥ —» Z

« X and Z are correlated, but do not interact directly
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Graphs

e Graph G = (V, E)

* Nodes or vertices V A

e Edges”E C VXV
A graph is undirected if (1, v) € E implies that (v, u) € E

» Corresponding random vector X = (X, : v € V)




Graphical models

In the graphical model associated to a graph G, an edge (u, v) of the graph
(G expresses some sort of dependence between the vertices 1 and v.



Separator

» A path between vertices u and w in a graph G is a sequence of vertices
U=V, V,...,;, = wsuch that each (v,_,v,) € E.

« A pair of vertices a, b € Vis separated by a set of vertices C C V\{a, b}
if every path from a to b contains a vertex in C.

e Let A, B, C be disjoint subsets of V. Then A and B are separated by C, if
a and b are separated by C foranya € A and b € B.



Separator

Poll: Let G be a graph with nodes {1,2,3,4} and edges
(1,2),(2,3),(2,4), (3,4). Which of the following sets are separators for the
nodes 1 and 47

1. {2) .
2. (3} -

| 2
3. {2.3) )

4. {1,2,3,4}



Separator

Poll: Let G be a graph with nodes {1,2,3,4} and edges
(1,2),(2,3),(2,4), (3,4). Which of the following sets are separators for the
nodes 1 and 47

1. {2} - Correct 2
2. {3} 2

| / £
3. {2,3} - Correct y

4. {1,2,3,4}



Conditional independence

Def: Let A, B, C C [m] be pairwise disjoint subsets. We say that X, is
of Xp given X if and only if

f4uB\ (X4, Xg | X)) = fA\C(xA | XC)fB\ cxg | xc)
for all X4, Xg, X

» The notation X, 1L X, | X (or A 1L B | C) denotes that the random vector

X satisfies the conditional independence (Cl) statement that X, is
conditionally independent of X5 given X .



Pairwise Markov property

Let G = (V, E) be an undirected graph.

Def: The pairwise Markov property associated to G consists of all conditional independence
statements , where (1, v) is not an edge of G.

Example: The pairwise Markov property associated to G is:

1.{1 1L 32,4, 1L4|12,3)}

o {1 1L3[2,1 1 4|2}

3. {1 1L 3](2,4)) )

4. (1 1L 4](2,3))



Pairwise Markov property

Let G = (V, E) be an undirected graph.

Def: The pairwise Markov property associated to G consists of all conditional independence
statements , where (1, v) is not an edge of G.

Example: The pairwise Markov property associated to G is:

1. {1 1L 3{(2,4),1 1L 4](2.3)} - Correct

o {1 1L3[2,1 1 4|2}

3. {1 1L 3](2,4)) )

4. (1 1L 4](2,3))



Multivariate Gaussian random variables

» The Cl statement X, Il X | X, is equivalent to the matrix
having or equivalently det(=,,, 1) = 0.

« This is equivalent to (Z_l)w = (.

 The pairwise Markov property holds for a Gaussian distribution if and only
If the entries of the concentration matrix corresponding to non-edges are
Z€Ero.



Multivariate Gaussian random variables

Which form do the concentration matrices of a Gaussian distribution obeying the pairwise
Markov property have”?

kll 0 k13 k14

|0 k2 00

ks 0 ki3 O :
kigy 0 0 Ky |
k12 k22 k23 k24

2.
0 k23 k33 k34

0 kyy kyy kyy



Multivariate Gaussian random variables

Which form do the concentration matrices of a Gaussian distribution obeying the pairwise
Markov property have”?

kll 0 k13 k14

|0 ke 00
ks 0 ki3 O :
kigy 0 0 Ky |
1
ki, ky knx k
2. e I Correct

0 Ky K3z Ky
0 kyy kyy kyy



Global Markov property

Def: The global Markov property associated to G consists of all conditional
independence statements for all disjoint sets A, B, and C

such that C separates A and B in G.

Example: The global Markov property associated to G is:

1.{1 1L (3,4)|2} 2

2. {1 1L3](2,4),1 1L 4|(2,3)} = <

3. {1 1L 32,4, 14|23),1 1 3,4)|2}




Global Markov property

Def: The global Markov property associated to G consists of all conditional
independence statements for all disjoint sets A, B, and C

such that C separates A and B in G.

Example: The global Markov property associated to G is:

1.{1 1L (3,4)|2} 2

2. {1 1 3](2,4),1 1L 4](2,3)} . 5<

3. {1 1L 3((2,4),1 1L 4[(2,3),1 1L (3.4)|2} - Correct




Markov properties

. It always holds € C €

pairs global-

Example:

o Cpairs = 11 AL 3[(2,4),1 1L 4](2,3)] <
+ Bglobal = Gpairs Y {1 1L (3.4)]2} =



Intersection axiom

Prop (Intersection axiom): Suppose that f(x) > O for all x. Then

e The condition f(x) > O for all x

* For discrete random variables, precise conditions can be given which
guarantee that the intersection axiom holds. This is done using algebra!



Markov properties

Theorem: If the distribution P of a random vector X satisfies the intersection
axiom, then P obeys the pairwise Markov property for (& if and only if it
obeys the global Markov property for G.




Multivariate Gaussian random variables

For multivariate Gaussian random variables with non-singular covariance
matrix, the density function is strictly positive.

—> the intersection axiom holds

—> the Markov properties are equivalent in this class of distributions



Factorization property

 Next we want to characterize all the distributions that satisty the Markov
properties for a given graph.

« Hammersley-Clifford theorem relates the implicit description of a graphical
model through Markov properties to a parametric description.



Factorization property

Let G = (V, E) be an undirected graph.
A subset of vertices C C Visacliqueif (i,j) € Eforalli,j € C.
The set of maximal cliques of G is denoted &' ((+).

For each C € €(G), we introduce a continuous nonnegative




Maximal cligues

Example: Which are maximal cliques of G?

1.{1}
2. 11,2} 2

3.11,2,3) . <

4. {2,3,4}




Maximal cligues

Example: Which are maximal cliques of G?

1.{1)

2.{1,2} - Correct 2

3.11,2,3) . <

4.{2,3,4} - Correct




Factorization property

Def: The distribution of X factorizes according to the graph G if its
probability density function f(x) can be written as

where and Z < oo is the normalizing
constant.



Factorization property

Example: A distribution factorizes according to G if its density f(x) can be
written as

]
< Jx) = E¢12<X1»X2)¢234(X2» X3, Xy).
)

- -

A




Hammersley-Clifford

Theorem (Hammersley-Clifford): A distribution with positive and continuous

density f satisfies the pairwise Markov property on the graph G if and only if
it factorizes according to G.

 The Gaussian case is completely covered by the Hammersley-Clifford
theorem.

* All distributions on a discrete space are considered continuous.

 \What happens in the discrete case?



Discrete distributions

m
Let X be a discrete random vector with state space X = H [1}-].
J=1

Then we can write ¢)(x-) as ',
Lc

becomes



Discrete distributions

» The distribution p of X factors according to G if

__ 0\,

Pijiy-i,, =
o Z(H) Ce€(G) )

which Is a monomial parametrization.

» Hence the set of distributions that factorize according to a graph G form a

 We will denote this model by /.



Discrete distributions

. Bpairs = (1 1L 3](2,4),1 1L 4](2,3)}

» Gglobal = GpairsY 11 1L 3.4 ]2}

| () = 412923

Z lllz 121314



Discrete conditional independence models

Prop: If X is a discrete random vector, then the conditional independence statement
holds if and only if

forall iy, js € R4, lp,Jgp € Agand i, € K.

- The notation p; ; . denotes the probability P(X, = i,, Xy = iz, X = i) which

ipic,
can be written as

P Lgslpslest 2 P LAstB-LOsJ[m\AUBUC

JimAuBUCE L [mN\AUBUC



Pairwise Markov property

Gpairs = 11 L 3] (2,4),1 1L 4](2,3)}

Poll: How many polynomials generate the corresponding Cl ideal?

Poooo Pooo1r Pooio Poott
Ml —
P1ooo Pi1oo1 Pi1oio Pio11

V. — Poioo Poior Poiio Poiii
: P11oo P1i01 Priio Priii

The conditional independence ideal for each statement is generated by two
minors of M, and two minors of M,



11 :

ol

ol :

12 ¢

02

02 :

13

03

R1 = QQ[p_(0,0,0,0)..p_(1,1,1,1)]

R1

PolynomialRing

M1 = matrix{{p_(0,0,0,0),p_(0,0,0,1),p_(0,0,1,0),p_(0,0,1,1)},{p_(1,0,0,0),p_(1,0,0,1),p_(1,0,1,0),p_(1,0,1,1)}}

l p_(@,@,@,@) p_(0,0,0,1) p_(@,@,l,@) p_(0,0,1,1) l
| p_(1,0,0,0) p_(1,0,0,1) p_(1,0,1,0) p_(1,0,1,1) |

2 4
Matrix Rl <--- R1

: M2 = matrix{{p_(e,1,0,0),p_(0,1,0,1),p_(0,1,1,0),p_(0,1,1,1)},{p_(1,1,0,0),p_(1,1,0,1),p_(1,1,1,0),p_(1,1,1,1)}}

03 :

14 :

o4

o4 :

I p_(ovlvavo) p_(ocloovl) p_(011v1v0) p_(oololol) I
| p_(1,1,0,0) p_(1,1,0,1) p_(1,1,1,0) p_(1,1,1,1) |

2 4
Matrix Rl <--- R1

IP = ideal(det(M1_{©,2}),det(M1_{1,3}),det(M2_{0,2}),det(M2_{1,3}),det(M1_{0,1}),det(M1_{2,3}),det(M2_{0,1}),det(M2_{2,3}))

ideal (- p p +p p , = P p +
9,0,1,0 1,0,0,0 9,0,0,0 1,0,1,0 9,0,1,1 1,0,0,1

P P r =P P +p P r
,0,0,11,0,1,1 ,1,1,0 1,1,0,0 ,1,0,0 1,1,1,0

e,1,1,06 1,1,1,1

Ideal of R1



Global Markov property

G global = Cpairs U 11 1L 3.4)]2}

Poooo Pooor Pooio Poort
Ml —
P1ooo P1oor Pio1o Pio11

V. — Poioo Poro1r Poiio Poiii
. Pi1oo P1io1 Priio Piini

The conditional independence ideal €'g|opg is generated by all 2 X 2
minors of M, and M,



Factorization according to G

_ L gmges

pi1i2i3i4 Z l1ly Ihlzly
Poll: How many parameters does this parametrization map have?
Pijki = 4iOjki

We obtain the toric ideal I; by eliminating the variables a;;, b;;:

I = (P — @b - (), k, 1) € {0,1}) N R[p]



16 :

06

06 :

17 :

o7

o7 :

18 :

08

R3 = QQ[p_(0,0,0,0)..p_(1,1,1,1),a_(0,0)..2_(1,1),b_(0,0,0)..b_(1,1,1)]

R3

PolynomialRing

IF = ideal flatten flatten flatten for i to 1 list for j to 1 list for k to 1 list for 1 to 1 list p_(i,j,k,1)-a_(1,j)*b_(j,k,1)

ideal (- a b +p , —a b +p , -—a b +
0,0 0,0,0 0,0,0,0 0,0 0,0,1 0,0,0,1 0,0 0,1,0

Ideal of R3
JF = eliminate(IF,join(toList(a_(0,0)..a_(1,1)), toList(b_(0,0,0)..b_(1,1,1))))

ideal (p p - p P r P P -
e,1,1,11,1,1,0 9,1,1,0 1,1,1,1 e,1,1,1 1,1,0,1

,0,0,0 1,0,0,1

: Ideal of R3



Comparison of ideals

In this example:

o Ig = IglobaI(G)

* Ipairwise(c) is different

» Inairwise() has 9 primary components, one of them is I; = /g|obal(c)

« Each of the other eight components contains at least one variable Piiki

* This means that the corresponding irreducible varieties intersect the boundary of
the probability simplex A5



Comparison of ideals

This shows that the positivity assumption in the Hammersley-Clifford
Theorem is necessary

One primary component is

(P0,0,0.0° P1,0,0,0: P1,0,1,1> P0,0,1.1 P1,1,0,00 0,1,0,0 P0,1,1,1- P1,1,1,1/
It represents the family of distributions such that P(X; = X)) = 1.

All such distributions satisfy the pairwise Markov property, but they are
not in the model characterized by G.



Comparison of ideals

* In the previous example, the polynomials implied by the global Markov
property characterize /.

* This is not true In general.

» A graph G is chordal if every induced cycle of length 4 or larger has a
chord.

Theorem: I; = Igjobal(c) if and only if G is a chordal graph.




Conclusion

Implicit description of an undirected graphical model through Markov
properties

Parametric description of an undirected graphical model through
factorization according to a graph

Hammersley-Clifford theorem when a graphical model is given by pairwise
Markov properties

The failure of the Hammersley-Clifford theorem



Next time

 Maximum likelihood estimation for undirected graphical models

 Bachelor and Master thesis topics presentation
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