Taloustieteen matemaattiset menetelmät 31C01100 Syksy 2020 Lassi Tervonen lassi.tervonen@aalto.fi

Problem Set 7: Solutions

1. Solution

We can rewrite all the equations in the form $x_{t+1} = ax_t + b$. When $a \neq 1$, the solution is

$$x_t = a^t \left(x_0 - \frac{b}{1-a} \right) + \frac{b}{1-a}$$

- (a) $x_t = 5 \cdot 2^t 4$; unstable because a > 1.
- (b) $x_t = (\frac{1}{3})^t + 1$; stable because |a| < 1.
- (c) $x_t = -\frac{3}{5} \left(-\frac{3}{2}\right)^t \frac{2}{5}$; unstable because |a| > 1.
- (d) Here a=1 so we cannot use the formula above. By repeated substitution, we can see that the solution is $x_0=3$, $x_1=0$, $x_2=-3$, $x_3=-6$, and so on. In general, $x_t=3-3t$, which is unstable $(x_t\to-\infty \text{ as } t\to\infty)$.

2. Solution

(a) We have

$$A\mathbf{v}_1 = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 8 \\ 12 \end{pmatrix} = 4\mathbf{v}_1$$

and

$$A \boldsymbol{v}_2 = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix} = (-1) \boldsymbol{v}_2.$$

- (b) It follows immediately from what we did in (a) that the corresponding eigenvalues for eigenvectors \mathbf{v}_1 and \mathbf{v}_2 are $\lambda_1 = 4$ and $\lambda_2 = -1$, respectively.
- (c) We know that

$$P = \begin{pmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}.$$

We also know that D is a diagonal matrix and that its diagonal entries are eigenvalues of A, so

$$D = \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix}.$$

Next we need to find P^{-1} . Because $PP^{-1} = I$,

$$PP^{-1} = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

This yields a system of four equations:

$$2a + c = 1$$
$$2b + d = 0$$
$$3a - c = 0$$
$$3b - d = 1$$

By solving this system we get $a = \frac{1}{5}$, $b = \frac{1}{5}$, $c = \frac{3}{5}$, and $d = -\frac{2}{5}$, so we can write P^{-1} as

$$P^{-1} = \begin{pmatrix} \frac{1}{5} & \frac{1}{5} \\ \frac{3}{5} & -\frac{2}{5} \end{pmatrix}.$$

Now

$$PDP^{-1} = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{5} & \frac{1}{5} \\ \frac{3}{5} & -\frac{2}{5} \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} = A.$$

(d) We know that $A^n = PD^nP^{-1}$ (Lecture 18, p. 15). Also, because D is a diagonal matrix, we can write

$$D^n = \begin{pmatrix} r_1 & 0 \\ 0 & r_2 \end{pmatrix}^n = \begin{pmatrix} r_1^n & 0 \\ 0 & r_2^n \end{pmatrix}.$$

Thus

$$A^{n} = PD^{n}P^{-1} = \begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 4^{n} & 0 \\ 0 & (-1)^{n} \end{pmatrix} \begin{pmatrix} \frac{1}{5} & \frac{1}{5} \\ \frac{3}{5} & -\frac{2}{5} \end{pmatrix}$$
$$= \frac{1}{5} \begin{pmatrix} 2 \times 4^{n} + 3 \times (-1)^{n} & 2(4^{n} - (-1)^{n}) \\ 3(4^{n} + (-1)^{n+1}) & 3 \times 4^{n} - 2(-1)^{n+1} \end{pmatrix}.$$

3. Solution

Write the system of difference equations in matrix form:

$$\boldsymbol{z_{t+1}} = \begin{bmatrix} x_{t+1} \\ y_{t+1} \end{bmatrix} = \begin{bmatrix} 2 & -2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \end{bmatrix} = A\boldsymbol{z_t}$$

and the initial conditions can be written as $z_0 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Use the characteristic polynomial of A to find the eigenvalues:

$$\det(A - rI) = \det\begin{bmatrix} 2 - r & -2 \\ -1 & 3 - r \end{bmatrix} = (2 - r)(3 - r) - 2 = 0.$$

By solving this we get the eigenvalues $r_1 = 1$ and $r_2 = 4$.

Next we can use the eigenvalues to find the eigenvectors. Eigenvector v_{r_i} satisfies $(A - r_i I)v_{r_i} = 0$, i = 1, 2. We know that $r_1 = 1$, so

$$\begin{bmatrix} 2-1 & -2 \\ -1 & 3-1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

This yields a system of two equations:

$$v_1 - 2v_2 = 0$$

$$-v_1 + 2v_2 = 0.$$

The solution for this system of equations is $v_1 = 2v_2$, so the first eigenvector is

$$v_{r_1} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
.

The second can be found in a similar way. It is $v_{r_2} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Now we know that P is

$$P = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}.$$

One can solve P^{-1} as in Exercise 2c. It is

$$P^{-1} = \frac{1}{3} \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix}.$$

Next, make a change of variables z = PZ. Now the system can be written as

$$z_{t+1} = Az_t \Leftrightarrow PZ_{t+1} = APZ_t \Leftrightarrow Z_{t+1} = P^{-1}APZ_t$$

so

$$Z_{t+1} = DZ_t$$
.

Now we can see that $\mathbf{Z_1} = D\mathbf{Z_0}, \ \mathbf{Z_2} = D\mathbf{Z_1} = D(D\mathbf{Z_0}) = D^2\mathbf{Z_0}$ etc., so

$$\mathbf{Z_t} = D^t \mathbf{Z_0}$$
, where $D^t = \begin{bmatrix} r_1^t & 0 \\ 0 & r_2^t \end{bmatrix}$.

Make a change of variables again: $z = PZ \Leftrightarrow Z = P^{-1}z$ and write the system as

$$P^{-1}\boldsymbol{z_t} = D^t P^{-1}\boldsymbol{z_0}$$
$$\boldsymbol{z_t} = PD^t P^{-1}\boldsymbol{z_0}.$$

We know that
$$P = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$$
, $P^{-1} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix}$, $D^t = \begin{bmatrix} 1^t & 0 \\ 0 & 4^t \end{bmatrix}$, and $\boldsymbol{z_0} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Thus,

$$\mathbf{z}_{t} = PD^{t}P^{-1}\mathbf{z}_{0}
= \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1^{t} & 0 \\ 0 & 4^{t} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix} \mathbf{z}_{0}
= \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1^{t} & 0 \\ 0 & 4^{t} \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}
= \begin{bmatrix} 2 \cdot 1^{t} & -4^{t} \\ 1^{t} & 4^{t} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix}
= \begin{bmatrix} 2 - 4^{t} \\ 1 + 4^{t} \end{bmatrix}.$$

4. Solution

Write the system of difference equations as

$$\boldsymbol{w_{t+1}} = \begin{bmatrix} x_{t+1} \\ y_{t+1} \\ z_{t+1} \end{bmatrix} = \begin{bmatrix} 4 & -2 & -2 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \\ z_t \end{bmatrix} = A\boldsymbol{w_t}$$

Use the characteristic polynomial of A to find the eigenvalues:

$$\det(A - rI) = \begin{vmatrix} 4 - r & -2 & -2 \\ 0 & 1 - r & 0 \\ 1 & 0 & 1 - r \end{vmatrix} = (4 - r)(1 - r)^2 + 2(1 - r)$$
$$= (r^2 - 5r + 6)(1 - r) = (3 - r)(2 - r)(1 - r) = 0$$

The eigenvalues are $r_1 = 1$, $r_2 = 3$ and $r_3 = 3$. Next we can use the eigenvalues to find the eigenvectors. If \mathbf{v}_{r_i} is an eigenvector, then $(A - r_i I)\mathbf{v}_{r_i} = \mathbf{0}$, i = 1, 2, 3. To find the first eigenvector, write

$$\begin{bmatrix} 4-1 & -2 & -2 \\ 0 & 1-1 & 0 \\ 1 & 0 & 1-1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 3 & -2 & -2 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

This yields the equations $3v_1 - 2v_2 - 2v_3 = 0$ and $v_1 = 0$, so $v_2 = -v_3$. Thus, the first eigenvector is

$$v_{r_1} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}$$
.

The other eigenvectors can be found in a similar way: $v_{r_2} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $v_{r_3} = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$.

The general solution can be written as (see Lecture 18, p. 10):

$$w_t = c_1 r_1^t v_{r_1} + c_2 r_2^t v_{r_2} + c_3 r_3^t v_{r_3},$$

where c_1 , c_2 and c_3 are constants. Therefore, the general solution of this exercise is

$$\boldsymbol{w_t} = c_1 1^t \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + c_2 2^t \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + c_3 3^t \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}.$$

5. Solution

Exercise 5 can be solved in a similar way as the previous exercise. Write the system of difference equations in matrix form:

$$\mathbf{w_{t+1}} = \begin{bmatrix} x_{t+1} \\ y_{t+1} \\ z_{t+1} \end{bmatrix} = \begin{bmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} x_t \\ y_t \\ z_t \end{bmatrix} = A\mathbf{w_t}.$$

The eigenvalues are $r_1 = 3$, $r_2 = 4$ and $r_3 = 1$, and the eigenvectors are $v_{r_1} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$,

$$v_{r_2} = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$$
 and $v_{r_3} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$.

The general solution is

$$\boldsymbol{w_t} = c_1 3^t \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + c_2 4^t \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} + c_3 1^t \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}.$$