Maximum likelihood estimation in undirected graphical models

Kaie Kubjas, 2.12.2020

Agenda

- Maximum likelihood estimation for undirected graphical models
- Gaussian setting
- Discrete setting
- Bachelor's and Master's thesis topics
- Today's lecture based on lecture notes by Caroline Uhler from the MIT course "Algebraic techniques and semidefinite optimization" (lecture 17)

Graphical models

In the graphical model associated to a graph G :

- an edge (u, v) of the graph G expresses some sort of dependence between the vertices u and v;
- a non-edge (u, v) of the graph G expresses some sort of conditional independence between the vertices u and v.

Examples

- Gene association network
- Stock exchange
- Markov chains
- Hidden Markov models: DNA sequence alignment
- Ising model

Markov properties

Let $G=(V, E)$ be an undirected graph.
Def: The pairwise Markov property associated to G consists of all conditional independence statements $X_{u} \Perp X_{v} \mid X_{V \backslash\{u, v\rangle}$, where (u, v) is not an edge of G.

Def: The global Markov property associated to G consists of all conditional independence statements $X_{A} \Perp X_{B} \mid X_{C}$ for all disjoint sets A, B, and C such that C separates A and B in G.

Markov properties

- $\mathscr{C}_{\text {pairwise }}=\{1 \Perp 3|(2,4), 1 \Perp 4|(2,3)\}$
- $\mathscr{C}_{\text {global }}=\mathscr{C}_{\text {pairwise }} \cup\{1 \Perp(3,4) \mid 2\}$

Factorization property

Def: The distribution of X factorizes according to the graph G if its probability density function $f(x)$ can be written as

$$
f(x)=\frac{1}{Z} \prod_{C \in \mathscr{C}(G)} \phi_{C}\left(x_{C}\right)
$$

where ϕ_{C} are some potential functions and $Z<\infty$ is the normalizing constant.

Factorization property

- Factorization property: $p_{i j k l}=\frac{1}{Z} \theta_{i j}^{(12)} \theta_{j k l}^{(234)} \operatorname{for}(i, j, k, l) \in[0,1]^{4}$

Comparison of ideals

In this example:

- $I_{\text {pairwise }(G)} \subsetneq I_{\operatorname{global}_{(G)}}$
- $I_{G}:=\left\langle p_{i j k l}-\theta_{i j}^{(12)} \theta_{j k l}^{(234)}:(i, j, k, l) \in\{0,1\}^{4}\right\rangle \cap \mathbb{R}[p]=I_{\operatorname{global}_{(G)}}$
- The last equality holds since G is a chordal graph

Gaussian setting

- The pairwise Markov property holds for a Gaussian distribution if and only if $K_{u, v}=0$ for all $(u, v) \notin E$. [Poll]
- Since a Gaussian distribution is positive, it satisfies the pairwise Markov property for a graph G if and only if it factorizes according to graph G by the Hammersley-Clifford theorem.
- Since a Gaussian distribution also satisfies the intersection axiom, it satisfies the pairwise Markov property for a graph G if and only if it satisfies the global Markov property for a graph G.
- NB! This does not mean that the three ideals are equal. In Homework 5, compute the vanishing ideal of I_{G}.

Maximum likelihood estimation in Gaussian graphical models

MLE in Gaussian graphical models

- $G=(V, E)$ undirected graph
- D data, \bar{X} sample mean, S sample covariance matrix
- The log-likelihood function is

$$
\log (\mu, \Sigma \mid D)=-\frac{1}{2} \sum_{i=1}^{n}\left(m \log (2 \pi)+\log \operatorname{det}(\Sigma)+\left(X^{(i)}-\mu\right)^{T} \Sigma^{-1}\left(X^{(i)}-\mu\right)\right)
$$

- Using the trace trick gives

$$
\log (\mu, \Sigma \mid D)=-\frac{1}{2}\left(n m \log (2 \pi)+n \log \operatorname{det}(\Sigma)+\operatorname{tr}\left(\sum_{i=1}^{n}\left(\left(X^{(i)}-\mu\right)\left(X^{(i)}-\mu\right)^{T}\right) \Sigma^{-1}\right)\right)
$$

MLE in Gaussian graphical models

- MLE in a Gaussian graphical model gives: $\hat{\mu}=\bar{X}$
- The log-likelihood function is

$$
\log (\mu, \Sigma \mid D)=-\frac{1}{2}\left(n m \log (2 \pi)+n \log |\Sigma|+\operatorname{tr}\left(\sum_{i=1}^{n}\left(\left(X^{(i)}-\mu\right)\left(X^{(i)}-\mu\right)^{T}\right) \Sigma^{-1}\right)\right)
$$

- After some more simplifications, the maximum likelihood estimation problem becomes:

$$
\begin{array}{ll}
\max _{\Sigma \geqslant 0} & \log \operatorname{det}\left(\Sigma^{-1}\right)-\operatorname{trace}\left(\Sigma^{-1} S\right) \\
\text { subject to } \quad \Sigma \in V\left(I_{\text {pairwise }(G)}\right)
\end{array}
$$

MLE in Gaussian graphical models

- This optimization problem becomes convex, if we write it using K instead of Σ :

$$
\begin{aligned}
& \max _{K \geqslant 0} \quad \log \operatorname{det}(K)-\operatorname{trace}(K S) \\
& \quad \text { subject to } \quad K \in V\left(I_{G}\right)
\end{aligned}
$$

- I_{G} gives linear constraints on K [Poll]
- This becomes an unconstrained optimization problem

Likelihood equations

We get the likelihood equations by taking the partial derivatives of the objective function:

$$
\frac{1}{\operatorname{det}(K)} \frac{\partial}{\partial K_{i j}} \operatorname{det}(K)-\left(2-\delta_{i j}\right) S_{i j}=0,
$$

where $\delta_{i j}$ is the Kronecker delta.

Code

```
R = QQ[k11,k12,k22,k23,k24,k33,k34,k44]
K = matrix {{k11,k12,0,0},{k12,k22,k23,k24},{0,k23,k33,k34},{0,k24,k34,k44}}
X = matrix for i to 3 list for j to 3 list random(30)
S = X*transpose(X)
M1 = jacobian(ideal(det(K)));
M2 = det(K)*jacobian(ideal(trace(K*S)));
I = ideal (M1-M2);
J = saturate(I,det(K))
```

ideal (15621672k44-255515, 15621672k34 + 46159, 15621672k33-39947, 15621672k24 + 134201, 15621672k23 + 22955, 1069537773480k22

- 17602462843, 68465k12 + 312, 136930k11 - 517)

Solutions

- For this graph, there is always one solution and it lies in the positive definite cone.
- For 4-cycle, there are five solutions out of which precisely one lies in the positive definite cone.
- Is there always one solution in the positive definite cone?
- Yes, this follows from a result for exponential families.

Exponential families

Prop: Let \mathscr{M} be an exponential family with minimal sufficient statistics $T(x)$ and natural parameter $\eta \in N$, with density $f_{\eta}(x)=h(x) e^{\eta^{T} T(x)-A(\eta)}$. Then the likelihood function is strictly concave on N. Furthermore, the maximum likelihood estimate, if it exists, is the unique $\eta \in N$ satisfying

$$
T(x)=\mathbb{E}_{\eta}[T(X)],
$$

where x denotes the data vector.

MLE in Gaussian graphical models

Corollary: Assuming that the MLE exists, it is the unique positive definite matrix Σ satisfying

- $\Sigma \in V\left(I_{G}\right)$, and
- $\Sigma_{i j}=S_{i j}$ for all $(i, j) \in E$ or $i=j$.

MLE in Gaussian graphical models

The MLE is a point in the variety of

$$
I=\langle\Sigma K-\mathrm{Id}\rangle+\left\langle K_{i j}:(i, j) \notin E\right\rangle+\left\langle\Sigma_{i j}-S_{i j}:(i, j) \in E \text { or } i=j\right\rangle
$$

Code

$R=Q Q[k 11, k 12, k 22, k 23, k 24, k 33, k 34, k 44, s 11, s 12, s 13, s 14, s 22, s 23, s 24, s 33, s 34, s 44]$
$\mathrm{K}=\operatorname{matrix}\{\{\mathrm{k} 11, \mathrm{k} 12,0,0\},\{\mathrm{k} 12, \mathrm{k} 22, \mathrm{k} 23, \mathrm{k} 24\},\{0, \mathrm{k} 23, \mathrm{k} 33, \mathrm{k} 34\},\{0, \mathrm{k} 24, \mathrm{k} 34, \mathrm{k} 44\}\}$
Sigma $=\operatorname{matrix}\{\{\mathrm{s} 11, \mathrm{~s} 12, \mathrm{~s} 13, \mathrm{~s} 14\},\{\mathrm{s} 12, \mathrm{~s} 22, \mathrm{~s} 23, \mathrm{~s} 24\},\{\mathrm{s} 13, \mathrm{~s} 23, \mathrm{~s} 33, \mathrm{~s} 34\},\{\mathrm{s} 14, \mathrm{~s} 24, \mathrm{~s} 34, \mathrm{~s} 44\}\}$
I1 = ideal (K*Sigma - identity(1))
$\mathrm{X}=$ matrix for i to 3 list for j to 3 list random(30)
S = X*transpose (X)
 $\mathrm{I}=\mathrm{I} 1+\mathrm{I} 2$
$\mathrm{J}=$ eliminate ($\mathrm{I},\{\mathrm{k} 11, \mathrm{k} 12, \mathrm{k} 22, \mathrm{k} 23, \mathrm{k} 24, \mathrm{k} 33, \mathrm{k} 34, \mathrm{k} 44\}$)

Discrete graphical models

. Let X be a discrete random vector with state space $\mathscr{R}=\prod_{j=1}^{m}\left[r_{j}\right]$.

- Let $P=\left(p_{i_{1} \ldots i_{m}}\right)$ denote the joint probabilities and $U=\left(u_{i_{1} \ldots i_{m}}\right)$ the contingency table.
- The maximum likelihood estimation problem is

$$
\begin{gathered}
\max _{p \geq 0} \sum_{\left(i_{1}, \ldots, i_{m}\right) \in \mathscr{R}} u_{i_{1} \ldots i_{m}} \log p_{i_{1} \ldots i_{m}} \\
\text { subject to } \quad p \in V\left(I_{G}+\left\langle\sum_{\left(i_{1}, \ldots, i_{m}\right) \in \mathscr{R}} p_{i_{1} \ldots i_{m}}-1\right\rangle\right)
\end{gathered}
$$

- [Poll]

Lagrange multipliers

- Recall that the method of Lagrange multipliers is used to solve the following constrained optimization problem:

$$
\begin{gathered}
\max f(x) \\
\text { subject to } g_{i}(x)=0 \text { for } i=1, \ldots, k
\end{gathered}
$$

- The Lagrangian of this optimization problem is

$$
L(x, \lambda)=f(x)-\sum_{i=1}^{k} \lambda_{i} g_{i}(x)
$$

Discrete graphical models

- Let f_{1}, \ldots, f_{r} be generators of I_{G}.
- The Lagrangian for our optimization problem is:

$$
L(x, \lambda)=\sum_{\left(i_{1}, \ldots, i_{m}\right) \in \mathscr{R}} u_{i_{1} \ldots i_{m}} \log p_{i_{1} \ldots i_{m}}-\lambda_{0}\left(\sum_{\left(i_{1}, \ldots, i_{m}\right) \in \mathscr{R}} p_{i_{1} \ldots i_{m}}-1\right)-\sum_{j=1}^{r} \lambda_{j} f_{j}(x)
$$

Lagrange multipliers

The constrained critical points of f are among the unconstrained critical points of L. Hence one has to solve

$$
\begin{aligned}
g_{1} & =0, \ldots, g_{k}=0 \\
\frac{\partial f}{\partial x_{1}}-\sum_{i=1}^{k} \lambda_{i} \frac{\partial g_{i}}{\partial x_{1}} & =0, \ldots, \frac{\partial f}{\partial x_{m}}-\sum_{i=1}^{k} \lambda_{i} \frac{\partial g_{i}}{\partial x_{r}}=0
\end{aligned}
$$

Discrete graphical models

$$
\begin{gathered}
\sum_{\left(i_{1}, \ldots, i_{m}\right) \in \mathscr{R}} p_{i_{1} \ldots i_{m}}-1=0, \\
f_{1}=0, \ldots, f_{r}=0 \\
\frac{u_{i_{1} \ldots i_{r}}}{p_{i_{1} \ldots i_{r}}}-\lambda_{0}-\sum_{j=1}^{r} \lambda_{j} \frac{\partial f_{j}}{\partial p_{i_{1} \ldots i_{r}}}=0 \text { for all }\left(i_{1}, \ldots, i_{m}\right) \in \mathscr{R}
\end{gathered}
$$

- One option is to use solve the above system.
- Another option is to use the following result for discrete exponential families.

Discrete exponential families

Cor: Let $A \subseteq \mathbb{Z}^{k \times r}$ such that $\mathbb{1} \in$ rowspan($\left.\mathbf{A}\right)$, let $h \in \mathbb{R}_{>0}^{r}$, and let u be the vector of counts from n i.i.d. samples. Then the maximum likelihood estimate in the log-linear model $\mathscr{M}_{A, h}$ given the data u is the unique solution, if it exists, to the equations

$$
A u=n A p \text { and } p \in \mathscr{M}_{A, h} .
$$

Code

```
R1 = QQ [p_(0,0,0,0) .. p_(1,1,1,1)]
R2 = QQ[p_}(0,0,0,0)..p_( 1,1,1,1),a_(0,0)..a_(1,1),\mp@subsup{b}{_}{\prime}(0,0,0)..b_(1,1,1)
IF = ideal flatten flatten flatten for i to 1 list for j to 1 list for k to 1 list for l to 1 list p_(i,j,k,l)-a_(i,j)*b_(j,k,l)
JF = eliminate(IF,join(toList(a_(0,0)..a_(1,1)), toList(b_(0,0,0)..b_(1,1,1))))
JF = sub(JF,R1)
use R1
A = matrix{{ 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1},
{1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0},
{0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0},
{0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0},
{0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0},
{0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0},
{0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0},
{0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0},
{0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}}
U = transpose matrix {for i to 15 list random(30)}
P = transpose matrix {toList(p_(0,0,0,0)..p_(1,1,1,1))}
I = JF + ideal (A*U-A*P)
```


ML degree

Theorem: Let $\mathscr{M}_{\Theta} \subseteq \Delta_{r-1}$ be a statistical model. For generic data, the number of solutions to the score equations is independent of u.

Generic = data is outside a variety
Def: The number of solutions to the score equations for generic u is called the maximum likelihood degree (ML degree) of the parametric discrete statistical model \mathscr{M}_{Θ}.

Chordal graphs

- A graph G is chordal if every induced cycle of length 4 or larger has a chord. [Poll]

Theorem: The ML degree for a graphical model on G in the discrete or Gaussian setting is equal to one if and only if G is chordal.

- In this case, the MLE can be written as a rational function of data.

Chordal graphs

Def: The triple of vertices (A, B, C) forms a decomposition of a graph G if

- A, B, C are disjoint,
- A, B are non-empty,
- $V=A \cup B \cup C$,
- the induced graph G_{C} is complete, and
- C separates A from B (there are no edges between A and B).

Chordal graphs

Def: A graph is decomposable if it is complete or there exists a decomposition into decomposable subgraphs $G_{A \cup C}$ and $G_{B \cup C}$.

- By first finding decompositions of $G_{A \cup C}$ and $G_{B \cup C}$ and then finding decompositions of decomposed graphs, we end up with a clique decomposition C_{1}, \ldots, C_{r} with separators D_{1}, \ldots, D_{k}.
- A graph is decomposable if and only if it is chordal.

Chordal graphs

Which of the following graphs are given with their decomposition?

Chordal graphs

Prop: Let G be a chordal graph with clique decomposition C_{1}, \ldots, C_{r} and with separators D_{1}, \ldots, D_{k}. Let $U=\left(u_{i_{1} \ldots i_{m}}\right)$ be the contingency table. The MLE in the corresponding graphical model is

$$
v_{i_{1} \ldots i_{m}}=\frac{\left.\prod_{j=1}^{r}\left(\left.u\right|_{C_{j}}\right)\right|_{i_{C_{j}}}}{\left.\prod_{j=1}^{k}\left(\left.u\right|_{D_{j}}\right)\right|_{i_{D_{j}}}} \text { for all }\left(i_{1}, \ldots, i_{m}\right) \in \mathscr{X}
$$

where $\left.u\right|_{F}$ denotes the marginals over F.

Chordal graphs

- The clique decomposition of the graph is $C_{1}=\{1,2\}$ and $C_{2}=\{2,3,4\}$ with the separator $D_{1}=\{2\}$.
- The MLE is given by the formula

$$
v_{i j k l}=\frac{u_{i j++} u_{+j k l}}{u_{+j++}}
$$

- For non-decomposable models log-linear models, hill-climbing methods are used in practice to compute the MLE.

Learning the graph

- We have assumed that the graph is given
- One option to learn the graph is via constraint-based learning
- Given observed data, one can test which Markov properties hold and construct the graph from these results
- The result of each test is yes or no, which tells whether an edge is present or absent in the graph
- See the book: "Graphical Models with R" by Højsgaard, Edwards, and Lauritzen

Conclusion

- Both in the Gaussian and in the discrete setting, there is only one critical point of the likelihood function in the model and it is the MLE
- Special results for finding the MLE both for Gaussian and discrete graphical models (more generally to exponential families)
- The ML degree of a graphical model is one if and only if the graph is chordal
- Formula for the MLE in the discrete case

Thank you!

- Thank you for attending and for your hard work!
- Please fill out the course survey
- Period III: Computational Algebraic Geometry (MS-E1142)

Master's thesis topics

Topic 1: Toric fiber products and graphical models

- Toric fiber product is a construction that allows to construct from two ideals in smaller polynomial rings another ideal in a larger ring.
- In the case of graphical models, this means constructing the ideal of a graph from the ideals of subgraphs.
- Goal: In the Lauritzen's book "Graphical models", identify all results for MLE of graphical models that are special cases of the MLE result for toric fiber products.
- NB! This topic requires strong algebra background.

NONNEGATIVE FACTORIZATIONS AND RANK

Def: Given a matrix $M \in \mathbb{R}_{\geq 0}^{m \times n}$, a pair $(A, B) \in \mathbb{R}_{\geq 0}^{m \times r} \times \mathbb{R}_{\geq 0}^{r \times n}$ such that $M=A B$ is called a size- r nonnegative factorization of M.

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

LEARNING THE PARTS OF FACES

- Lee and Seung, 1999

Topic 2: Uniqueness of NMF

- For many of the applications it is desirable that there exists a unique nonnegative matrix factorization (up to scalings and permutations).
- Together with Krone, we recently gave a necessary condition for uniqueness.
- Goal: Compare the necessary condition with two well-known sufficient conditions for uniqueness: separability and sufficiently scattered.

Topic 3: Size-2 nonnegative approximations

- Size-2 nonnegative factorizations are better understood than general case.
- Nevertheless, given a matrix M, it is not know which matrices A, B give the best size-2 nonnegative approximation $A B$ to M.
- Goal: Study the best size-2 nonnegative factorizations for 3×4 and 4×4 matrices and explore whether conjectures in a recent paper with Sodomaco and Tsigaridas hold in these cases.

Topic 4: Deep nonnegative matrix factorizations in biology

- Nonnegative matrix factorizations are used in biology for studying the expression of genes in different tissues (e.g. healthy and cancer tissues)
- More generally one can define deep nonnegative matrix factorizations: $M=A_{1} A_{2} \ldots A_{n} B$, where all factors are nonnegative.
- Goal: Use deep nonnegative matrix factorizations for a biological dataset and study how to choose the sizes of matrices in the factorization.

Bachelor's thesis topics

Topic 1: Rank-1 tensor completion for small tensors

- Tensors are higher dimensional analogues of matrices
- Whether a partial tensor can be completed to a rank-1 tensor depends generically only on the locations of observed entries
- Goal: For small tensors, study which partial tensors allow completion to a rank-1 tensor
- This topic requires the use of abstract algebra and in particular studying the symmetries of a tensor

