### Maximum likelihood estimation in undirected graphical models Kaie Kubjas, 2.12.2020

- Maximum likelihood estimation for undirected graphical models
  - Gaussian setting
  - Discrete setting
- Bachelor's and Master's thesis topics

### Agenda

 Today's lecture based on lecture notes by Caroline Uhler from the MIT course "Algebraic techniques and semidefinite optimization" (lecture 17)

### Graphical models

In the graphical model associated to a graph G:

- an edge (u, v) of the graph G expresses some sort of dependence between the vertices u and v;
- a non-edge (u, v) of the graph G expresses some sort of conditional independence between the vertices u and v.

### Examples

- Gene association network
- Stock exchange
- Markov chains
- Hidden Markov models: DNA sequence alignment
- Ising model

Let G = (V, E) be an undirected graph.

<u>Def:</u> The pairwise Markov property associated to G consists of all an edge of G.

such that C separates A and B in G.

### Markov properties

- conditional independence statements  $X_{u} \perp X_{v} \mid X_{v \setminus \{u,v\}}$ , where (u, v) is not

<u>Def:</u> The global Markov property associated to G consists of all conditional independence statements  $X_A \perp X_B | X_C$  for all disjoint sets A, B, and C





### • $\mathscr{C}_{\text{pairwise}} = \{1 \perp 3 \mid (2,4), 1 \perp 4 \mid (2,3)\}$ • $\mathscr{C}_{global} = \mathscr{C}_{pairwise} \cup \{1 \perp (3,4) \mid 2\}$

### Markov properties

# Factorization property

<u>Def</u>: The distribution of X factorizes according to the graph G if its probability density function f(x) can be written as

where  $\phi_C$  are some potential functions and  $Z < \infty$  is the normalizing constant.



### Factorization property



• Factorization property:  $p_{ijkl} = \frac{1}{Z} \theta_{ij}^{(12)} \theta_{jkl}^{(234)}$  for  $(i, j, k, l) \in [0, 1]^4$ 

### Comparison of ideals

In this example:

•  $I_{\text{pairwise}(G)} \subsetneq I_{\underline{q}|\underline{obal}(G)}$ 

• 
$$I_G := \langle p_{ijkl} - \theta_{ij}^{(12)} \theta_{jkl}^{(234)} : (i, j, k, j) \rangle$$

• The last equality holds since G is a chordal graph

### $(l) \in \{0,1\}^4 \land \cap \mathbb{R}[p] = I_{\text{global}(G)}$

### Gaussian setting

- The pairwise Markov property holds for a Gaussian distribution if and only if  $K_{u,v} = 0$  for all  $(u, v) \notin E$ . [Poll]
- Since a Gaussian distribution is positive, it satisfies the pairwise Markov property for a graph *G* if and only if it factorizes according to graph *G* by the Hammersley-Clifford theorem.
- Since a Gaussian distribution also satisfies the intersection axiom, it satisfies the pairwise Markov property for a graph *G* if and only if it satisfies the global Markov property for a graph *G*.
- NB! This does not mean that the three ideals are equal. In Homework 5, compute the vanishing ideal of  $I_G$ .

# Maximum likelihood estimation in Gaussian graphical models

- G = (V, E) undirected graph
- *D* data, *X* sample mean, *S* sample covariance matrix
- The log-likelihood function is

$$log(\mu, \Sigma \mid D) = -\frac{1}{2} \sum_{i=1}^{n} \left( m \log(2\pi) + \log \det(\Sigma) + \left( X^{(i)} - \mu \right)^{T} \Sigma^{-1} \left( X^{(i)} - \mu \right) \right)$$

Using the trace trick gives  $\bullet$ 

$$log(\mu, \Sigma \mid D) = -\frac{1}{2} \left( nm \log(2\pi) + n \log \det(\Sigma) + tr \left( \sum_{i=1}^{n} \left( \left( X^{(i)} - \mu \right) \left( X^{(i)} - \mu \right)^{T} \right) \Sigma^{-1} \right) \right)$$

- MLE in a Gaussian graphical model gives:  $\hat{\mu} = X$
- The log-likelihood function is

$$log(\mu, \Sigma \mid D) = -\frac{1}{2} \left( nm \log(2\pi) + n \log \mid \Sigma \mid + \operatorname{tr} \left( \sum_{i=1}^{n} \left( \left( X^{(i)} - \mu \right) \left( X^{(i)} - \mu \right)^{T} \right) \Sigma^{-1} \right) \right)$$

$$\max_{\Sigma \ge 0} \log \det(\Sigma^{-1}) - \operatorname{trace}(\Sigma^{-1}S)$$

• After some more simplifications, the maximum likelihood estimation problem becomes:

subject to  $\Sigma \in V(I_{\text{pairwise}(G)})$ 

of  $\Sigma$ :

 $\log \det(K) - \operatorname{trace}(KS)$ max *K*≽0

- $I_G$  gives linear constraints on K [Poll]
- This becomes an unconstrained optimization problem

• This optimization problem becomes convex, if we write it using K instead

subject to  $K \in V(I_G)$ 

### Likelihood equations

### We get the likelihood equations by taking the partial derivatives of the objective function:

$$\frac{1}{\det(K)}\frac{\partial}{\partial K_{ij}}\det(K) - (2 - \delta_{ij})S_{ij} = 0,$$

where  $\delta_{ii}$  is the Kronecker delta.

### Code

```
R = QQ[k11,k12,k22,k23,k24,k33,k34,k44]
K = matrix {{k11,k12,0,0},{k12,k22,k23,k24},{0,k23,k33,k34},{0,k24,k34,k44}}
X = matrix for i to 3 list for j to 3 list random(30)
S = X*transpose(X)
M1 = jacobian(ideal(det(K)));
M2 = det(K)*jacobian(ideal(trace(K*S)));
I = ideal (M1-M2);
J = saturate(I, det(K))
```

ideal (15621672k44 – 255515, 15621672k34 + 46159, 15621672k33 – 39947, 15621672k24 + 134201, 15621672k23 + 22955, 1069537773480k22

- 17602462843, 68465k12 + 312, 136930k11 - 517)

### Solutions

- For this graph, there is always one solution and it lies in the positive definite cone.
- positive definite cone.
- Is there always one solution in the positive definite cone?
- Yes, this follows from a result for exponential families.

### For 4-cycle, there are five solutions out of which precisely one lies in the

### **Exponential families**

likelihood function is strictly concave on N. Furthermore, the maximum likelihood estimate, if it exists, is the unique  $\eta \in N$  satisfying

where x denotes the data vector.

- <u>Prop:</u> Let *M* be an exponential family with minimal sufficient statistics T(x)and natural parameter  $\eta \in N$ , with density  $f_{\eta}(x) = h(x)e^{\eta^{t}T(x) - A(\eta)}$ . Then the
  - $T(x) = \mathbb{E}_{\eta}[T(X)],$

### Corollary: Assuming that the MLE exactly matrix $\Sigma$ satisfying

- $\Sigma \in V(I_G)$ , and
- $\Sigma_{ij} = S_{ij}$  for all  $(i,j) \in E$  or i = j.

Corollary: Assuming that the MLE exists, it is the unique positive definite

The MLE is a point in the variety of  $I = \langle \Sigma K - \mathrm{Id} \rangle + \langle K_{ij} : (i,j) \notin E \rangle + \langle \Sigma_{ij} - S_{ij} : (i,j) \in E \text{ or } i = j \rangle$ 

### Code

R = QQ[k11,k12,k22,k23,k24,k33,k34,k44,s11,s12,s13,s14,s22,s23,s24,s33,s34,s44]
K = matrix {{k11,k12,0,0},{k12,k22,k23,k24},{0,k23,k33,k34},{0,k24,k34,k44}} Sigma = matrix {{s11,s12,s13,s14},{s12,s22,s23,s24},{s13,s23,s33,s34},{s14,s24,s34,s44}} I1 = ideal (K\*Sigma - identity(1)) X = matrix for i to 3 list for j to 3 list random(30) S = X \* transpose(X)I2 = ideal(Sigma\_(0,0)-S\_(0,0),Sigma\_(0,1)-S\_(0,1),Sigma\_(1,1)-S\_(1,1),Sigma\_(1,2)-S\_(1,2),Sigma\_(1,3)-S\_(1,3),Sigma\_(2,2)-S\_(2,2),Sigma\_(2,3)-S\_(2,3),Sigma\_(3,3)-S\_(3,3)) I = I1 + I2J = eliminate(I,{k11,k12,k22,k23,k24,k33,k34,k44})

ideal (s44 – 1110, s34 – 669, s33 – 430, s24 – 566, s23 – 394, s22 – 504, 9s14 – 3962, 9s13 – 2758, s12 – 392, s11 – 591)





### Discrete graphical models

Let X be a discrete random vector with state spa

- Let  $P = (p_{i_1...i_m})$  denote the joint probabilities and  $U = (u_{i_1...i_m})$  the contingency table.
- The maximum likelihood estimation problem is



• [Poll]

ace 
$$\mathscr{R} = \prod_{j=1}^{m} [r_j].$$

$$u_{i_1...i_m} \log p_{i_1...i_m}$$

$$g + \left\langle \sum_{(i_1,\ldots,i_m)\in\mathcal{R}} p_{i_1\ldots i_m} - 1 \right\rangle$$

## Lagrange multipliers

• Recall that the method of Lagrange multipliers is used to solve the following constrained optimization problem:

- subject to  $g_i(x) = 0$  for i = 1, ..., k
- The Lagrangian of this optimization problem is
  - $L(x,\lambda)=f$

 $\max f(x)$ 

$$f(x) - \sum_{i=1}^{k} \lambda_i g_i(x).$$

### Discrete graphical models

- Let  $f_1, \ldots, f_r$  be generators of  $I_G$ .
- The Lagrangian for our optimization problem is:

$$L(x,\lambda) = \sum_{(i_1,\ldots,i_m)\in\mathscr{R}} u_{i_1\ldots i_m} \log p_{i_1\ldots i_m} - \lambda_0 \left(\sum_{(i_1,\ldots,i_m)\in\mathscr{R}} p_{i_1\ldots i_m} - 1\right) - \sum_{j=1}^r \lambda_j f_j(x_j)$$



### Lagrange multipliers

### The constrained critical points of f are among the unconstrained critical points of *L*. Hence one has to solve

 $g_1 = 0$ 

$$\frac{\partial f}{\partial x_1} - \sum_{i=1}^k \lambda_i \frac{\partial g_i}{\partial x_1} = 0, \dots, \frac{\partial f}{\partial x_m} - \sum_{i=1}^k \lambda_i \frac{\partial g_i}{\partial x_r} = 0$$

), ..., 
$$g_k = 0$$
,



- One option is to use solve the above system.

### Discrete graphical models

$$p_{i_1...i_m} - 1 = 0,$$

$$0, \ldots, f_r = 0,$$

# $\frac{u_{i_1\dots i_r}}{p_{i_1\dots i_r}} - \lambda_0 - \sum_{i=1}^r \lambda_i \frac{\partial f_i}{\partial p_{i_1\dots i_r}} = 0 \text{ for all } (i_1,\dots,i_m) \in \mathcal{R}$

Another option is to use the following result for discrete exponential families.

### **Discrete exponential families**

vector of counts from n i.i.d. samples. Then the maximum likelihood estimate in the log-linear model  $\mathcal{M}_{A,h}$  given the data u is the unique solution, if it exists, to the equations

- <u>Cor:</u> Let  $A \subseteq \mathbb{Z}^{k \times r}$  such that  $1 \in \text{rowspan}(A)$ , let  $h \in \mathbb{R}^{r}_{>0}$ , and let u be the
  - $Au = nAp \text{ and } p \in \mathcal{M}_{A,h}.$

### Code

```
R1 = QQ[p_(0,0,0,0)..p_(1,1,1,1)]
R2 = QQ[p_(0,0,0,0)..p_(1,1,1,1),a_(0,0)..a_(1,1),b_(0,0,0)..b_(1,1,1)]
JF = eliminate(IF, join(toList(a_(0,0)..a_(1,1)), toList(b_(0,0,0)..b_(1,1,1))))
JF = sub(JF,R1)
use R1
A = matrix \{ \{ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \}, \}
{0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1},
{1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0},
{0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0},
{0,0,1,0,0,0,0,0,0,0,1,0,0,0,0},
{0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0},
{0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0},
{0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0},
{0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0},
{0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1}}
U = transpose matrix {for i to 15 list random(30)}
P = transpose matrix {toList(p_(0,0,0,0)..p_(1,1,1,1))}
\mathbf{I} = \mathsf{JF} + \mathbf{ideal} (\mathsf{A} + \mathsf{U} - \mathsf{A} + \mathsf{P})
```

IF = ideal flatten flatten flatten for i to 1 list for j to 1 list for k to 1 list for l to 1 list p\_(i,j,k,l)-a\_(i,j)\*b\_(j,k,l)



### ML degree

### <u>Theorem</u>: Let $\mathcal{M}_{\Theta} \subseteq \Delta_{r-1}$ be a statistical model. For generic data, the number of solutions to the score equations is independent of u.

Generic = data is outside a variety

the maximum likelihood degree (ML degree) of the parametric discrete statistical model  $\mathcal{M}_{\Theta}$ .

<u>Def:</u> The number of solutions to the score equations for generic *u* is called

chord. [Poll]

<u>Theorem:</u> The ML degree for a graphical model on G in the discrete or Gaussian setting is equal to one if and only if G is chordal.

In this case, the MLE can be written as a rational function of data.

• A graph G is chordal if every induced cycle of length 4 or larger has a

<u>Def</u>: The triple of vertices (A, B, C) forms a decomposition of a graph G if

- A, B, C are disjoint,
- A, B are non-empty,
- $V = A \cup B \cup C$ ,
- the induced graph  $G_C$  is complete, and
- C separates A from B (there are no edges between A and B).



Def: A graph is decomposable if it is complete or there exists a decomposition into decomposable subgraphs  $G_{A\cup C}$  and  $G_{B\cup C}$ .

- By first finding decompositions of  $G_{A\cup C}$  and  $G_{B\cup C}$  and then finding decompositions of decomposed graphs, we end up with a clique decomposition  $C_1, \ldots, C_r$  with separators  $D_1, \ldots, D_k$ .
- A graph is decomposable if and only if it is chordal.

### Which of the following graphs are given with their decomposition?



 $C_{1} = 51, 23$   $C_{2} = 52, 33$   $C_{3} = 53, 93$   $C_{4} = 59, 13$  $D_1 = 911$   $D_2 = 923$   $D_3 = 933$   $D_4 = 993$ 

MLE in the corresponding graphical model is

$$v_{i_1...i_m} = \frac{\prod_{j=1}^r (u|_{C_j})|_{i_{C_j}}}{\prod_{j=1}^k (u|_{D_j})|_{i_{D_j}}} \text{ for all } (i_1, ..., i_m) \in \mathcal{X},$$

where  $u|_F$  denotes the marginals over F.

<u>Prop:</u> Let G be a chordal graph with clique decomposition  $C_1, \ldots, C_r$  and with separators  $D_1, \ldots, D_k$ . Let  $U = (u_{i_1 \ldots i_m})$  be the contingency table. The



- The clique decomposition of the graph is  $C_1 = \{1,2\}$  a
- The MLE is given by the formula

V<sub>ijkl</sub>

and 
$$C_2 = \{2,3,4\}$$
 with the separator  $D_1 = \{2\}$ .

$$u_{l} = \frac{u_{ij++}u_{+jkl}}{u_{+j++}}.$$

• For non-decomposable models log-linear models, hill-climbing methods are used in practice to compute the MLE.

## Learning the graph

- We have assumed that the graph is given
- One option to learn the graph is via constraint-based learning
- Given observed data, one can test which Markov properties hold and construct the graph from these results
- The result of each test is yes or no, which tells whether an edge is present or absent in the graph
- See the book: "Graphical Models with R" by Højsgaard, Edwards, and Lauritzen

### Conclusion

- Both in the Gaussian and in the discrete setting, there is only one critical point of the likelihood function in the model and it is the MLE
- Special results for finding the MLE both for Gaussian and discrete graphical models (more generally to exponential families)
- The ML degree of a graphical model is one if and only if the graph is chordal
  - Formula for the MLE in the discrete case

- Thank you for attending and for your hard work!
- Please fill out the course survey
- Period III: Computational Algebraic Geometry (MS-E1142)



### Master's thesis topics

### Topic 1: Toric fiber products and graphical models

- Toric fiber product is a construction that allows to construct from two ideals in smaller polynomial rings another ideal in a larger ring.
- In the case of graphical models, this means constructing the ideal of a graph from the ideals of subgraphs.
- Goal: In the Lauritzen's book "Graphical models", identify all results for MLE of graphical models that are special cases of the MLE result for toric fiber products.
- NB! This topic requires strong algebra background.

### NONNEGATIVE FACTORIZATIONS AND RANK

**Def:** Given a matrix  $M \in \mathbb{R}_{>0}^{m \times n}$ , a pair  $(A, B) \in \mathbb{R}_{\geq 0}^{m \times r} \times \mathbb{R}_{\geq 0}^{r \times n}$  such that M = AB is called a size-*r* nonnegative factorization of *M*.

 $\begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$ 



### LEARNING THE PARTS OF FACES

### Lee and Seung, 1999





# **Topic 2: Uniqueness of NMF**

- For many of the applications it is desirable that there exists a unique nonnegative matrix factorization (up to scalings and permutations).
- Together with Krone, we recently gave a necessary condition for uniqueness.
- Goal: Compare the necessary condition with two well-known sufficient conditions for uniqueness: separability and sufficiently scattered.

### **Topic 3: Size-2 nonnegative approximations**

- Size-2 nonnegative factorizations are better understood than general case.
- the best size-2 nonnegative approximation AB to M.
- matrices and explore whether conjectures in a recent paper with Sodomaco and Tsigaridas hold in these cases.

• Nevertheless, given a matrix M, it is not know which matrices A, B give

• Goal: Study the best size-2 nonnegative factorizations for  $3 \times 4$  and  $4 \times 4$ 

# Topic 4: Deep nonnegative matrix factorizations in biology

- Nonnegative matrix factorizations are used in biology for studying the expression of genes in different tissues (e.g. healthy and cancer tissues)
- More generally one can define deep nonnegative matrix factorizations:  $M = A_1 A_2 \dots A_n B$ , where all factors are nonnegative.
- Goal: Use deep nonnegative matrix factorizations for a biological dataset and study how to choose the sizes of matrices in the factorization.

### Bachelor's thesis topics

# Topic 1: Rank-1 tensor completion for small tensors

- Tensors are higher dimensional analogues of matrices
- Whether a partial tensor can be completed to a rank-1 tensor depends generically only on the locations of observed entries
- Goal: For small tensors, study which partial tensors allow completion to a rank-1 tensor
- This topic requires the use of abstract algebra and in particular studying the symmetries of a tensor