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Graphical models

In the graphical model associated to a graph :


• an edge  of the graph  expresses some sort of dependence 
between the vertices  and ;


• a non-edge  of the graph  expresses some sort of conditional 
independence between the vertices  and .
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Examples

• Gene association network


• Stock exchange


• Markov chains


• Hidden Markov models: DNA sequence alignment


• Ising model



Markov properties

Let  be an undirected graph.


Def: The pairwise Markov property associated to  consists of all 
conditional independence statements , where  is not 
an edge of .


Def: The global Markov property associated to  consists of all conditional 
independence statements  for all disjoint sets , , and  
such that  separates  and  in .
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Markov properties

• 


•

𝒞pairwise = {1 ⊥⊥ 3 | (2,4),1 ⊥⊥ 4 | (2,3)}

𝒞global = 𝒞pairwise ∪ {1 ⊥⊥ (3,4) |2}



Factorization property
Def: The distribution of  factorizes according to the graph  if its 
probability density function  can be written as


,


where  are some potential functions and  is the normalizing 
constant.
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Factorization property

• Factorization property:  for pijkl =
1
Z

θ(12)
ij θ(234)

jkl (i, j, k, l) ∈ [0,1]4



Comparison of ideals

In this example:


• 


• 


• The last equality holds since  is a chordal graph

Ipairwise(G) ⊊ Iglobal(G)

IG := ⟨pijkl − θ(12)
ij θ(234)

jkl : (i, j, k, l) ∈ {0,1}4⟩ ∩ ℝ[p] = Iglobal(G)

G



Gaussian setting
• The pairwise Markov property holds for a Gaussian distribution if and only if  

for all . [Poll]


• Since a Gaussian distribution is positive, it satisfies the pairwise Markov property for 
a graph  if and only if it factorizes according to graph  by the Hammersley-Clifford 
theorem.


• Since a Gaussian distribution also satisfies the intersection axiom, it satisfies the 
pairwise Markov property for a graph  if and only if it satisfies the global Markov 
property for a graph .


• NB! This does not mean that the three ideals are equal. In Homework 5, compute the 
vanishing ideal of .

Ku,v = 0
(u, v) ∉ E
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Maximum likelihood estimation 
in Gaussian graphical models



MLE in Gaussian graphical models
•  undirected graph


•  data,  sample mean,  sample covariance matrix


• The log-likelihood function is





• Using the trace trick gives


G = (V, E)

D X̄ S

log(μ, Σ |D) = −
1
2

n

∑
i=1

(m log(2π) + log det(Σ) + (X(i) − μ)T Σ−1 (X(i) − μ))

log(μ, Σ |D) = −
1
2

nm log(2π) + n log det(Σ) + tr (
n

∑
i=1

((X(i) − μ) (X(i) − μ)T) Σ−1)



MLE in Gaussian graphical models
• MLE in a Gaussian graphical model gives: 


• The log-likelihood function is





• After some more simplifications, the maximum likelihood estimation problem becomes:





subject to

̂μ = X̄

log(μ, Σ |D) = −
1
2

nm log(2π) + n log |Σ | + tr (
n

∑
i=1

((X(i) − μ) (X(i) − μ)T) Σ−1)

max
Σ≽0

log det(Σ−1) − trace(Σ−1S)

Σ ∈ V(Ipairwise(G))



MLE in Gaussian graphical models
• This optimization problem becomes convex, if we write it using  instead 

of :





subject to 


•  gives linear constraints on  [Poll]


• This becomes an unconstrained optimization problem

K
Σ

max
K≽0

log det(K) − trace(KS)

K ∈ V(IG)

IG K



Likelihood equations

We get the likelihood equations by taking the partial derivatives of the 
objective function:


,


where  is the Kronecker delta.  

1
det(K)

∂
∂Kij

det(K) − (2 − δij)Sij = 0

δij
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Solutions

• For this graph, there is always one solution and it lies in the positive 
definite cone.


• For 4-cycle, there are five solutions out of which precisely one lies in the 
positive definite cone. 


• Is there always one solution in the positive definite cone?


• Yes, this follows from a result for exponential families.



Exponential families

Prop: Let  be an exponential family with minimal sufficient statistics  
and natural parameter , with density . Then the 
likelihood function is strictly concave on . Furthermore, the maximum 
likelihood estimate, if it exists, is the unique  satisfying


,


where  denotes the data vector.

ℳ T(x)
η ∈ N fη(x) = h(x)eηtT(x)−A(η)

N
η ∈ N

T(x) = 𝔼η[T(X)]

x



MLE in Gaussian graphical models

Corollary: Assuming that the MLE exists, it is the unique positive definite 
matrix  satisfying


• , and 


•  for all  or .

Σ

Σ ∈ V(IG)

Σij = Sij (i, j) ∈ E i = j



MLE in Gaussian graphical models

The MLE is a point in the variety of


I = ⟨ΣK − Id⟩ + ⟨Kij : (i, j) ∉ E⟩ + ⟨Σij − Sij : (i, j) ∈ E or i = j⟩
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Discrete graphical models
• Let  be a discrete random vector with state space . 


• Let  denote the joint probabilities and  the contingency table.


• The maximum likelihood estimation problem is





subject to 


• [Poll]

X ℛ =
m

∏
j=1

[rj]

P = (pi1…im) U = (ui1…im)

max
p≥0 ∑

(i1,…,im)∈ℛ

ui1…im log pi1…im

p ∈ V IG + ⟨ ∑
(i1,…,im)∈ℛ

pi1…im − 1⟩



Lagrange multipliers
• Recall that the method of Lagrange multipliers is used to solve the 

following constrained optimization problem:





subject to 


• The Lagrangian of this optimization problem is


.

max f(x)

gi(x) = 0 for i = 1,…, k

L(x, λ) = f(x) −
k

∑
i=1

λigi(x)



Discrete graphical models

• Let  be generators of .


• The Lagrangian for our optimization problem is:


f1, …, fr IG

L(x, λ) = ∑
(i1,…,im)∈ℛ

ui1…im log pi1…im − λ0 ∑
(i1,…,im)∈ℛ

pi1…im − 1 −
r

∑
j=1

λj fj(x)



Lagrange multipliers

The constrained critical points of  are among the unconstrained critical 
points of . Hence one has to solve


, , , 


, , 

f
L

g1 = 0 … gk = 0

∂f
∂x1

−
k

∑
i=1

λi
∂gi

∂x1
= 0 …

∂f
∂xm

−
k

∑
i=1

λi
∂gi

∂xr
= 0



Discrete graphical models
,


, , , 


 for all 


• One option is to use solve the above system.


• Another option is to use the following result for discrete exponential families.

∑
(i1,…,im)∈ℛ

pi1…im − 1 = 0

f1 = 0 … fr = 0

ui1…ir

pi1…ir
− λ0 −

r

∑
j=1

λj
∂fj

∂pi1…ir
= 0 (i1, …, im) ∈ ℛ



Discrete exponential families

Cor: Let  such that , let , and let  be the 
vector of counts from  i.i.d. samples. Then the maximum likelihood 
estimate in the log-linear model  given the data  is the unique 
solution, if it exists, to the equations


.

A ⊆ ℤk×r 1 ∈ rowspan(A) h ∈ ℝr
>0 u

n
ℳA,h u

Au = nAp and p ∈ ℳA,h
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ML degree

Theorem: Let  be a statistical model. For generic data, the 
number of solutions to the score equations is independent of .


Generic = data is outside a variety


Def: The number of solutions to the score equations for generic  is called 
the maximum likelihood degree (ML degree) of the parametric discrete 
statistical model .

ℳΘ ⊆ Δr−1
u

u

ℳΘ



Chordal graphs

• A graph  is chordal if every induced cycle of length 4 or larger has a 
chord. [Poll]


Theorem: The ML degree for a graphical model on  in the discrete or 
Gaussian setting is equal to one if and only if  is chordal. 


• In this case, the MLE can be written as a rational function of data.

G

G
G



Chordal graphs
Def: The triple of vertices  forms a decomposition of a graph  if 


•  are disjoint,


•  are non-empty,


• , 


• the induced graph  is complete, and


•  separates  from  (there are no edges between  and ).


(A, B, C) G

A, B, C

A, B

V = A ∪ B ∪ C

GC

C A B A B



Chordal graphs

Def: A graph is decomposable if it is complete or there exists a 
decomposition into decomposable subgraphs  and .


• By first finding decompositions of  and  and then finding 
decompositions of decomposed graphs, we end up with a clique 
decomposition  with separators .


• A graph is decomposable if and only if it is chordal.

GA∪C GB∪C

GA∪C GB∪C

C1, …, Cr D1, …, Dk



Chordal graphs
Which of the following graphs are given with their decomposition?




Chordal graphs
Prop: Let  be a chordal graph with clique decomposition  and 
with separators . Let  be the contingency table. The 
MLE in the corresponding graphical model is


 for all ,


where  denotes the marginals over .

G C1, …, Cr
D1, …, Dk U = (ui1…im)

vi1…im =
∏r

j=1 (u |Cj
) |iCj

∏k
j=1 (u |Dj

) |iDj

(i1, …, im) ∈ 𝒳

u |F F



Chordal graphs




• The clique decomposition of the graph is  and  with the separator .


• The MLE is given by the formula 


.


• For non-decomposable models log-linear models, hill-climbing methods are used in practice to compute the MLE.

C1 = {1,2} C2 = {2,3,4} D1 = {2}

vijkl =
uij++u+jkl

u+j++



Learning the graph
• We have assumed that the graph is given


• One option to learn the graph is via constraint-based learning


• Given observed data, one can test which Markov properties hold and 
construct the graph from these results


• The result of each test is yes or no, which tells whether an edge is present 
or absent in the graph


• See the book: “Graphical Models with R” by Højsgaard, Edwards, and 
Lauritzen



Conclusion

• Both in the Gaussian and in the discrete setting, there is only one critical 
point of the likelihood function in the model and it is the MLE


• Special results for finding the MLE both for Gaussian and discrete 
graphical models (more generally to exponential families)


• The ML degree of a graphical model is one if and only if the graph is 
chordal


• Formula for the MLE in the discrete case



Thank you!

• Thank you for attending and for your hard work!


• Please fill out the course survey


• Period III: Computational Algebraic Geometry (MS-E1142)



Master’s thesis topics



Topic 1: Toric fiber products and graphical models

• Toric fiber product is a construction that allows to construct from two 
ideals in smaller polynomial rings another ideal in a larger ring.


• In the case of graphical models, this means constructing the ideal of a 
graph from the ideals of subgraphs.


• Goal: In the Lauritzen’s book “Graphical models”, identify all results for 
MLE of graphical models that are special cases of the MLE result for toric 
fiber products.


• NB! This topic requires strong algebra background.



NONNEGATIVE FACTORIZATIONS AND RANK

Def: Given a matrix , a pair  such that  is called a 
size-  nonnegative factorization of . 

 

M ∈ ℝm×n
≥0 (A, B) ∈ ℝm×r

≥0 × ℝr×n
≥0 M = AB

r M

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

=

1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



LEARNING THE PARTS OF FACES

• Lee and Seung, 1999



Topic 2: Uniqueness of NMF

• For many of the applications it is desirable that there exists a unique 
nonnegative matrix factorization (up to scalings and permutations). 


• Together with Krone, we recently gave a necessary condition for 
uniqueness.


• Goal: Compare the necessary condition with two well-known sufficient 
conditions for uniqueness: separability and sufficiently scattered.



Topic 3: Size-2 nonnegative approximations

• Size-2 nonnegative factorizations are better understood than general 
case.


• Nevertheless, given a matrix , it is not know which matrices  give 
the best size-2 nonnegative approximation  to .


• Goal: Study the best size-2 nonnegative factorizations for  and  
matrices and explore whether conjectures in a recent paper with 
Sodomaco and Tsigaridas hold in these cases.

M A, B
AB M

3 × 4 4 × 4



Topic 4: Deep nonnegative matrix factorizations in 
biology

• Nonnegative matrix factorizations are used in biology for studying the 
expression of genes in different tissues (e.g. healthy and cancer tissues)


• More generally one can define deep nonnegative matrix factorizations: 
, where all factors are nonnegative.


• Goal: Use deep nonnegative matrix factorizations for a biological dataset 
and study how to choose the sizes of matrices in the factorization.

M = A1A2…AnB



Bachelor’s thesis topics



Topic 1: Rank-1 tensor completion for small 
tensors

• Tensors are higher dimensional analogues of matrices


• Whether a partial tensor can be completed to a rank-1 tensor depends 
generically only on the locations of observed entries


• Goal: For small tensors, study which partial tensors allow completion to a 
rank-1 tensor


• This topic requires the use of abstract algebra and in particular studying 
the symmetries of a tensor


