Maximum likelihood estimation
In undirected graphical models

Kale Kubjas, 2.12.2020




Agenda

 Maximum likelihood estimation for undirected graphical models
 (Gaussian setting
* Discrete setting

 Bachelor’s and Master’s thesis topics

 Today’s lecture based on lecture notes by Caroline Uhler from the MIT
course “Algebraic techniques and semidefinite optimization” (lecture 17)



Graphical models

In the graphical model associated to a graph G:

» an edge (u, v) of the graph G expresses some sort of dependence
between the vertices u and v;

e anon-edge (i, v) of the graph G expresses some sort of conditional
iIndependence between the vertices u« and v.



Examples

Gene association network

Stock exchange

Markov chains

Hidden Markov models: DNA sequence alignment

Ising model



Markov properties

Let G = (V, E) be an undirected graph.

Def: The pairwise Markov property associated to G consists of all
conditional independence statements , where (11, v) is not

an edge of G.

Def: The global Markov property associated to G consists of all conditional
independence statements for all disjoint sets A, B, and C

such that C separates A and B in G.




Markov properties

. Bpairwise = 11 1L 3](2,4),1 1L 4](2,3))

» Gglobal = Gpairwise Y 11 1L (3,4)[2]



Factorization property

Def: The distribution of X factorizes according to the graph G if its
probability density function f(x) can be written as

where and Z < oo is the normalizing
constant.



Factorization property

|
. Factorization property: p;;; = 291:5.12)6’].(]{2134) for (1,7, k, 1) € (0,11



Comparison of ideals

In this example:

. [ pairwise(G) - IglobaI(G)

g = (pyu— 0, 70,57+ (1. k. 1) € {0,11%) N RIp] = Igiobalg

» The last equality holds since G is a chordal graph



Gaussian setting

The pairwise Markov property holds for a Gaussian distribution if and only if KW = ()
for all (u,v) & E. [Poll]

Since a Gaussian distribution is positive, it satisfies the pairwise Markov property for
a graph G if and only if it factorizes according to graph G by the

Since a Gaussian distribution also satisfies the intersection axiom, it satisfies the
pairwise Markov property for a graph G if and only if it satisfies the global Markov
property for a graph G.

NB! This does not mean that the three ideals are equal. In Homework 5, compute the
vanishing ideal of /.



Maximum likelihood estimation
in Gaussian graphical models




MLE in Gaussian graphical models

G = (V, E) undirected graph
. D data, X sample mean, S sample covariance matrix

* The log-likelihood function is

n

log(u, 2| D) = — % Z (m log(27) + log det(E) + (XO — )" =71 (XD — ) )
=1

* Using the trace trick gives

log(u, 2| D) = —% nmlog(2r) + nlogdet(X) + tr ( Z ((X(i) _ ﬂ) (X(i) B ,u)T) Z1)]
i=1



MLE in Gaussian graphical models

 MLE in a Gaussian graphical model gives:

* The log-likelihood function is

log(u, | D) = —% nmlog(2x) + nlog | 2| + tr ( Z ((X(i) —,M) (X(i) _ﬂ)T) 21)]
i=1

o After some more simplifications, the maximum likelihood estimation problem becomes:

max logdet(Z~!) — trace(Z1S)
>0

subjectto 2 € V(Ipairwise(G))



MLE in Gaussian graphical models

» This optimization problem becomes convex, if we write it using K instead
of 2.:

max logdet(K) — trace(KS)
K=0

subjectto K € V(/;)

o /- gives linear constraints on K [Poll]

 This becomes an unconstrained optimization problem



Likelihood equations

We get the likelihood equations by taking the of the
objective function:

0
) K, det(K) — (2 - 6,)S; = O,

where 0;; is the Kronecker delta.



Code

00[k11,k12,k22,k23,k24,k33,k34,k44]
matrix {{k11,k12,0,0},{k12,k22,k23,k24},{0,k23,k33,k34},4{0,k24,k34,k44}}
matrix for i to 3 list for j to 3 list random(30)
Xxtranspose(X)
jacobian(ideal(det(K)));
det(K)*jacobian(ideal(trace(KxS)));
ideal (M1-M2);
saturate(I,det(K))

N =
I 1

ideal (15621672k44 - 255515, 15621672k34 + 46159, 15621672k33 - 39947, 15621672k24 + 134201, 15621672k23 + 22955, 1069537773480k22

- 17602462843, 68465k12 + 312, 136930k11l - 517)



Solutions

For this graph, there is always one solution and it lies In the positive
definite cone.

For 4-cycle, there are out of which precisely one lies in the
positive definite cone.

Is there always one solution in the positive definite cone?

Yes, this follows from a result for exponential families.



Exponential families

Prop: Let ./ be an exponential family with minimal sufficient statistics 7(x)
and natural parameter 7 € N, with density f, (x) = h(x)e’”’tT(x)_A(”). Then the

likelihood function is strictly concave on V. Furthermore, the maximum
likelihood estimate, if it exists,

where x denotes the data vector.



MLE in Gaussian graphical models

Corollary: Assuming that the MLE exists, it is the unique positive definite
matrix 2 satisfying

» 2 € V(;), and

e 2;;=5;forall(i,j) € Eori=].



MLE in Gaussian graphical models

The MLE is a point in the variety of

I=(ZK—1d) +(K;: (i,)) € E) + (Z; = S;; : (i,j) € Eori = j)



Code

R = Q0Q[k11,k12,k22,k23,k24,k33,k34,k44,s11,s12,s13,s14,s22,523,524,533,534,544]
K = matrix {{k11 k12 0,0}, {k12 k22, k23, k24} {0,k23,Kk33, k34} {0,k24,k34, k44}}
Slgma = matrix {{511 512 s13, 514} {512 s22,s23, 524} {513 s23,s33, s34} {514 s24,s34,s44}}

= ideal (KxSigma - 1dent1ty(1))

X = matrix for i to 3 list for j to 3 list random(30)

S = Xxtranspose(X)

I2 = ideal(Sigma_(0,0)-S_(@,0),Sigma_(0,1)-S_(0,1),Sigma_(1,1)-S_(1,1),Sigma_(1,2)-S_(1,2),Sigma_(1,3)-S_(1,3),Sigma_(2,2)-S_(2,2),Sigma_(2,3)-S_(2,3),Sigma_(3,3)-S_(3,3))
I =11+ I2

2 = eliminate(I,{k11,k12,k22,k23,k24,k33,k34,k44})

ideal (s44 - 1110, s34 - 669, s33 - 430, s24 - 566, s23 - 394, s22 - 504, 9s14 - 3962, 9s13 - 2758, s12 - 392, sl11 - 591)



Discrete graphical models

m
Let X be a discrete random vector with state space % = H [rj].
J=1

e LetP = (pl-lmim) denote the joint probabilities and U = (uil...im) the contingency table.

 The maximum likelihood estimation problem is

max Z u;, .. 10gp;

. [Poll]



Lagrange multipliers

* Recall that the method of Lagrange multipliers is used to solve the
following constrained optimization problem:

max f(x)
subjectto g(x) =0fori=1,...,k

 The of this optimization problem is

k
L(x,2) = fx) = Y Lg/x).
=1



Discrete graphical models

» Letf,,...,J. be generators of .

 The Lagrangian for our optimization problem is:

L(X, /1) — Z uil...im logpil...im o /10 Z pzl g, 1 2/1]];()6)
Jj=1

(i15...5L, )ER L JER



Lagrange multipliers

The constrained critical points of f/ are among the unconstrained critical
points of L. Hence one has to solve



Discrete graphical models

U . ..i r 9
1---;»_/10_2/1, / = 0 forall (i, ...,1,) € A

* One option is to use solve the above system.

* Another option is to use the



Discrete exponential families

Cor: Let A C 7" such that 1 € rowspan(A), leth € | _¢» and let 1/ be the

from n 1.1.d. samples. Then the maximum likelihood
estimate in the log-linear model .Z , ;, given the data u is the unique
solution, If it exists, to the equations

Au=nApandp € M,



ideal flatten flatten flatten for i to 1 list for j to 1 list for k to 1 list for 1 to 1 list p_(i,j,k,V)-a_(i,j)*b_(j,k,1)
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ML degree

Theorem: Let /g C A,_, be a statistical model. For generic data, the
number of solutions to the score equations is independent of u.

Generic = data Is outside a variety

Def: The number of solutions to the score equations for generic u is called
the maximum likelihood degree (ML degree) of the parametric discrete

statistical model . .




Chordal graphs

« A graph G is chordal if every induced cycle of length 4 or larger has a
chord. [Poll]

Theorem: The ML degree for a graphical model on G in the discrete or
Gaussian setting is equal to one if and only if & is chordal.

 |In this case, the MLE can be written



Chordal graphs

Def: The triple of vertices (A, B, C) forms a decomposition of a graph G if
« A, B, C are disjoint,
« A, B are non-empty,
« V=AUBUZC(,
» the induced graph G is complete, and

» ( separates A from B (there are no edges between A and B).




Chordal graphs

Def: A graph is decomposable if it is or there exists a
decomposition into decomposable subgraphs G, ,~and Gp -

» By first finding decompositions of G, ,~ and Gy, and then finding
decompositions of decomposed graphs, we end up with a cligue

decomposition C, ..., C, with separators Dy, ..., D,.

* A graph is decomposable if and only if it is chordal.



Chordal graphs

Which of the following graphs are given with their decomposition?

4 : : Sellt e
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{ 2 4
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Chordal graphs

Prop: Let G be a chordal graph with clique decomposition C, ..., C, and

with separators Dy, ..., D;. Let U = (u; ; ) be the contingency table. The
IN the corresponding graphical model is

forall (iy,...,1,) € X,

where 1 | . denotes the marginals over F.



Chordal graphs

S
N

e The clique decomposition of the graph is C; = {1,2} and C, = {2,3,4} with the separator D; = {2}.
 The MLE is given by the formula

Wjjp Uik

Viiki =
Upjtr+

 For non-decomposable models log-linear models, hill-climbing methods are used in practice to compute the MLE.



Learning the graph

We have assumed that the graph is given
One option to learn the graph is via constraint-based learning

Given observed data, one can test which Markov properties hold and
construct the graph from these results

The result of each test is yes or no, which tells whether an edge is present
or absent in the graph

See the book: “Graphical Models with R” by Hgjsgaard, Edwards, and
Lauritzen



Conclusion

 Both in the Gaussian and in the discrete setting, there is only one critical
point of the likelihood function in the model and it is the MLE

* Special results for finding the MLE both for Gaussian and discrete
graphical models (more generally to exponential families)

 The ML degree of a graphical model is one if and only if the graph is
chordal

e Formula for the MLE in the discrete case



Thank you!

 Thank you for attending and for your hard work!
* Please fill out the course survey

e Period lll: Computational Algebraic Geometry (MS-E1142)



Master’s thesis topics




Topic 1: Toric fiber products and graphical models

e Toric fiber product is a construction that allows to construct from two
Ideals in smaller polynomial rings another ideal in a larger ring.

* |n the case of graphical models, this means constructing the ideal of a
graph from the ideals of subgraphs.

 Goal: In the Lauritzen’s book “Graphical models”, identify all results for
MLE of graphical models that are special cases of the MLE result for toric
fiber products.

 NB! This topic requires strong algebra background.



NONNEGATIVE FACTORIZATIONS AND RANK

Def: Given a matrix M € RI{", a pair (A, B) € RI7" X RSy such that M = AB is called a

size-r nonnegative factorization of M.

0 O
1 0O
0 1
Fd

[
1 0O
O .1
0 0O




LEARNING THE PARTS OF FACES

* Lee and Seung, 1999

—
—




Topic 2: Uniqueness of NMF

 For many of the applications it is desirable that there exists a unique
nonnegative matrix factorization (up to scalings and permutations).

* Together with Krone, we recently gave a necessary condition for
unigqueness.

 Goal: Compare the necessary condition with two well-known sufficient
conditions for uniqueness: separability and sufficiently scattered.



Topic 3: Size-2 nonnegative approximations

e Size-2 nonnegative factorizations are better understood than general
case.

» Nevertheless, given a matrix M, it is not know which matrices A, B give
the best size-2 nonnegative approximation AB to M.

» Goal: Study the best size-2 nonnegative factorizations for 3 X 4 and 4 X 4

matrices and explore whether conjectures in a recent paper with
Sodomaco and Tsigaridas hold in these cases.



Topic 4: Deep nonnegative matrix factorizations in
biology

 Nonnegative matrix factorizations are used in biology for studying the
expression of genes in different tissues (e.g. healthy and cancer tissues)

 More generally one can define deep nonnegative matrix factorizations:
M =AA,...A B, where all factors are nonnegative.

 Goal: Use deep nonnegative matrix factorizations for a biological dataset
and study how to choose the sizes of matrices in the factorization.



Bachelor’s thesis topics




Topic 1: Rank-1 tensor completion for small
tensors

Tensors are higher dimensional analogues of matrices

Whether a partial tensor can be completed to a rank-1 tensor depends
generically only on the locations of observed entries

Goal: For small tensors, study which partial tensors allow completion to a
rank-1 tensor

This topic requires the use of abstract algebra and in particular studying
the symmetries of a tensor



