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TERMINOLOGY	



Terminology	
•  Microorganims	or	microbes:	 		

	microscopic	organisms	that	are	found	all	around	us,	such	as	bacteria,	
	archaea,	fungi,	microbial	eukaryotes,	viruses	and	phages		

•  Diversity:		
	a	community’s	number	and	distribution	of	organisms		

•  Microbiome	&	microbiota:	
(Definitions	of	these	terms	are	inconsistent	in	literature	and	are	often	
used	interchangeably.	More	details	in	Marchesi	et	al.,	Microbiome	2015)	
	Here,	we	will	define	both	terms	to	refer	to	the	collection	of	microbes	
as	well	as	their	genomes	(i.e.	genes)	in	a	community	

•  Metagenome:	 		
	The	total	genomic	content	of	all	microbes	within	a	community	



Terminology	

en.wikipedia.org/wiki/Kingdom_(biology)	
Segata	et	al.,	Nature	Methods	2012	

•  Taxa/Taxon:		
hierarchy	by	which	all	lifeforms	on	earth	can	be	represented;	8	major	
taxonomic	ranks	(bottom	right	figure)	

•  Phylogenetic	tree:		
evolutionary	tree	that	shows	relationships	between	different	species;	
each	node	is	called	a	taxonomic	unit	(bottom	left	figure)	



BIOLOGICAL	BACKGROUND	



•  All	areas	of	the	human	body	is	colonized	
by	several	tens	of	trillions	of	microbes	
–  collectively	known	as	the	human	

microbiome	
–  several	kilos	in	body	weight	

•  Approximately	as	many	microbial	cells	in	
or	on	the	human	body	as	human	cells	
(1.3:1	ratio	of	microbes	to	human	cells)	

•  Outnumber	the	genes	in	our	genome	by	
about	100:1	

•  Humans	have	coevolved	with	these	
microbes	for	millenia,	establishing	a	
symbiotic	relationship		

•  In	a	healthy	person,	the	microbes	are	
commensal	(“good”)	and	are	responsible	
in	many	day-to-day	functions	

•  Inter-individual	(human)	variability:		
–  Human	genome:	0.1-0.4%	
–  Microbiome:	80-90%		

We,	the	“Super-organisms”	



Microbial	communities	at	different	body-sites	

Spor	et	al.,	Nature	Reviews	Microbiology,	2011		

•  Each	body-site	has	evolved	to	harbor	
specific	microbes	essential	for	its	
physiological	activities,	for	instance:	

–  Gastrointestinal	tract	(Gut)	
•  Breakdown	of	complex	

polysaccharides	
•  Synthesis	of	vitamins	
•  Colonization	resistance	
•  Maturation	of	the	immune	system	

–  Mouth	
•  Breakdown	of	simple	carbohydrates	
•  Regulation	of	pH	

–  Skin	
•  Vitamin	D	biosynthesis	

–  Vagina	
•  Regulation	of	pH	

•  This	results	in	strikingly	different	
microbial	communities	between	
body-sites	of	an	individual	

•  Provide	protection	from	colonization	
by	pathogens		



Gut	microbiome	

•  Gut	==	gastrointestinal	tract	
•  It	is	the	largest	area	of	the	body	that	is	constantly	
exposed	to	environmental	antigens	and	microbes	

•  Houses	the	largest,	most	influential	and	a	highly	
diverse	reservoir	of	microbes	and	antigens	in	the	
human	body	
–  Tens	of	trillions	of	microbial	cells	that	contains	
millions	of	unique	genes	(~150	times	more	genes	than	
in	the	human	genome)	



Importance	of	gut	microbiome	
•  A	rich	and	diverse	gut	microbiome	plays	an	essential	role	in	human	

health	and	promoting	immune	homeostasis		
•  The	gut	accommodates	the	largest	number	of	immune	cells	(up	to	

70%)	of	the	human	body		
•  From	an	early	age,	gut	commensals	(i.e.	commensal	microbes	of	

the	gut	microbiome)	establish	a	cross-talk	with	the	immune	system	
and	calibrate	nearly	all	aspects	of	the	immune	system,	both	local	
and	systemic	
1.  It	trains	the	immune	system	to	differentiate	between	commensals	

and	pathogenic	microbes	
⇒  enables	immune	system	to	shape	and	preserve	the	microbial	ecology	of	the	

gut		
2.  Gut	commensals	and	the	immune	system	compose	the	first	2	(of	3)	

layers	of	gut	barrier	
⇒ 	contributes	to	the	containment	of	the	gut	microbial	cells,	which	is	crucial	for	

preventing	gut	microbes	from	translocating	to	other	parts	of	the	body	or	into	
the	systemic	blood	circulation.	The	commensals	that	are	beneficial	for	you	in	
the	gut	can	be	dangerous	in	other	parts	of	the	body.	

3.  Colonization	resistance:	inhibits	pathogens	from	invading	the	host	
and	initiating	infections	as	well	as	clears	existing	infections	



•  Initial	colonization	takes	pace	in	utero,	but	extensive	
colonization	begins	immediately	after	birth	and	
continues	until	2-3	years	(or	approx.	1000	days),	after	
which	it	stabilizes	to	resemble	that	of	an	adult	

	
	

Birth	 3	yrs	 Adult	 Elderly	

Microbiome	
complexity	
&	stability	

Birth	route	

Infant	gut	microbial	colonization	

Depiction	by	Tommi	Vatanen	



Infant	gut	microbiome	–	infant	
immune	system	interaction	

•  Infant	immune	system:	
–  Unique	in	nature	=>	it	is	also	developing	and	is	relatively	immature	
–  Characterized	by	blunted	inflammatory	responses	and	a	regulatory	

environment	=>	develops	tolerance	towards	new	antigens	and	
microbes	rather	than	launching	an	inflammatory	response	

–  More	durable	and	permissive	to	microbial	instructions	during	infancy	
=>	providing	a	‘window	of	opportunity’	for	proper	(or	improper)	
immune	development	and	thus	resilience	(or	susceptibility)	towards	
diseases	later	in	life	

•  Early	microbial	colonization	of	an	infant’s	gut:	
–  is	highly	complex	and	dynamic	
–  plays	an	instrumental	role	in	the	development	(maturation	and	

education)	of	the	immune	system		
–  has	long-term	implications	on	host	immune	responses	and	health	

•  Therefore,	a	‘healthy’	colonization	by	beneficial	microbes	during	
this	critical	window	encourages	proper	immune	development	and	
training,	which	in	turn	promotes	immune	homeostasis	and	long-
term	health	



Factors	that	influence	early	gut	
microbiome	

•  Mode	of	feeding	
–  Breastfeeding	duration/
pattern	

–  Age	at	weaning	
•  Environmental	exposures	

–  Use	of	antibiotics	
–  Infections	

•  Geographical	location	
•  Exposure	to	farm	

environment	
•  Host	genetics	
•  Gender	
•  Etc.		

Figure: Kapourchali et al., Nutrition in Clinical Practice 2020 



Reduced	or	aberrant	colonization	
•  Certain	factors	can	lead	to	reduced	or	aberrant	colonization	of	the	

infant	gut	
⇒ 	which	can	result	in	significant	defects	or	abnormalities	in	immune	

development		

•  For	instance,	hygiene	hypothesis	states	that	lack	of	infections	
during	childhood	in	urbanized	countries/cities	due	to	overuse	of	
antibiotics,	changes	in	diet,	socioeconomic	status,	higher	hygiene	
levels,	etc.,	may	result	in	gut	microbiomes	that	lack	maturity	and	
diversity	for	establishing	a	stable	and	homeostatic	immune	system	

•  Recent	microbial	studies	have	linked	reduced	diversity,	aberrant	
colonization	and	compositional	shifts	during	infancy	to	illnesses	
that	manifest	during	childhood	or	later	in	life,	including	T1D,	IBD,	
asthma,	etc.	

•  Mechanisms	of	the	disease	pathogenesis	remain	largely	elusive	



Dysbiosis	
•  After	reaching	an	adult-like	composition,	certain	factors	can	lead	to	

dysbiosis	
•  Definition:	compositional	and	functional	aberrations	in	the	gut	

microbiome	that	is	typically	driven	by	pathobionts,	loss	of	gut	
commensals,	and/or	loss	of	overall	microbial	diversity	

•  Consequences:		
–  Increase	local	and	systemic	susceptibility	to	infections	
–  compromise	the	bacteria-mediated	immune	regulations	and	induce	chronic	

immune	responses	that	may	lead	to	inflammation	and	tissue	damage	
–  Compromise	gut	barrier	that	may	lead	to	increased	microbial	translocation	

and	gut	permeability	
–  has	been	linked	to	the	several	immune-mediated	diseases,	such	as	

inflammatory	bowel	disease	(IBD),	asthma,	type	1	diabetes,	multiple	sclerosis,	
antibiotic-resistant	infection,	etc.	=>	mechanisms	not	well-known	

•  Causes:	
–  Lifestyle:	diet,	stress,	hygiene	levels,	etc.	
–  Early	colonization	
–  Medicinal	practices:	vaccinations,	antibiotics,	drugs,	etc.	
–  Host	genetics		
–  Others	



IMPORTANT	MICROBIOME	STUDIES	



Some	popular	studies	
•  From	2005-2015,	more	than	USD	1.7	billion	has	been	spent	on	human	

microbiome	research		
	
•  Metagenomes	of	the	Human	Intestinal	Tract	(metaHIT)	(2010)	

–  stool	samples	from	124	European	“healthy”	adults	

•  Chinese	type	2	diabetes	study	(2012)	
–  Stool	samples	from	145	adults	(diabetic	and	non-diabetic)	
	

•  Human	Microbiome	Project	(HMP)	1,	1-II,	&	integrative	HMP	(2012,	2017,	
2019)	

•  DIABIMMUNE	study	(2015,	2016,	2018,	2019)	
	
•  Several	other	studies	involving	both	human	and	other	types	of	

microbiome	niches	



DIABIMMUNE	Study	
•  Was	initiated	to	test	the	hygiene	hypothesis	in	the	development	of	T1D	
•  Follow	developing	infant	gut	microbiome	in	Finland,	Estonia	and	Karelian	Republic	

of	Russia	
⇒  Considered	as	“living	laboratory”	

•  200-300	infants,	genetically	at	risk	for	T1D	
•  Data	collected:	

-  Monthly	stool	samples	were	collected	from	birth	until	3	years	of	age	
-  Extensive	metadata	from	infants	and	mothers	

https://pubs.broadinstitute.org/diabimmune/	



Human	Microbiome	Project	
•  Largest	body-wide	survey	of	the	human	microbiome	till	date	
	
•  Goal:	

–  Create	a	toolbox	of	reference	data,	computational	techniques,	
analytical	methods	and	clinical	protocols	

–  To	identify	a	“core”	set	of	microbial	taxa	universally	present	in	
healthy	individuals	(lacking	obvious	disease	phenotypes),	such	that	the	
absence	of	such	microbes	would	indicate	dysbiosis	(i.e.	hunt	for	a	
picture	of	a	“healthy”	microbiome)	

•  Dysbiosis	is	difficult	to	define	precisely.	So,	finding	features	that	
broadly	distinguish	healthy	from	unhealthy	microbiomes	will	aid	in	
the	diagnosis	of	microbiome-related	diseases	and	could	provide	
new	means	of	preventing	disease	onset	or	to	improve	prognosis	
	



HMP	phases	
•  HMP	1	(2012):	

–  242	adults	(129	males,	113	females)	from	2	distinct	geographic	locations	in	
USA	

–  Sampling	at	18	body	sites	for	women,	15	for	men	
•  5	major	body	areas:	oral,	skin,	stool,	nares,	and	vagina	

–  Samples	from	multiple	visits		
–  Clinical	metadata	

•  HMP	1-II	(2017):	
–  1631	new	samples	(for	a	total	of	2355	samples)	
–  265	individuals	
–  More	longitudinal	data	
–  Focused	on	6	out	of	18	body	sites		

•  Integrative	HMP	(2019)	
–  Comprised	studies	of	dynamic	changes	in	the	microbiome	and	the	host	under	

three	conditions:	
•  pregnancy	and	preterm	,	inflammatory	bowel	disease,	and	stressors	that	affect	

individuals	with	prediabetes.		



Microbial	community	composition	is	more	
similar	within	than	between	habitats	

The	Human	Microbiome	Project	Consortium,	Nature	2012	

Lloyd-Price	et	al.,	Nature	2017	



Did	they	succeed	in	defining	the	constituents	of	
a	‘healthy’	microbiome	

•  They	did	not	succeed	to	find	a	taxonomic	composition	of	the	
microbiome	that	would	commonly	appear	in	all	healthy	individuals	
–  Between	subject	variations	were	very	high	
–  No	taxa	was	observed	to	be	universally	present	in	all	body	habitats	and	individuals	

•  Characterizing	a	“healthy	microbiome”	as	an	ideal	set	of	specific	
microbes	is	therefore	no	longer	a	practical	definition	

•  Each	body-site	habitat	
possesses	strong	enrichment	
of	certain	taxa	over	others	
–  e.g.	healthy	gut	microbiomes	

are	consistently	dominated	
by	bacteria	of	2	phyla:	
Bacteroidetes	and	Firmicutes	

•  Individuals	vary	by	
more	than	an	order	of	
magnitude	in	their	
Bacteroidetes/
Firmicutes	ratio	

•  Less	dominant	taxa	are	highly	
personalized,	both	among	
individuals	and	habitats	Lloyd-Price	et	al.,	Genome	Medicine	2016	
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Healthy	“functional	core”	
•  The	abundance	of	metabolic	pathways	and	other	

molecular	functions	is	considerably	more	consistent	
across	people	for	a	given	site	
–  allowing	the	identification	of	a	healthy	“functional	core”,	where	
the	functions	of	a	particular	habitat	are	not	necessarily	provided	
by	the	same	microbes	in	different	people	

•  This	core	includes	functions	from	at	least	3	groups:	
1.  Housekeeping	functions:	necessary	for	all	microbial	life	
2.  Processes	specific	to	human-associated	microbomes	across	body-

site	habitats	
3.  Specialized	core	functions		

v  Hallmarks	of	a	“healthy	microbiome”:	
-  The	microbes	at	a	particular	body-site	habitat	is	able	to	perform	
the	core	functions	of	that	site	

-  It	must	have	a	degree	of	resilience	to	external	(e.g.	diet	and	
drugs)	or	internal	(e.g.	age)	changes	



SEQUENCING	TECHNOLOGIES	



Two	big	questions	of		
microbial	community	analysis	

Who	is	
there?	

What	
are	they	
doing?	
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How	does	one	study	the	microbiome?	

•  Before	popularization	and	affordability	of	high-throughput	
technologies,	culture-based	approaches	were	mostly	used	
for	identifying	the	microbes	in	a	community	
–  >99%	of	microbes	cannot	not	be	easily	cultured,	which	
generates	a	biased	view	of	the	microbiota	

•  With	the	advent	of	high-throughput	technologies,	culture-
independent	approaches	were	developed	
–  No	culturing;	directly	analyze	the	DNA	extracted	from	microbial	
cells	of	a	sample		

–  Revolutionized	microbiome	studies,	bringing	about	the	“golden	
age”	of	microbial	community	analysis	

–  Allows	taxonomic	and	functional	profiling	of	entire	
communities	in	an	efficient	and	unbiased	manner	



Culture-independent	approaches	
•  2	main	next	generation	sequencing	(NGS)-based	methods	are	used:	

1.   Marker	gene	sequencing	(also	known	as	amplicon	or	targeted	
sequencing):	
⇒  specific	genes	that	are	able	to	identify	the	entire	genome	are	

sequenced,	i.e.	marker	genes	
⇒  These	genes	are	such	that	they	are:	

-  present	in	almost	all	bacteria	(or	other	microbe	of	interest)	
-  Highly	conserved	(changes	in	sequence	serve	as	an	evolutionary	clock	and	

distance	measure)	
⇒  16S	ribosomal	RNA	(rRNA)	gene	is	the	most	commonly	used	marker	

gene	
⇒  Relatively	cheaper	and	faster,	but	can	assign	taxonomy	only	down	to	

genus-level	
2.   Whole	metagenome	shotgun	(WMS)	sequencing	(also	known	

as	metagenomic	sequencing):	
⇒  All	genomic	DNA	in	a	sample	is	sequenced	
⇒  Can	reveal	the	microbial	composition	of	communities	and	their	

genetic	content	
⇒  More	accurate	and	has	better	microbial	resolution	(species-	and	

strain-level)	



16S	ribosomal	RNA	
•  Prokaryotes:	70S	ribosomes	
•  Small	subunit	has	a	16S	

ribosomal	RNA		
•  Segment	of	gene	found	in	all	

bacteria	
•  Has	high	degree	of	

conservation	over	time		
–  Random	sequence	changes	=	

accurate	measure	of	evolution	
•  9	hypervariable	regions	

–  Each	exhibits	different	degrees	
of	sequence	diversity	and	no	
single	region	can	differentiate	
among	all	bacteria	

–  V4	is	the	most	popular	choice	
for	sequencing	

•  Long	reads	=>	Illumina	
sequencing	is	most	popular		

								(454	pyrosequencing	–	old,	3rd	generation	
									sequencing	platforms	–	Pacific	Biosciences,	
								Oxford	Nanopore	MinION	and	Ion	Torrent)		

	

	biology.tutorvista.com/animal-and-plant-cells/ribosomes.html	
alimetrics.net/en/index.php/dna-sequence-analysis		&	Pereira	et	al.,	Nucleic	Acids	Research	2010			



Sequencing	as	a	tool	for	microbial	
community	analysis	(marker	gene	vs	WMS)	

30	

•  16S	(18S,	ITS)	rRNA	gene	
•  (PCR	amplification)	
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PROCESSING	MICROBIAL	
SEQUENCING	DATA	&	TAXONOMIC	

PROFILING	



Profiling	microbial	communities	by		
marker	gene	sequencing	
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16S	rRNA	Sequencing	– data	processing	
1.  QC	analysis	

–  Demultiplexing,		
–  removal	of	sequencing	artifacts,	such	as	chimeras,	low-quality	reads,	

contaminating	reads	from	host-genome,	sequencing	errors,	etc.	
–  Tools:	FastQC,	trimmomatic,	cutadapt,	ea-utils	(toolkit)	

2.  Joining	of	paired-end	reads	by	overlapping	to	obtain	single	reads	
–  Tools:	fastq-join,	PEAR,	SeqPrep,	etc.	

3.  Clustering	(or	binning)	of	reads	into	operational	taxonomic	units	(OTUs)	
=	lowest	level	of	phylotypes	detectable	by	16S	rRNA	sequencing		

–  Based	on	predefined	sequence	similarity	threshold	(typically	>	97%,	which	is	
considered	to	reflect	genus-level	classification)	

–  Largely	3	categories	of	OTU	clustering:		
•  de	novo,	closed	reference,	and	open	reference	(explained	on	next	slide)	

4.  Consensus	sequence	per	OTU	is	determined	and	taxonomically	
annotated	using	reference	databases	

5.  16S	data	=>	usually	considered	to	be	insufficient	for	functional	analysis,	
but	some	tools	do	exist,	such	as	PICRUSt	and	Tax4Fun	

	



•  De	novo:	
–  Reads	are	aligned	against	one	another	without	any	reference	sequence	

collection	
–  OTUs	are	annotated	using	a	reference	database*	
–  Tools:	Mothur	(agglomerative	clustering	method)	=>	implemented	in	QIIME**;	

UPARSE		
•  Closed	Reference:	

–  Reads	are	clustered	against	a	reference	sequence	collection	and	reads	which	
do	not	match	any	reference	sequence		are	discarded	

–  UCLUST	=>	implemented	in	QIIME	
•  Open	Reference:	

–  Reads	are	clustered	against	a	reference	sequence	collection	and	any	reads	
with	no	matches	are	clustered	de	novo		

–  QIIME	

*	Reference	databases	that	store	annotated	16S	rRNA	sequences:	GreenGenes,	Ribosomal	
Database	Project	(RDP),	SILVA,	etc.	
**		QIIME	=	open-source	bioinformatics	software	that	integrates	commonly	used	tools	that	are	
designed	for	16S	rRNA	sequencing	analyses	

	OTU	clustering	



Profiling	microbial	communities	by		
WMS	sequencing	
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•  16S	(18S,	ITS)	rRNA	gene	
•  Conserved	across	bacteria	
•  (Allows	PCR	amplification)	
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WGS	sequencing	–	data	processing	
1.  QC	analysis	

–  Remove	low-quality	reads	and	adapters	
–  Contaminating	sequences	from	the	host-	genome	is	removed	(by	

aligning	reads	to	the	host	genome)	
–  Wrapper	tools:	KneadData	

2.  Taxonomic	and	functional	profiling	–	2	different	types	of	
approaches	

–  Assembly-free:		
•  aligning	short	reads	to	reference	genomes	and	gene	catalogues,	such	as	

RefSeq,	UniRef,	etc.	
•  Tools	for	taxonomic	profiling	:	MetaPhlAn,	MetaPhlAn2,	mOTU,	Kraken,	

MEGAN,	etc.	
•  Tools	for	functional	profiling:	DIAMOND,	PALADIN,	HUMAnN,	HUMAnN2,	

etc.	
–  assembly-based	approaches:		

•  short	reads	are	assembled	into	longer	sequences,	called	contigs,	before	
profiling	



•  50-85%	of	the	species	present	in	
human	gut	microbiota	lack	reference	
genomes	
–  Single	species	needs	to	be	isolated	and	

cultured	to	produce	DNA-rich	sample	
to	assess	the	genome,	but	some	
species	are	impossible	to	cultivate	and	
culture	

–  Species	of	public	health	interest	
(Salmonella	enterica,	E.Coli,	C.Difficile,	
etc.)	are	more	represented	in	the	
databases,	than	commensal	species	

•  Even	then,	reference-based	WGS	
processing	is	most	common	
–  Metagenomics	data	is	complex	as	it	

contains	reads	from	multiple	species	
•  Assumptions	made	when	assembling	

single	genomes	do	not	apply	when	
assembling	multiple	genomes	at	varying	
levels	of	abundance	

Human	gut:	
Mapping	median	

28%	

WGS	sequencing	–	data	processing	



Assembly-free	approach:		
Mapping	Reads	to	the	Genomes	
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RepoPhlAn	 ChocoPhlAn	(http://metaref.org)	

“Bags”	of	protein	
coding	genes	

49.0	million		
total	genes	

Species	
pangenomes	

7,677	
	

containing	
18.6	million	
gene	clusters	

Core	genes	 Marker	genes	

MetaPhlAn:	Indexing	microbial	pangenomes	

NCBI	isolate		
genomes	

Archaea	 300	
Bacteria	 12,926	
Viruses	 4,646	
Eukaryota	 2,177	



MetaPhlAn	
Metagenomic	Phylogenic	Analysis	
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Assembly-based	approaches	
1.  Short	reads	to	contigs	

–  In	a	comparative	(using	reference	sequences)	or	de	novo	manner	
–  De	novo	methods,	expecially	De	Bruijn	graph	strategy,	are	most	widely	used	

•  Tools:	MEGAHIT,	SOAP-denovo2,	metaSPAdes,	etc.	
2.  Contig	binning	

–  Each	cluster	of	contigs	represent	a	(partial)	genome	belonging	to	a	biological	taxon	
–  Supervised	(using	reference	genomes)	or	unsupervised	methods		
–  Unsupervised	methods	are	more	popular		

•  Nucleotide	composition-based,	abundance-based	or	hybrid	methods	
•  Hybrid	methods:	CONCOCT,	MaxBin2.0,	etc.	

3.  Gene	prediction	
–  Open-reading	frame	predition	
–  Tools:	Prodigal,	Glimmer,	etc.		
–  Non-redundant	gene-catalogue	can	be	built	using	tools	like	CD-HIT	

4.  Mapping	short	reads	back	to	contig	bins	or	gene	catalogue	to	get	abundances	

v  Contig	binning		
⇒  taxonomic	profiling		

v  Gene	prediction		
⇒  functional	profiling	
⇒  taxonomic	profiling	(using	tools	like	MSPminer)	



FUNCTIONAL	ANALYSIS	



Two	big	questions	of		
microbial	community	analysis	

Who	is	
there?	

What	
are	they	
doing?	



Functional	annotations	of	microbial	genes	

Orthology:	
Grouping	genes	by	conserved	

sequence	features	
COG,	KO,	FIGfam…	

Structure:	
Grouping	genes	by	similar	

protein	domains	
Pfam,	TIGRfam,	SMART,	EC…	

Biological	roles:	
Grouping	genes	by	pathway	and	

process	involvement	
GO,	KEGG,	MetaCyc,	SEED…	

Turnbaugh,	2009	

DeLong,	2006	

Warnecke,	2007	



Functional	profiling	–	HUMAnN2		
Efficiently	and	accurately	profiling	the	presence/absence	and	abundance	of	

microbial	pathways	in	a	community	from	metagenomic	or	
metatranscriptomic	sequencing	data	

Using	MetaPhlAn2	

Constructs	a	sample-	
Specific	gene-sequence		

database	by		
merging	preconstructed,	
functionally	annotated	
pangenomes	of	the		
identified	species		

Nucleotide-level	
mapping	of	all	sample	
reads	against	the		

sample’s	pangenome	
Database.	Yields:		

per-species,	per-gene		
alignment	statistics	

Reads	that	do	not	align	
to	identified	species’		
pangenomes	are		

subjected	to	translated	
search	against	a		

comprehensive	protein	
database	

Multiple	alignment		
count	is	divided	across	
aligned	sequences.	
Output:	A	weighted		
count	normalizated		
by	alignable	gene		
length		

Abundance	and		
coverage	are	then		
computed	for	each	

pathway	using	MinPath,	
producing	stratified		

(per	species)	as	well	as	
community-wide	values	

1.	 2.	

3.	

4.	 5.	 6.	

7.	



NORMALIZATION	



Normalization	
•  Needs	to	be	performed	on	all	taxonomic-	and	functional-level	raw	

abundance	data	to	make	meaningful	comparisons	between	samples	or	for	
other	downstream	analyses	

•  Microbiome	data	is	compositional:	
–  Human	=>	1	genome	
–  Microbial	community	=>	unknown	number	of	genomes	
–  Absolute	abundance	cannot	be	inferred	as	biologists	believe	they	cannot	

capture	all	species	in	a	community	
–  The	data	is	transformed	into	compositional	data,	such	as	relative	abundances	

•  Total	sum	scaling	(TSS)	–	most	popular:	
–  Individual	raw	counts	are	divided	by	the	total	number	of	counts	per	sample	
–  Results	in	relative	abundances	that	sum	to	1	(Simplex	space	where	Euclidean	

metrics	cannot	be	applied)		
•  Log-ratio	transformation	(proposed	by	Aitchison)	

–  Additive,	centered,	and	isometric	log-ratio	transformation	
–  Results	in	compositional	data	also		
–  In	Euclidean	space	



DIVERSITY	METRICS	AND	
ORDINATION	



Diversity	
•  Diversity:	a	community’s	number	and	distribution	of	organisms	

–  Also	community	composition	or	structure	

•  Alpha	diversity	=		refers	to	the	diversity	within	a	community	or	sample	

•  Beta	diversity	=	refers	to	similarity/dissimilarity	between	two	communities	or	

samples	

•  Gamma	diversity	=	refers	to	the	total	diversity	in	a	landscape	

	

http://users.unim
i.it/dm

ora/m
ateriali/AN

U
2012/BioInfoTools.pdf	



Alpha	diversity	(within-sample	diversity)	

Qualitatively	diverse	
Taxonomically	diverse		

Quantitatively	diverse	
Taxonomically	diverse		

Phylogenetically	
diverse	

Not	diverse	



Alpha	diversity	metrics	
•  Richness:		

-  number	of	unique	taxa	=	
-  Chao1:	

	f1	is	the	number	of	singleton	taxa	(observed	only	once,	one	read)	and	f2	is	the	number	of	
	doubleton	taxa	

•  Evenness:	
–  Simpson	diversity	index	

	
–  Shannon	diversity	index	=	

•  Many	other	measures:	McIntosh,	Berger-Parker,	…																								

Vegan::diversity()	in	R	

n	=	total	number	of	taxa	in	the	sample	
pi	is	the	relative	abundance	of	taxon	I	
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•  Jaccard	index,	proportion	of	shared	taxa	

•  Bray-Curtis	dissimilarity,	shared	abundance	divided	
by	total	abundance	

	

	where	C	is	the	sum	of	the	lesser	values	for	only	those	species	in	common	
	between	both	samples.	Si		and	Sj	are	the	total	number	of	species	per	sample.	

	

Beta	diversity	metrics	

vegan::vegdist	in	R	



Ordination	
•  Ordination	is	a	constrained	projection	of	high-dimensional	data	into	a	lower	

dimensions	
•  Principal	component	analysis	(PCA)	guarantees	the	new	dimensions	to	maximize	

normal	variation	=>	Euclidean	metrics	
•  Principal	coordinates	analysis	(PCoA),	i.e.	classical	MDS,	denotes	to	any	ordination	

method	based	on	(dis)similarity	matrix	=>	works	with	non-Euclidean	metrics	also	
•  t-SNE:	Modern,	distance	/	similarity	matrix	based	technique	for	visualizing	(high-

dimensional)	data	
	

Vatanen	et	al.,	Cell	2016	

PCoA	plots	



ASSOCIATION	ANALYSES	



Post-hoc	testing	of	external	factors	
•  Microbial	composition	is	influenced	by	a	variety	of	confounding	

factors	/external	factors		
–  Scientists	cannot	control	all	possible	influences	

•  We	can	try	to	explain	the	variations	in	the	microbiome	with	the	
available	metadata	

•  Some	externals	factors	have	been	shown	to	influence	the	gut	
microbial	compositions:	
–  E.g.	country	and	mode	of	delivery	(DIABIMMUNE	study)	

	

Yassour	et	al.,	Science	Translational	Medicine	2016	Vatanen	et	al.,	Cell	2016	



Association	Analyses	
•  Most	big	study	cohorts	collect	clinical	data	along	with	microbiome	

samples	
–  E.g.	DIABIMMUNE	study	

	
•  Association	analyses	can	uncover	correlations	correlations	to	diseases	and	

other	clinical	metadata	as	a	first	step	to	innovation	
•  Usually	a	cocktail	of	external	factors	influence	the	microbiome		
•  2	ways	of	association	analyses:		

–  Whole	microbial	composition	–	wise	(i.e.	multivariate	association	analysis)	
–  each	bacteria	on	a	species/genus	level	–	wise	(i.e.	univariate	association	

analysis)	



Composition	Association	Analysis	
•  Aim:	Identifying	the	differences	in	the	microbial	

compositions	of	samples	from	different	groups	or	
treatments	

•  Powerful	multivariate	statistical	methods,	such	as	
MANOVA,	use	statistics	that	assume	the	data	to	be	
normally	distributed		
–  Not	generally	met	by	ecological	data	

57	

Anderson,	Austral	Ecology	(2001)	



Non-parametric	multivariate	analysis	of	
variance	(PERMANOVA)	

•  This	method	circumvents	the	calculations	of	any	
distance	measures	and	instead		
–  obtains	an	additive	partitioning	of	sums	of	squares	for	
any	distance	measure,	without	calculating	the	central	
locations	of	groups.		

–  Can	be	used	for	Bray-Curtis	similarity	measure	(non-
Euclidean)	

•  Calculates	a	permutation	based	p-value	
•  Able	to	cope	with	more	complex	multifactorial	designs	

Vegan::adonis()	in	R	
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,  where SS A = SST − SSW 	

,  where SS A = SST − SSW 	

(	 )	



(Univariate)	Bacterial	Association	Analysis	
•  Aim:	Identify	specific	bacterial	species	or	genus	that	are	associated	with	

particular	covariates	
	
•  Linear	model	
	

	yi	=	observed	quantities;	relative	abundances	of	one	microbial	taxon	(e.g.	
	 	species)	
	i	=	1,	…	,n	(samples)	
	p	=	fixed	effects/predictor	(continuous	or	categorical)	

	
•  Assumptions:	

–  Linearity	
–  Absence	of	collinearity	=	fixed	effects	are	not	correlated	
–  Homoskedasticity	=	variability	of	the	data	should	be	approximately	equal	

across	the	range	of	predicted	values	
–  Normality	of	residuals		
–  Absence	of	influential	data	points	
–  Independence	=	each	data	point	is	from	a	different	person!!!!	



Linear	Mixed	Effect	Model	
•  Independence	assumption	would	not	be	met	in	studies	where	

multiple	samples	are	collected	from	the	same	subject	as	technical	
replicates	or	time-series	data.		

•  The	non-independence	issues	are	resolved	by	adding	another	type	
of	effect:	random	effect	

•  Random	effect	=	covariate	with	non-systematic,	idiosyncratic,	
unpredictable	or	“random”	influence	on	the	data	

•  Fixed	effect		=	covariate	with	systematic	and	predictable	influence	
on	the	data	

•  For	e.g.	if	“subject”	is	the	random	effect,	you	model	the	data	such	
that	each	subject	has	a	different	intercept	(or	baseline)	

	

•  LMM	model	can	be	applied	on	log-transformed	relative	
abundances	or	using	methods	like	MaAsLin,	where	arcsin	of	the	
square	root	of	the	relative	abundances	is	taken.	
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Metagenomic	data	

16S	data	

Stats	

62	

Typical	microbiome	community	analysis	
tasks	



Emerging	study	areas	

•  Metatranscriptomics	
	study	of	the	total	transcribed	RNA	pool	of	all	organisms	within	a	
	community	

	
•  Metaproteomics	

study	of	the	total	proteome	of	all	organisms	within	a	community	
	

•  Meta-metabolomics	(or	community	metabolomics)	
	study	of	the	total	metabolite	pool	of	all	organisms	within	a	
	community	
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