

Materials and Sustainable Development

Mike Ashby Didac Ferrer Jennifer Bruce

Department of Engineering University of Cambridge, Granta Design, Cambridge and Universitat politecnica de Catalunya

© M. F. Ashby, 2013 For reproduction guidance see back page

This lecture unit is part of a set created by Mike Ashby to help introduce students to materials, processes and rational selection.

The Teaching Resources website aims to support teaching of materials-related courses in Design, Engineering and Science. Resources come in various formats and are aimed primarily at undergraduate education. Some of the resources are open access and students can access them. Others are only available to educators using CES EduPack. www.grantadesign.com/education/resources

"Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs"

Report of the Brundtland commission of the UN, 1987

- But how?
- And where do materials fit in?
- "Sustainability" vs. "Sustainable development"

- Material efficiency essential to provide needs of present and of future generation
- Select materials to maximize functionality with minimum material loss
- Boundary conditions: regulations, incentives, voluntary obligations social equity, ethical sourcing
- Provide a tool to help with this

The evolution of Materials teaching

The need:

A data source that allows material selection technical grounds

And helps with pointers to regulation and societal issues

Sustainable assessment: the method

GRANTA

End-of-Life Vehicles (ELV)

Relevant sector

Automobile industry.

Summary of legislation

End-of-Life Vehicles (ELV, 2000). The European Community Directive, EC2000/53, establishes norms for recovering materials from dead cars. The initial target, a rate of reuse and recycling of 80% by weight of the vehicle and the safe disposal of hazardous materials, was established in 2006. By 2015 the target is a limit of 5% by weight to landfill and a recycling target of 85%. The motive is to encourage manufacturers to redesign their products to avoid using hazardous materials and to maximise ease of recovery and reuse.

Reference

ELV (2000) The Directive EC 2000/53 Directive on End-of-life vehicles (ELV) Journal of the European Communities L269, 21/10/2000, pp. 34 - 42.

http://rod.eionet.europa.eu/instruments/526

Nations of the World

Nations	France				
	Geography Area (Land Only) 6.4 e5 km^2	A Break			
	People Population 6.4 e7				
Human Capital	Median Age 39 yrs Satisfaction with life 220 points	S S S S S S S S S S S S S S S S S S S			
Capital	Human Rights & Education Press freedom index 0.13				
	Rule of Law index Public spend on education, % GDP	91 5.6%			
Manufact'd	Economy & Development				
Capital	GDP per capita	21,000 USD			
	Life expectancy UN Human Development Index	81.5 yrs 0.95 points			
Natural	Environment, energy and carbo	on			
Capital	Ecological footprint	4.9 Global hectares (gha)			
	Oii consumption Annual Greenhouse Gas Emission	1.9 e6 bbi/day 4.2 e8 Tonnes CO _{2 eqiv} /year			
GRANTA TEACHING RESOURCES Mike Ashby, 2012		www.grantadesign.com/education/resource			

www.grantadesign.com/education/resources

Material efficiency: the wind turbine

GRANTA

Figure 18 Fact-finding for Wind farms

Wind turbine – notional poster

GRANTA

www.grantadesign.com/education/resources

The electric car – Prime objective

15 % of global fossil fuel CO₂ release comes from cars

Europe: Carbon Reduction Commitments (CRCs) 60 – 80 % reductions in carbon emissions by 2050

70 % of oil production is used for transport

President Obama aims to put one million electric vehicles on the road by 2015 to reduce US dependence on oil

State of the Union Address, 2011

Prime objective and scale

- Decarbonize road transport
- 16 million cars/year by 2020

Electric cars: the first three steps

Use of the database for fact-finding

Materials (1)

Neodymium-boron magnet motors

Lithium-ion batteries

Bill of materials	kg
Carbon steel	790
Cast iron	151
Wrought aluminum (10% recycle)	30
Cast aluminum (35% recycle)	64
Copper / Brass	26
Magnesium	0.3
Glass	39
Thermoplastic polymers (PU, PVC)	94
Thermosetting polymers (Polyester)	55
Rubber	33
Platinum, exhaust catalyst	0.007
Electronics, emission control	0.27
Rare earth magnets (0.5 kg Neodymium)	1.5
Batteries (4.8 kg Lithium)	100
Total weight	1385

Lithium for lithium-ion batteries

Materials (2)

Material supply chain

16 million cars per year

- 0.5 kg Neodymium per car
- 4.8 kg Li per car MINIMUM

Neodymium

Producing Nation	Tonnes/year 2011
China	22,100
India	510
Brazil	93
Malaysia	5
World	22,710

Nd demand = *40%* present world production

L	i	t	h	i	u	r	n	

Producing Nation	Tonnes/year 2011			
Chile	12,600			
Australia	11,300			
China	5,200			
Bolivia	5,000			
Argentina	3,200			
Portugal	820			
Zimbabwe	470			
Brazil	160			
World	34,000			

Li demand = **230%** present world production

Facts Materials

 Nd: Severe supplychain concentration

 Li: Current world production inadequate

Design (1)

Design (2)

GRANTA

Mike Ashby, 2012

TEACHING RESOURCE

www.grantadesign.com/education/resources

Legislation and commitments

- Corporate fleet fuel-economy penalties *Fleet mileage > 35 mpg*
- EU Battery Directive –
 None to landfill
- Plug-in electric vehicle subsidy -

USA			\$ 7,500
China	¥ 60,000	_	\$ 9,700
UK	£ 5000	_	\$ 7,000
France	€ 7000	_	\$ 8,500

Legislation

Need recycle facilities for Nd and Li

Design

E-density of battery << gas
No better magnets than Nd-B

Materials

Nd, Li: Supply-chain issues

Range and Cost anxiety

Energy density of energy-source

- Li-ion battery: \approx 0.6 MJ / kg
- Conversion efficiency to axel ≈ 0.85

Energy required at axel

• Small car \approx 0.5 MJ / km

Battery weight \approx 1 kg per km of range

- 500 km range requires > half-tonne Li-ion battery
- Cost at todays prices \$42,000

Facts

Society Range limited by battery weight and cost

Legislation Must recycle Nd and Li

Design E-density of battery << gas No better magnets than Nd-B

Materials

Nd, Li: Supply-chain issues

What have we got?

Step 1

Prime objective and scale

- Decarbonize road transport
- 20% of global production by 2020

Step 3 – Facts

Environment

• CO_2 footprint \approx 100 g/km

Society

Range limited by battery weight and cost

Legislation

 Need recycle facilities for Nd and Li

Design

- E-density of battery << gas</p>
- No better magnets than Nd-B

Materials

• Nd, Li: Supply-chain issues

Step 2

Stakeholders

- National, local government
- Car makers and retailers
- Labor unions
- Green campaigners
- Automobile associations
- Car buying public

Step 4 – Integration

Students (in groups) debate impact on 3 capitals

Reflection

- Short term not sustainable
- Long term rethink (redefine?) the way cars are used
 - rethink use of electrical power for cars