Aalto University
School of Electrical
Engineering

ELEC-E8126 Robotic Manipulation Introduction

Ville Kyrki
13.1.2020

Today

- Course arrangements (see another slide set)
- Quick overview of course contents
- Re-cap of many things

Typical (advanced) manipulation pipeline

Perception

Planning

Execution

Perception

- Primarily: Detection of target objects and obstacles

Planning problems in manipulation

- How a robot can re-arrange objects surrounding it in order to reach a particular goal? E.g. complete an assembly.
- Mixture of mechanics and planning (synthesis)
- Hierarchy of techniques: (for finding a sequence of actions)
- Kinematic manipulation: Based on kinematics. E.g. how to move joints to move from a start to end position without collisions. Lecture 2.
- Static manipulation: Based on statics and kinematics. E.g. how to place an object at rest on a table.
- Quasi-static manipulation: Kinematics, statics, dynamics without inertia. E.g. grasping stably. Lecture 6-7.
- Dynamic manipulation: Kinematics, statics, dynamics. E.g. throwing an object.

Control problems in manipulation

- How to move along a trajectory?
- How to perform several simultaneous tasks?
- E.g. avoid obstacles while moving
- How to perform in-contact motions?
- How to perform coordinated motions with several

Lecture 6 manipulators?

Towards state-of-the-art

- Modeling and learning manipulation skills

Lecture 10

- Task and motion planning

Lecture 11

Re-cap: Coordinate frames and transforms

- Coordinate frame \{a\} can be represented as a 4×4 matrix consisting of translation and rotation

May be omitted for "space"/"world" frame

$$
\begin{array}{ll}
3 \times 3 & 3 \times 1 \\
\text { rotation } & \text { translation } \\
\text { matrix } & \text { vector }
\end{array}
$$

$$
T_{s a}=\left(\begin{array}{ll}
R & p \\
0 & 1
\end{array}\right) \in S E(3) \longleftarrow \quad \begin{aligned}
& \text { Special } \\
& \text { Euclidean } \\
& \text { group }
\end{aligned}
$$

- reference frame frame name
- May also be used to change reference frame of a position vector or frame. $T_{s b}=T_{s a} T_{a b} \quad v_{b}=T_{b a} v_{a}$

Exponential coordinates for rotation

- Any rotation can be obtained from / by rotating it by some θ about axis $\hat{\omega}$ (axis-angle representation)
- Can be combined to $\hat{\omega} \theta \in \mathbb{R}^{3}$ called exponential coordinates for rotation
- What's the relationship between exponential coordinates and rotation matrix?

Exponential coordinates cont'd

Angular velocity

- Velocity of a point in rotation

$$
\dot{p}=\hat{\omega} \stackrel{\rightharpoonup}{\times} p
$$

$$
\dot{p}=[\hat{\omega}] p \quad[x]=\left(\begin{array}{ccc}
0 & -x_{3} & x_{2} \\
x_{3} & 0 & -x_{1} \\
-x_{2} & x_{1} & 0
\end{array}\right)
$$

Solution?

$$
\begin{gathered}
\dot{x}=a x \\
x(t)=e^{a t} x(0)
\end{gathered}
$$

Exponential coordinates cont'd

- Solution to previous

$$
\begin{gathered}
\dot{p}=[\hat{\omega}] p \\
p(t)=\left[\begin{array}{l}
{[\hat{\omega}) t}
\end{array} p(0)\right.
\end{gathered}
$$

Rotation
matrix

$$
[\hat{\omega}] \theta=[\hat{\omega} \theta]=\log R \quad R=e^{[\hat{\omega}] \theta}
$$

- Rodrigues' formula

$$
R(\hat{\omega}, \theta)=e^{(\hat{\omega}] t}=I+\sin \theta[\hat{\omega}]+(1-\cos \theta)[\hat{\omega}]^{2}
$$

Spatial velocity

- Similar to angular velocity, we can define spatial velocity as twist

$$
V=\binom{\omega}{v} \in \mathbb{R}^{6} \quad \text { translational velocity }
$$

- Let's define skew-operator for twist as

$$
[V]=\left(\begin{array}{cc}
{[\omega]} & v \\
0 & 0
\end{array}\right) \in \operatorname{se}(3)
$$

- Transform between frames

$$
V_{a}=\left(\begin{array}{cc}
R_{a b} & 0 \\
{\left[p_{a b}\right] R_{a b}} & R_{a b}
\end{array}\right) V_{b}=\left[A d_{T_{a b}}\right] V_{b}
$$

Exponential coordinates of rigid-body motion

- To define unique twist, let us define screw axis S

$$
S=\binom{\omega}{v} \in \mathbb{R}^{6}
$$

such that

$$
\|\omega\|=1 \text { or }\|v\|=1,\|\omega\|=0
$$

- Analogous to rotations, we can then define exponential coordinates for rigid-body motions

$$
[S] \theta=\log T \in \operatorname{se}(3) \quad T=e^{[S] \theta} \in S E(3)
$$

Re-cap: Forward kinematics

- Forward kinamatics is mapping from joint values to end-effector pose
- Forward kinematics of serial chain can be obtained from product of transformation matrices

$$
T_{04}=T_{01} T_{12} T_{23} T_{34}
$$

- Forward kinematics can also be expressed as product of exponentials

$$
T(\theta)=e^{\left[S_{1}\right] \theta_{1}} \cdots e^{\left[S_{N}\right] \theta_{N}} M
$$

End-effector pose at zero position

Re-cap: Velocity kinematics

- Jacobian: mapping from joint velocities to Cartesian velocities (expressed e.g. as twists)

$$
V=J(\theta) \theta
$$

- Using screw representation of kinematics, i:th column of Jacobian in space frame is

$$
J_{s i}(\theta)=\left[A d_{\left.e^{[s]_{1}, \ldots, \ldots} e^{\left[s, 1, \mid q_{i}\right]}\right]} S_{i}\right.
$$

- Kinematic singularity: Jacobian is not full rank
- Can you name examples?

Re-cap: Forward kinematics

- Fwd kinematics
- Serial chain, product of exponentials
- Jacobian \& body-Jacobian
- Null-space
- Singularities
- Inverse kinematics
- Analytical or numerical

Manipulability and force ellipsoids

- Manipulability ellipsoid: how easily the robot can move in different directions, corresponds to eigenvalue decomposition of $J J^{T}$ -
PCA
- Force ellipsoid: how easily the robot can produce forces in different directions, corresponds to eigenvalue decomposition of $\left(J J^{T}\right)^{-1}$
- What happens to these at a singularity?

Manipulability and force ellipsoids

Force

For next time

- To complement this lecture, read L\&P chapter 5-5.1.4 (also ch. 3 is useful)
- Next time we'll talk about motion planning (ch. 10)

Extra: Series representation of solution of differential equations

$$
\begin{array}{cc}
\dot{x}(t)=a x(t) & \dot{x}(t)=A x(t) \\
x(t)=e^{a t} x(0) & x(t)=e^{A t} x(0) \\
e^{a t}=1+a t+\frac{(a t)^{2}}{2!}+\frac{(a t)^{3}}{3!}+\cdots & e^{A t}=1+A t+\frac{(A t)^{2}}{2!}+\frac{(A t)^{3}}{3!}+\cdots
\end{array}
$$

