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Learning goals

 Understand the idea behind robot learning
 Understand the formulation of dynamic movement primitives: its

. benefits.
. usability.
. etc.
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Introduction:
Background, motivations and challenges

i%‘ii Robots are expected to assist us in our daily life tasks.
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Introduction:
Challenges of robot learning
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Introduction:
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Introduction:
Challenges of robot learning

e How to find?

N~ How to structure?
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Introduction:
Challenges of robot learning

Reinforcement Learning
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Introduction:
Challenges of robot learning

Learning from Human Demonstration

Aalto University
School of Electrical 7.4.2020

Engineering 14



Introduction:
Learning from Demonstration

T hing Separator

B on e R

Teleoperation uses a magnetic tracker attached Kinesthetic guiding uses the robot’s gravity
to the object held by human demonstrator. compensation mode.
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Dynamic Movement Primitives (DMPs)

« Dynamic movement primitives (DMPs): are non-linear dynamic
systems (Stefan Schaal’s lab, 2002, updated in 2013 by Auke ljspeert),
and then updated to include Cartesian space by Abu-Dakka et al. 2015,
then updated to include Symmetric Positive Definite (SPD) matrices by

Abu-Dakka et al. 2020.

« DMPs provide a comprehensive framework for the effective imitation
learning and control of robot movements.
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DMPs

« A DMP for a single degree of freedom trajectory y is defined by a set of
nonlinear differential equations:

[ 12 = a,(B,(g — y) - z)}+ f(x),

Ty = Z,

- 2,70 ot
TX = —yX, Uder
. . ALem
x state variable of the system that makes equation (1) a
time-independent system.
z is a scaled velocity of y. I T R R

7 is the time constant.
o, and B, > 0 define the behavior of the 2" order system.

t>0,a, =4, and a, > 0, the convergence of the underlying dynamic system to a unique
attractor point at y = g, z = 0 is ensured.

lispeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computations, 25(2), 328-373.
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DMPs

Trajectory representation

N =Z§V=,N1wfix)xg—yo, ?mv VYVVY mn
gi(»)c) - exl;—flzf(i— c(l->2>, | - "’M‘!"‘M.’

Alx) is a linear combination of N nonlinear radial time
basis functions, which enable the robot to follow any ‘ O
smooth trajectory from the initial position y, to the
final configuration g.

h,c;and N are width, centers and numbers of Gaussian
functions.

w; weight parameters adopted to reconstruct the recorded
motion. %;; DMP //J\—
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Robustness against perturbation:
Phase stopping

= The time evolution of phase can
also be modulated online.

ot e = |fthe robot cannot follow the
desired motion, a,, |y — y|

Position

Velocity
L] ) L5 ] [ =] {5 ] S o

| becomes large, which in turn
u | makes the phase change x small.
2 i) | ) X
X = — —
N ‘ 1+apx”y_y”

time g ’ ’ til.jlle . g Ty — 1 + apy (:)_, - y)

lispeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S. (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computations, 25(2), 328-373.
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DMPs

Robustness against perturbation:
» Phase stopping

Aalto University
School of Electrical
Engineering



DMPs

Robustness against perturbation: h
] ) . 0.84

* Obstacle Avoidance: Spatial coupling
. = 0.4,
Z2=a,(,(g—y)—2)+ f(x) +C, -
Ty = Z, i)
Spatial Coupling C; = yRy0 exp(—S0) g:

where

((o — y)Ty> 0.5 0
0 = arccos| ——————

lo —yllyl
r=(0-—-y)Xxy. Y,
0 is the angle between 'y and (0 —y) (Obstacle position — Current position)

L v
1

[1] Hoffmann, H., et al (2009). Biologically-inspired dynamical systems for movement generation: Automatic real-time goal adaptation and obstacle avoidance. In International Conference on
Robotics and Automation (pp. 2587-2592). Piscataway, NJ.
[2] ljspeert, A. J., et al (2013). Dynamical movement primitives: Learning attractor models for motor behaviors. Neural Computations, 25(2), 328-373.
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DMPs

Robustness against perturbation:
«  Obstacle Avoidance: Spatial coupling |

AT R S
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DMPs

Movement sequencing
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Geometry-aware DMPs:
Non-Euclidean Space
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Geometry-aware DMPs:
Riemannian Manifolds: Definition

e
Y Saenase

“A smooth topological space that
locally resembles a Euclidean
space (e.g. R4, Sym¢9).”

d
Sty

Aalto University
School of Electrical
Engineering

8.4.2020
27



Geometry-aware DMPs:
Riemannian Manifolds: Tangent space

The metric in the tangent space
Is flat, which allows the use of
classical arithmetic tools.

To operate on tangent spaces, a
mapping system is required to
switch between 7', M and M.

Eilil
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Geometry-aware DMPs:
Riemannian Manifolds: Exponential map
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Geometry-aware DMPs:
Riemannian Manifolds: Logarithmic map

= Log, (h)

 h=Exp,(h)
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Geometry-aware DMPs

Riemannian Manifolds

Parallel Transport
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Zeestraten, Martijn JA, loannis Havoutis, Joao Silvério, Sylvain Calinon, and Darwin G. Caldwell. "An approach for imitation learning on Riemannian manifolds." IEEE Robotics and Automation

Letters 2, no. 3 (2017): 1240-1247
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Geometry-aware DMPs:

Riemannian Manifolds: Parallel Transport

Moves vectors between two tangent
spaces along the geodesic that connects
the tangent bases; thereby maintaining a
constant angle between the vector and
the geodesic.

BFHq(V) : 7-1"M —> TQM

Zeestraten, Martijn JA, loannis Havoutis, Joao Silvério, Sylvain Calinon, and Darwin G. Caldwell. "An approach for imitation learning on Riemannian manifolds." IEEE Robotics and Automation

Letters 2, no. 3 (2017): 1240-1247
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Geometry-aware DMPs:
Riemannian Manifolds

Re-interpretation of basic standard operations in a Riemannian manifold

Euclidean space Riemannian manifold

Subtraction ab=b—a AB = Loga(B)
Addition b=a+ab B = Exp,(AB)
Distance dist(a,b) = ||b — a|| dist(A, B) = ||AB|| A
Interpolation a(t) = a; + taja, A(t) = Expa, (tA;A,)

X. Pennec, P. Fillard, and N. Ayache, “A riemannian framework for tensor computing,” International Journal of Computer Vision, vol. 66, no. 1, pp. 41-66, 2006.
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Geometry-aware DMPS:
Sphere manifold $%: Unit quaternion S3

« Cartesian Space DMPs: in basic DMP equations, direct integration of unit
quaternions (used to represent 3-D orientation) does not ensure that the normal of

quaternions stays equal 1.

™ = a,(B,2log(g, — q) — M) + f,(x), 8, €S> denotes the goal orientation.
1 q = v + u = v — u denotes the
Tq = SN*q, quaternion conjugation.
, d: *qz = (vg +uy) * (V2 + uy)

TX = —QxX, = (v,v; —ufuy) + (vyuy + vu; + Uy X uy)
n € R3 is treated as quaternion with zero
scalar. u

) . arccos(v)—, u#0
The quaternion logarithm log: 3 - R3, log(q) = log(v + u) = [Jull

[0,0,0]T, otherwise

Abu-Dakka, F. J., Nemec, B., Jgrgensen, J. A., Savarimuthu, T. R., Krlger, N., & Ude, A. (2015). Adaptation of manipulation skills in physical contact with the environment to reference force

profiles. Autonomous Robots, 39(2), 199-217.
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Geometry-aware DMPS:
Sphere manifold $%: Unit quaternion S3

Quaternion logarithm can be used to specify the distance metric on the space of unit quaternion
S3 (Ude 1999)
440, Q) = {lllog(ql @I, @@ # —-1+[0,0,0]"
TT, otherwise
Quaternion angular velocity: rotates quaternion q into g, within unit sampling time. Thus only
the application of the logarithmic map provides a proper mapping of the quaternion difference
g, * q onto the angular velocity.
o = 2log(g, — Q)

The logarithmic map becomes one-to-one and continuously differentiable if we limit its domain
to S3/(—1 + [0,0,0]T. Thus, we can define its inverse, i.e. the exponential map R3 — S3, as

r

cos(||r|]) + sin(]||r|]) r+0

exp(r) = Ir]l’
1+ [0,0,0]7, otherwise

[1] Ude, A. (1999). Filtering in a unit quaternion space for model-based object tracking. Robotics and Autonomous Systems, 28(2-3), 163-172.
[2] Abu-Dakka, F.J. et al. (2015). Adaptation of manipulation skills in physical contact with the environment to reference force profiles. Autonomous Robots, 39(2), 199-217.
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Geometry-aware DMPs:
Sphere manifold $%: Unit quaternion S3

* Phase Stopping:

- In the context of Cartesian space.
.1 ~
74 = - (N + apg2log(@ - @) * q
- In the context of force feed back.

. 1
qQ = z(“ - “quqeq(x)) *q

Abu-Dakka, F. J., Nemec, B., Jgrgensen, J. A., Savarimuthu, T. R., Krlger, N., & Ude, A. (2015). Adaptation of manipulation skills in physical contact with the environment to reference force
profiles. Autonomous Robots, 39(2), 199-217.

Aalto University
School of Electrical 7.4.2020
Engineering 36




Geometry-aware DMPs:
Special orthogonal manifold SO(d): Rotation matrix SO(3)

Original formulation

1z =a,(B,(g—y)—2)+ f(x),
Ty = Z,

™ = a,(B,log(R;RT) — 1) + £, (x)
TR = [n]<R

° §V=1 Wi (x;) g R(t + At) = exp (At

Dc_)l(Tﬂj + azn; — azﬁz(log(RgR}r)))

[nlx
T

) R(t)

[1] Ales Ude, Bojan Nemec, Tadej Petric, and Jun Morimoto (2014). Orientation in Cartesian Space Dynamic Movement Primitives. ICRA, 2997-3004, Hong Kong, China.
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Geometry-aware DMPs:
Manifold of Symmetric Positive Definite (SPD) matrices

Define: X € ST, (SPD)

A symmetric matrix is positive definite if xTXx > 0 for all n x 1 vectors, x # 0.

Inertia matrix Stiffness matrix Manipulability matrix

Abu-Dakka, F. J., Ville Kyrki. (2020). Geometry-aware Dynamic Movement Primitives. ICRA 2020.
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Geometry-aware DMPS:

Original formulation

1z =a,(B,(g—y)—2)+ f(x),
Ty = Z,

76 = az(ﬁz vec(IBxﬁxl(LogXl(Xg))) — G) + F(x),
€ = o,

_ i WY, (%)) _
Fx) =—F(x X, = ~
i1 Pi(xp) X(t + At) = Expx(s)
Td—l - az(ﬁz veC(Bxﬁxl(Lngl(Xg))) - G)

Bx,-x(t)(mat(o(t))) 5 t)
T

Abu-Dakka, F. J., Ville Kyrki. (2020). Geometry-aware Dynamic Movement Primitives. ICRA 2020.
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Applications:
Peg-in-Hole

» A classical assembly problem.
* Requires position and force control
« Solutions: e

- Engineering one.

- Learning.
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Applications:
Peg-in-Hole

T84

SR

I

When the robot exerts a
downward force, each
case Described on the
left is changed to the
case (3) or (5),
eventually

A
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Applications:
Peg-in-Hole: Engineering solution

* Engineering solution for PiH

- Approaching phase: Demonstrated trajectory measured using gravity
compensation or teleoperation, and then learned by DMP.
- Detection Phase: Monitor the forces during DMP execution
 Stop if contact established

» Generate downward motion using implicit force control If the contact is not established at
the end of trajectory execution

- Search Phase: Generates new goal positions on the surface.
* Movement is generated by linear DMPs (without non-linear part).
» Hybrid control (force in z direction).
* Monitor changes in forces and height.

- Insertion Phase:
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Applications:

Peg-in-Hole: Engineering solution

Search phase

Randomly generate new goal positions on
the surface.

Movement generation by second-order
linear dynamic systems (DMP without
nonlinear part).

Z=a,B,(g—y)—2)+f
Ty = Z, f(x)=0

Hybrid control (force in z direction) to
maintain contact force with the surface.

Monitor changes in forces and height.

Stochastlc y] [ ]

¢ 1s a random small mcrement.

&
O
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Applications:
Peg-in-Hole: Engineering solution

e Square peg insertion
e  Search for the hole

» Find the point of maximum insertion
without rotating the peg

» Alignment in local Z (align the edge of
the pin with the surface of the base plate)

* Alignment in Z global (align the edge of
the pin with hole)

* Alignmentin Y local

e Insertion
Aalto University
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Applications:
Peg-in-Hole: Engineering solution
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Applications:

Peg-in-Hole: Learning procedure with DMPs

Data Acquisition.

Encode data using Cartesian DMPs for orientation, and original DMPs
for position.

Adapt to a new situation and overcome errors coming from inaccurate
pose estimation and other uncertainties.

Integrate lterative Learning Control to help in a successful peg insertion
iteratively.

Triger phase stopping mechanism to slow down the robot whenever it
sense high forces.

A
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Applications:
Peg-in-Hole: Learning procedure with DMPs

e Slowing Down

- The proposed controller tracks simultaneously the desired position/orientations and

forces/torques.
- Force/torque adaptations requires low gains for stable and robust operation.
- Thus, force adaptation is usually slow.

- Slowing down the trajectory execution using DMP slow-down feedback, whenever the

force/torgue error is above the predefined limit.

el { 0 if |le,|| < max, A |e4]| < max,
el|l =
Il

e, el
. QT
TC = —
1+ apzlel’
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Applications:
Peg-in-Hole: Learning procedure with DMPs

e Control scheme

F.M

Abu-Dakka, F. J., Nemec, B., Jgrgensen, J. A., Savarimuthu, T. R., Kriiger, N., & Ude, A. (2015). Adaptation of manipulation skills in physical contact with the environment to reference force
profiles. Autonomous Robots, 39(2), 199-217.
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Applications:
Peg-in-Hole: Learning procedure with DMPS  nupsiyoutu beiony7sem_ros
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Applications:
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Conclusions

* Robot learning is essential in order to make robots to execute new tasks and avoid
hard-coding.

« Learning from demonstration provides a way friendly to teach robots from human.

« Dynamic movement primitive is one of the imitation learning techniques that can be
used to learn robots from single human demonstration.

* Proposing two solutions for Peg-in-Hole problem: engineering and learning.
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