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Figure 1: Geometry of Pythagoras’ equation a2 + b2 = c2, with x = |a− b|.

MS-A000* Matrix algebra

(4.10.2020 Ville Turunen, Aalto University)

Welcome to the lecture course on linear algebra! We shall treat vectors
and matrices in Euclidean spaces, the spectral theory (eigenvalue decom-
positions) of normal matrices, finally reaching the so-called SVD (Singular
Value Decomposition). Such vector issues will be found everywhere in ad-
vanced mathematics and its applications in engineering and sciences.

Feedback is welcome: please contact ville.turunen@aalto.fi

0. It’s all about geometry and algebra

Vectors are best understood when illustrating the algebraic manipulations
with schematic pictures. For the best learning outcomes, the reader of these
notes should draw his/her own mathematical pictures next to the calcula-
tions. For example, see the picture visualizing Pythagoras’ equation. There,
by the areas of right-angled triangles and squares,

c2 = |a− b|2 + 4
ab

2
= (a2 + b2 − 2ab) + 2ab = a2 + b2.

Thus we get Pythagoras’ equation

a2 + b2 = c2. (1)

Geometry of vectors is based on this! Actually, we may say without exag-
geration that high-dimensional (even infinite-dimensional) calculations can
often be correctly illustrated by just two-dimensional pictures!
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x = (x1, x2)

ϕ = arg(x)
r = |x|

(0, 0)

Figure 2: Polar coordinates (r, ϕ) for point x = (x1, x2) ∈ R2.

1. Real plane and complex numbers

Definition. Let R be the real line. Real plane R2 consists of points

x = (x1, x2),

where x1, x2 ∈ R are the (Cartesian) coordinates of x ∈ R2.

Definition. The polar coordinates

(r, ϕ) = (|x|, arg(x))

of point x = (x1, x2) ∈ R2 satisfy

r :=
√
x2

1 + x2
2;

tan(ϕ) =
x2

x1

if x1 6= 0.

Here r ≥ 0 is distance of x from origin, and the argument ϕ = arg(x) ∈ R is
the angle between positive horizontal axis and interval from O to x.

Remark: the argument ϕ is identified with ϕ+ 2π here.

Example. If x = (
√

3, 1), then x = (2 cos(π/6), 2 sin(π/6)) , since‖x‖ =

√√
3

2
+ 12 = 2,

arg(x) = arctan(1/
√

3) = π/6.
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Figure 3: Arithmetic with complex numbers.

Complex numbers

Definition. Points x = (x1, x2) ∈ R2 can be thought as complex numbers

x = x1 + ix2 ∈ C,

where Re(x) := x1 ∈ R is the real part and Im(x) := x2 ∈ R is the imaginary
part, and i := 0 + i1 is the imaginary unit, and t ∈ R is identified with

t+ i0 ∈ C.

If x, y ∈ C, there are familiar formulas:

x+ y := (x1 + y1) + i(x2 + y2),

x− y := (x1 − y1) + i(x2 − y2),

−x := (−x1) + i(−x2).

Complex conjugate of x = x1 + ix2 ∈ C is

x = x∗ := x1 − ix2 ∈ C.

Absolute value of x ∈ C is (thinking of Pythagoras...)

|x| :=
√
x2

1 + x2
2.

Example. If x = 3 + i and y = 1 + 2i then

x+ y = 4 + 3i,

x− y = 2− i,

x∗ = 3− i,

|x| =
√

32 + 12 =
√

10.
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Figure 4: Triangle Inequality of complex numbers.

Triangle Inequality in C
For x, y ∈ C, there is the triangle Inequality

|x+ y| ≤ |x|+ |y|. (2)

Let’s verify this. First, calculating

(|x|+ |y|)2 − |x+ y|2

= (|x|+ |y|)2 − |(x1 + y1) + i(y1 + y2)|2

=
(
|x|2 + 2 |x| |y|+ |y|2

)
−
(
(x1 + y1)2 + (x2 + y2)2

)
= 2 |x| |y| − 2 (x1 y1 + x2 y2) ,

we need to show that |x| |y| ≥ x1 y1 + x2 y2. Here

|x|2 |y|2 − (x1 y1 + x2 y2)2

= (x2
1 + x2

2)(y2
1 + y2

2)− (x2
1 y

2
1 + 2x1 x2 y1 y2 + x2

2 y
2
2)

= x2
1 y

2
2 + x2

2 y
2
1 − 2x1 x2 y1 y2

= (x1 y2 − x2 y1)2 ≥ 0.

This proved the Triangle Inequality (2).

4



iR

R
1−1

i

−i

x
y

xy

0

Figure 5: Product of complex numbers.

Product of complex numbers

Product xy ∈ C of x, y ∈ C has the natural polar coordinate definition:{
|xy| = |x||y|,
arg(xy) = arg(x) + arg(y).

(3)

Equivalently, in the Cartesian coordinates

xy := (x1y1 − x2y2) + i(x1y2 + x2y1) ∈ C. (4)

Especially,

i2 = (0 + 1i)(0 + 1i) = (0− 1) + i(0 + 0) = −1.

Equivalently,

|i|2 = |i||i| = 1, and

arg(i2) = 2arg(i) = 2π/2 = π.

Example. If x = 4
5

+ 3
5
i, y = 12

13
+ 5

13
i, then

xy =
(48− 15) + i(20 + 36)

65
=

33

65
+

56

65
i.

By the way, here |x| = |y| = 1 = |xy|.

Remark. Always

x∗x = (x1 − ix2)(x1 + ix2)

= x2
1 + x2

2

= |x|2 ≥ 0.
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Figure 6: Triangle Inequality of complex numbers, again.

Another proof of Triangle Inequality

|x+ y|2 = (x+ y)(x+ y)∗

= (x+ y)(x∗ + y∗)

= xx∗ + yy∗ + xy∗ + yx∗

= |x|2 + |y|2 + 2 Re(xy∗)

≤ |x|2 + |y|2 + 2|xy∗|
= |x|2 + |y|2 + 2|x||y|
= (|x|+ |y|)2.

Thus the Triangle Inequality follows by taking square roots:

|x+ y| ≤ |x|+ |y|.
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0
t

Figure 7: Euler’s formula.

Division and powers of complex numbers

Division x
y

= x/y ∈ C of x, y ∈ C (where y 6= 0) satisfies{
|x/y| = |x|/|y|,
arg(x/y) = arg(x)− arg(y).

(5)

Notice that
x

y
=
xy∗

yy∗
=
xy∗

|y|2
.

Example. If x = 4
5

+ 3
5
i and y = 12

13
+ 5

13
i then

x

y
=
xy∗

|y|2
|y|=1
= xy∗ =

(48 + 15) + i(−20 + 36)

65
=

63

65
+

16

65
i.

Example. If n ∈ Z then |zn| = |z|n and arg(zn) = n arg(z).
In case z = cos(t) + i sin(t), we get de Moivre’s formula:

(cos(t) + i sin(t))n = cos(nt) + i sin(nt). (6)

It can also be shown that the following Euler’s formula

eit = cos(t) + i sin(t) (7)

holds, where the complex exponential is defined by the power series

ez :=
∞∑
k=0

1

k!
zk. (8)

This satisfies for instance ew+z = ew ez.

7



u

1
3
u

v

1
2
v

−u

−v

v − u

u− v

u+ v

−u− v

O

Figure 8: Schematic picture of vector operations.

2. Vector spaces

Vectors x = (x1, x2, x3, · · · , xn) are “everywhere”: numbers xk are typically
results of systematic measurements related to various phenomena. To un-
derstand real vectors, we need complex numbers (see Gauss’ Fundamental
Theorem of Algebra, on page 42; also Fourier transform easily takes real
vectors to complex). From now on, let K := R or K := C (real or complex
number field).

Definition. Vector space Kn consists of points

x = (x1, · · · , xn),

where xk ∈ K is the kth (Cartesian) coordinate of x ∈ Kn. Point

O := (0, · · · , 0) ∈ Kn

is the origin. If λ ∈ K and x, y ∈ Kn, let

x+ y := (x1 + y1, · · · , xn + yn),

x− y := (x1 − y1, · · · , xn − yn),

λx := (λx1, · · · , λxn),

−x := (−x1, · · · ,−xn).

Let a, b, x, y ∈ Kn; we identify vectors ~ab and ~xy if b− a = y − x.

Remark! We identify vector ~xy with point y − x ∈ Kn.
How do the vector operations look like? Illustrate these examples:

Example. Points λx, when x = (3, 1), −π ≤ λ ≤ π ≈ 3.14159...

Example. λx+ µy, when λ, µ ∈ {−1, 0, 1}, x = (3, 1), y = (1, 2).
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u

v
O

‖u‖

‖v‖

‖u− v‖

Figure 9: Norms, distances.

Geometry of vectors

Definition. The inner product (or dot product) of u, v ∈ Cn is

〈u, v〉 :=
n∑
k=1

uk vk = u1 v1 + · · ·+ un vn ∈ C. (9)

Notation u · v = 〈u, v〉 is used for u, v ∈ Rn. The norm ‖u‖ ≥ 0 of u ∈ Cn is

‖u‖ := 〈u, u〉1/2 =

(
n∑
k=1

|uk|2
)1/2

= (|u1|2 + · · ·+ |un|2)1/2. (10)

‖u‖2 = 〈u, u〉 can be thought as the “energy” of vector u ∈ Cn. Here,
the number |uk| ≥ 0 is the “distance from the equilibrium” for each index
k ∈ {1, · · · , n}, with the “energy” proportional to the number |uk|2. Then
the sum of such “energies” is the “total energy” ‖u‖2.

Definition. Define the distance between u, v ∈ Cn to be

‖u− v‖ ≥ 0. (11)

Remark. Picture a triangle with vertices at O, u, v ∈ Cn; notice that

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2 Re〈u, v〉.

Definition. Vectors u, v ∈ Cn are orthogonal if

〈u, v〉 = 0 (12)

(and then ‖u− v‖2 = ‖u‖2 + ‖v‖2; remember Pythagoras!).

Idea: 〈u, v〉 “=” ‖u‖‖v‖ cos(α), with α the angle between u, v. Now here
〈u, v〉 = 0 means cos(α) = 0 (when u 6= O 6= v), the case of the orthogonality!

9



u

v

u/‖u‖

v/‖v‖
O

Figure 10: Unit normalizations u/‖u‖ and v/‖v‖ of vectors u 6= O and v 6= O.

Cauchy–Schwarz inequality

Remember: Energy 〈u, u〉 = ‖u‖2 ≥ 0. Can we estimate 〈u, v〉 ∈ C somehow?

Proposition (Cauchy–Schwarz inequality). For every u, v ∈ Cn,

|〈u, v〉| ≤ ‖u‖ ‖v‖. (13)

Proof. We may assume ‖u‖ ‖v‖ > 0 (for otherwise the claim is trivial).
Also, noticing that

〈u, v〉 = ‖u‖ ‖v‖
〈

u

‖u‖
,
v

‖v‖

〉
,

we may assume the unit normalizations ‖u‖ = 1 = ‖v‖, and then just prove
that |〈u, v〉| ≤ 1 (Why this is enough? Think!). Indeed, now

|〈u, v〉| =

∣∣∣∣∣
n∑
k=1

uk vk

∣∣∣∣∣
(2)

≤
n∑
k=1

|uk| |vk|

(?)

≤
n∑
k=1

|uk|2 + |vk|2

2
=

‖u‖2 + ‖v‖2

2

‖u‖=1=‖v‖
= 1.

Above, inequality (?) holds because 0 ≤ (|uk| − |vk|)2. QED
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Figure 11: Triangle Inequality of vectors.

Triangle Inequality (Corollary to Cauchy–Schwarz)

Triangle Inequality. For all u, v ∈ Cn,

‖u+ v‖ ≤ ‖u‖+ ‖v‖. (14)

Proof. By an application of Cauchy–Schwarz (13),

‖u+ v‖2 = 〈u+ v, u+ v〉
= 〈u, u〉+ 〈u, v〉+ 〈v, u〉+ 〈v, v〉
= ‖u‖2 + 2 Re〈u, v〉+ ‖v‖2

(13)

≤ ‖u‖2 + 2 ‖u‖ ‖v‖+ ‖v‖2

= (‖u‖+ ‖v‖)2. QED

Example. Let x = London, y = Paris, z = Rome.
For u = x− y and v = y − z, the Triangle Inequality (14) then says:

‖x− z‖ ≤ ‖x− y‖+ ‖y − z‖.

The “distance from x to z” is at most the “distance from x via y to z.”
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O

u

v

u+ v

‖u‖

‖u‖

‖v‖
‖v‖

‖u+ v‖
‖u− v‖

For a parallelogram in Cn,
the sum of the squares of the diagonals
= the sum of the squares of the edges.

Figure 12: Parallelogram identity: ‖u+ v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2.

Polarization and parallelogram identities

The norm was defined by the inner product. Actually, the inner product can
be recovered from the norm:

Exercise. Prove the polarization identity

4 〈u, v〉 = ‖u+ v‖2 − ‖u− v‖2 + i‖u+ iv‖2 − i‖u− iv‖2, (15)

where u, v ∈ Cn. Especially, notice that here

4 Re〈u, v〉 = ‖u+ v‖2 − ‖u− v‖2,

Im〈u, v〉 = Re〈u, iv〉.

Exercise. Prove the parallelogram identity for vectors u, v ∈ Cn:

‖u+ v‖2 + ‖u− v‖2 = 2 ‖u‖2 + 2 ‖v‖2. (16)

Draw a parallelogram in a plane, with vertices at O, u, v, u + v ∈ R2: are
‖u+ v‖, ‖u− v‖, ‖u‖, ‖v‖ connected to the distances between these vertices?
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u× v ∈ R3

v ∈ R3

u ∈ R3

O
α

Figure 13: Cross product.

Cross product in R3

The cross product u× v ∈ R3 of vectors u, v ∈ R3 is

u× v := (u2 v3, u3 v1, u1 v2)− (u3 v2, u1 v3, u2 v1). (17)

Equivalent geometric definition for the cross product:

1. 〈u, u× v〉 = 0 = 〈v, u× v〉;

2. ‖u× v‖ = ‖u‖‖v‖ sin(α), with α the angle between u, v.

3. The vector triple (u, v, u× v) has right-handed orientation.

Application 1. ‖u × v‖ is the area of the parallelogram with vertices at
O, u, v, u+ v ∈ R3.

Application 2. |〈u× v, w〉| is the volume of the polytope with vertices at
O, u, v, w, u+ v, u+ w, v + w, u+ v + w ∈ R3.

Application 3. (q − p) × (r − p) is a normal vector to a plane S ⊂ R3 if
p, q, r ∈ S form a non-degenerate triangle.
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Nice to know: vector subspaces, dimension

Definition. Subset V ⊂ Kn is called a vector subspace if

(1) O ∈ V ,

(2) x+ y ∈ V whenever x, y ∈ V , and

(3) λx ∈ V whenever λ ∈ K and x ∈ V .

The span of vectors S1, · · · , Sk ∈ Kn is the vector subspace

Zk = span{Sj}kj=1 :=

{
k∑
j=1

λjSj ∈ Kn : λ1, · · · , λk ∈ K

}
.

For example,
Z1 = KS1 = {λ1S1 : λ ∈ K} ⊂ Kn

(this is a line or the origin), and

{O} ⊂ Z1 ⊂ Z2 ⊂ · · · ⊂ Zk−1 ⊂ Zk ⊂ Kn.

The dimensions are dim(Kn) = n and dim({O}) = 0; if here Zj+1 6= Zj, then

dim(Zj+1) = 1 + dim(Zj).

Hence
0 ≤ dim(Zk) ≤ k.

Vectors S1, · · · , Sk are linearly independent if dim(Zk) = k (otherwise they
are called linearly dependent).

Note. The dimension depends on the scalar field K: The complex number
field C has dimension 1 as a complex vector space. If C is identified as the
real plane R2, then it has dimension 2 as a real vector space. That is,

dim(C) = 1 < 2 = dim(R2).

Similarly,
dim(Cn) = n < 2n = dim(R2n),

where we understand Cn to be a complex vector space, even if sometimes it
might be identified with the real vector space R2n.
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Nice to know: Gram–Schmidt orthonormalization

Definition. Vectors U1, · · · , Uk ∈ Kn are orthonormal if for all j, ` ∈
{1, · · · , k}

〈Uj, U`〉 =

{
1 when j = `,

0 when j 6= `.

Gram–Schmidt algorithm. Let vectors S1, · · · , Sk ∈ Kn be linearly inde-
pendent. The Gram–Schmidt process finds orthonormal vectors U1, · · · , Uk ∈
Kn as follows: Let

U1 := S1/‖S1‖, (18)

and for j ≥ 2 then

Uj :=
Vj
‖Vj‖

, (19)

where

Vj := Sj −
j−1∑
`=1

〈Sj, U`〉U`. (20)

Notice that for all d ∈ {1, · · · , k} here

span{S1, · · · , Sd} = span{U1, · · · , Ud}.

Remark. This Gram–Schmidt process is numerically unstable (round-off
errors accumulate), but there are ways to stabilize the process.

Example. Vectors S1 =

[
3
4

]
and S2 =

[
10
−5

]
give

U1 =

[
3
4

]
1√

32 + 42
=

[
3/5
4/5

]
,

and then

V2 =

[
10
−5

]
− 〈
[

10
−5

]
,

[
3/5
4/5

]
〉
[
3/5
4/5

]
=

[
10
−5

]
− 2

[
3/5
4/5

]
=

[
44/5
−33/5

]
,

so that

U2 =
V2

‖V2‖
=

[
4/5
−3/5

]
.
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Kn :

v

u

λu

u+ v
O

A−→
Km :

A(v)

A(u)

A(λu) = λA(u)

A(u+ v) = A(u) + A(v)

O = A(O)

Figure 14: Idea of a linear mapping A : Kn → Km.

3. Linear functions, linear equations

Function A : Kn → Km is linear if

A(u+ v) = A(u) + A(v),

A(λu) = λA(u)

for all λ ∈ K and u, v ∈ Kn. Then we often write

Au := A(u).

Equivalently, function A : Kn → Km is linear if and only if its graph G(A) is
a vector subspace of Kn ×Km ∼= Kn+m, where

G(A) := {(u,A(u)) : u ∈ Kn} .

Generic example. Define function A : Kn → Km by

(A(u))j :=
n∑
k=1

Ajk uk, (21)

where matrix elements Ajk ∈ K for each j ∈ {1, · · · ,m} and k ∈ {1, · · · , n}.
Then A is linear. Actually, this example is surprisingly(?) general, as we
shall soon see.

Trivial example. We identify numbers x ∈ R with vectors (x) ∈ R1. In
this sense, function f : R → R is linear if and only if f(x) = ax for some
a ∈ R. Then the graph G(f) = {(x, f(x)) : x ∈ R} described by the
equation y = f(x) is a line through the origin (0, 0) of the (x, y)-plane, and
this line has the slope a.
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i = (1, 0, 0) = I1

j = (0, 1, 0) = I2

k = (0, 0, 1) = I3

O
i = (1, 0) = I1

j = (0, 1) = I2

O

Figure 15: Standard basis vectors of R3 and R2, respectively.

Norm. The norm of linear A : Kn → Km is the number

‖A‖ := max
u∈Kn:‖u‖≤1

‖Au‖ = max
u∈Kn,w∈Km:‖u‖,‖w‖≤1

|〈Au,w〉|. (22)

Then clearly ‖Av‖ ≤ ‖A‖ ‖v‖ for all v ∈ Kn.

Idea here: Linear functions treat vector operations nicely. Norm measures
the size of the mapping A (that is, how much A can stretch vectors in the
extreme case).

Standard basis vectors

Definition. Standard basis vectors I1, · · · , In ∈ Kn are defined by

Ijk :=

{
1 if j = k,

0 if j 6= k.

For example, I1, I2, I3 ∈ K3 are
I1 = (1, 0, 0) = i,

I2 = (0, 1, 0) = j,

I3 = (0, 0, 1) = k.

Vectors u = (u1, · · · , un) ∈ Kn can then be written

u =
n∑
k=1

uk Ik,

which we shall use in the sequel. Example:

(9, 7, 5) = 9(1, 0, 0) + 7(0, 1, 0) + 5(0, 0, 1).
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Matrix [A] of linear function A

Let A : Kn → Km be linear. Let I1, · · · , In ∈ Kn be the standard basis
vectors. If u = (u1, · · · , un) ∈ Kn then Au ∈ Km, and

u =
n∑
k=1

uk Ik,

Au
A linear

=
n∑
k=1

uk A(Ik),

where A(Ik) ∈ Km. Let Ajk := (A(Ik))j ∈ K. Then matrix

[
A
]

:=


A11 A12 · · · A1n

A21 A22 · · · A2n
...

... · · · ...
Am1 Am2 · · · Amn

 ∈ Km×n

(with m rows, n columns) has all the information about linear function

A : Kn → Km,

as

(Au)j =
n∑
k=1

Ajk uk. (23)

In the sequel, we shall always identify

vector u = (u1, · · · , un) ∈ Kn with matrix [u] =

u1
...
un

 ∈ Kn×1.

We shall identify linear mapping A : Kn → Km with its matrix [A] ∈ Km×n.
Notice that the kth column Ak ∈ Km×1 of matrix [A] = [A1 · · · An] ∈ Km×n

is then

Ak =


A1k

A2k
...

Amk

 = [A(Ik)] ∈ Km×1,

which is identified with the vector A(Ik) = (A1k, A2k, · · · , Amk) ∈ Km. Es-
pecially, the standard basis vectors I1, · · · , In ∈ Kn for the so-called identity
matrix [I] = [I1 · · · In] ∈ Kn×n, for which Iu = u for all u ∈ Kn.
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Kn :

I1

In

O

A−→
Km :

A1 = A(I1)

An = A(In)

O = A(O)

Figure 16: Matrix [A] = [A1 · · ·An] ∈ Km×n of linear mapping A : Kn → Km.

Example. Let A : R3 → R2 be defined by

A(u) := (2u1 + 3u2 + 4u3, 5u1 + 6u2 + 7u3). (24)

Then A is linear, and its matrix [A] ∈ R2×3 is

[A] =

[
2 3 4
5 6 7

]
.

The matrix notation for (24) would be

[
Au
]

=
[
A
] [
u
]

=

[
2 3 4
5 6 7

]u1

u2

u3


=

[
2u1 + 3u2 + 4u3

5u1 + 6u2 + 7u3

]
.

For instance, if u = (−1,−2,−3) ∈ R3, then

[Au] = [A][u] =

[
2 3 4
5 6 7

]−1
−2
−3


=

[
2(−1) + 3(−2) + 4(−3)
5(−1) + 6(−2) + 7(−3)

]
=

[
−20
−38

]
,

meaning that
Au = (−20,−38) ∈ R2.

We shall calculate the norm ‖A‖ later.
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Matrices can be read from inner products: If A : Kn → Km is linear
and v ∈ Km, then

〈Au, v〉 =
m∑
j=1

(Au)j vj =
m∑
j=1

n∑
k=1

Ajk uk vj.

Thus if I = [I1 I2 I3 · · · ] denotes the identity matrix of any dimension, if
u = Ik ∈ Kn and v = Ij ∈ Km, then

〈Au, v〉 = Ajk. (25)

So, if we know all the inner products 〈Au, v〉 ∈ K for all u ∈ Kn and v ∈ Km,
we know all the matrix elements Ajk ∈ K.

Remark. Next we see that already the inner products 〈Au, u〉 are enough
to determine A ∈ Kn×n when u ∈ Cn (but not when u ∈ Rn).
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I1

I2
A1 =

[
cos(ϕ)
sin(ϕ)

]
A2 =

[
− sin(ϕ)
cos(ϕ)

]
O

ϕ A = [A1 A2] =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
.

Identity matrix I = [I1 I2] =

[
1 0
0 1

]
.

Figure 17: Rotation A ∈ R2×2 by angle ϕ around the origin.

Weak formulation of linear mappings

Weak Formulation Theorem. Let A,B ∈ Cn×n. Then A = B if

〈Au, u〉 = 〈Bu, u〉 for all u ∈ Cn. (26)

Proof. Let u, v, w ∈ Cn, λ ∈ C, and Cw = (A−B)w = Aw −Bw. Here

〈Cw,w〉 = 〈(A−B)w,w〉 = 〈Aw −Bw,w〉 = 〈Aw,w〉 − 〈Bw,w〉 = 0

so that

0
0=〈Cw,w〉

= λ 〈C(u+ λv), u+ λv〉
0=〈Cw,w〉

= |λ|2〈Cu, v〉+ λ2〈Cv, u〉.

Plug in λ ∈ {1, i} to get the following pair of equations:{
0 = 〈Cu, v〉+ 〈Cv, u〉,
0 = 〈Cu, v〉 − 〈Cv, u〉.

Clearly, 〈Cu, v〉 = 0 for all u, v ∈ Cn. So Aw−Bw = Cw = O for all w ∈ Cn.
Thus A = B. QED

Remark. Complex numbers are needed in (26). If we only had 〈Au, u〉 =
〈Bu, u〉 for all u ∈ Rn, we still could have A 6= B. For example,

A =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
rotates R2 by angle ϕ ∈ R around the origin. Then for all u ∈ R2

〈Au, u〉 = cos(ϕ) ‖u‖2,

which does not identify A when | cos(ϕ)| < 1.
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Kn :

x
y = tx+ (1− t)z

z

O

A−→ Km : b = Ax = Ay = Az

A(O) = O

Figure 18: Linear equation Ax = b may have infinitely many solutions: If
Ax = b = Az and x 6= z then all the points y in the line passing through x
and z are also solutions, as A(tx+ (1− t)z) = . . . = b for all t ∈ K.

4. Linear equations, Gauss elimination

For b ∈ Km and linear A : Kn → Km, the linear equation

Ax = b, (27)

can have 0 or 1 or infinitely many solutions x ∈ Kn.

Remark: While the real-world problems are typically non-linear, they of-
ten can be locally approximated by linear equations with a good accuracy.

Matrix formulation. Linear equation Ax = b can be written by matrices:

[A][x] = [b], (28)

that is


A11 A12 . . . A1n

A21 A22 . . . A2n
...

... . . .
...

Am1 Am2 . . . Amn



x1

x2
...
xn

 =


b1

b2
...
bm

 , (29)

equivalently


A11x1 + A12x2 + . . .+ A1nxn = b1,

A21x1 + A22x2 + . . .+ A2nxn = b2,
...

Am1x1 + Am2x2 + . . .+ Amnxn = bm.

(30)
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Rn :
x

O

A2 · x = b2

A1 · x = b1

A−→ Rm : b = Ax

A(O) = O

Figure 19: Linear equation Ax = b, with solutions x at the intersection of
hypersurfaces A1 · x = b1 and A2 · x = b2.

Geometric interpretation

Let us consider geometric interpretation of linear equations in real vector
spaces. In Problem (30), the equation

Aj1x1 + Aj2x2 + . . .+ Ajnxn = bj

can be written as the hypersurface equation

Aj · x = bj

in Rn, where Aj = (Ajk)
n
k=1 = (Aj1, Aj2, · · · , Ajm) ∈ Rn. In other words,

such a hypersurface is the subset Sj ⊂ Rn, where

Sj := {x ∈ Rn : Aj · x = bj} .

That is, the problem Ax = b has solutions in the intersection S ⊂ Rn of
hypersurfaces S1, S1, · · · , Sm, i.e.

S := {x ∈ Rn : Aj · x = bj for all j ∈ {1, · · · ,m}} .

So the linear problem has either 0 or 1 or infinitely many solutions:
(0) zero solutions if S is empty,
(1) one solution x if S = {x} (S has just one point x),
(∞) infinitely many solutions if S contains at least two different points x
and z (and then S contains the infinite line passing through x and z).

Remark: Without harm, the linear problem Ax = b can be abbreviated
by

[
A | b

]
, that is


A11 A12 . . . A1n | b1

A21 A22 . . . A2n | b2
...

... . . .
... | ...

Am1 Am2 . . . Amn | bm

 .
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R2 :

x = (3,−1)
O

(2, 5) · x = 1

(4, 3) · x = 9

Figure 20: In the example here, the linear equation [A][x] = [b] has a unique
solution x = (3,−1) at the intersection of hyperspaces (2, 5) · x = 1 and
(4, 3) · x = 9 (which are lines in the plane, in this case).

Gauss eliminations

Example. [Clumsy version on the left; matrix version on the right:]{
2x1 + 5x2 = 1,

4x1 + 3x2 = 9
or

[
2 5 | 1
4 3 | 9

]
{

2x1 + 5x2 = 1,

−7x2 = 7
or ∼

[
2 5 | 1
0 −7 | 7

]
{

2x1 = 6,

−7x2 = 7
or ∼

[
2 0 | 6
0 −7 | 7

]
{
x1 = 3,

x2 = −1
or ∼

[
1 0 | 3
0 1 | −1

]
.

So the solution is x = (x1, x2) = (3,−1). (Check!)
Geometric interpretation: this is the intersection of lines!
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Sometimes no solutions

Example.
2x1 + 3x2 + 4x3 = 2,

4x1 + 3x2 + 2x3 = 6,

6x1 + 6x2 + 6x3 = 9

or

2 3 4 | 2
4 3 2 | 6
6 6 6 | 9




2x1 + 3x2 + 4x3 = 2,

−3x2 − 6x3 = 2,

−3x2 − 6x3 = 3

or ∼

2 3 4 | 2
0 −3 −6 | 2
0 −3 −6 | 3




2x1 + 3x2 + 4x3 = 2,

−3x2 − 6x3 = 2,

0 = 1

or ∼

2 3 4 | 2
0 −3 −6 | 2
0 0 0 | 1

 ;

equation 0 = 1 is false; more precisely, the last row in the last matrix reads

0x1 + 0x2 + 0x3 = 1,

which is a contradiction! So the original problem2 3 4
4 3 2
6 6 6

x1

x2

x3

 =

2
6
9


has no solution! Geometric interpretation:
the original three (hyper)planes had empty intersection!
In this example, each pair of the original (hyper)planes has an infinite line
intersection (check this!).
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Sometimes infinitely many solutions

Example. Ethanol C2H5OH burns (combusts with oxygen O2), producing
carbon dioxide CO2 and water vapor H2O: the reaction is

(x1) C2H5OH + (x2) O2 → (x3) CO2 + (x4) H2O,

where x1, x2, x3, x4 ∈ Z+. Conservation of atoms C,H,O:
2x1 − 1x3 = 0,

6x1 − 2x4 = 0,

1x1 + 2x2 − 2x3 − 1x4 = 0

or

2 0 −1 0 | 0
6 0 0 −2 | 0
1 2 −2 −1 | 0




2x1 − 1x3 = 0,

+3x3 − 2x4 = 0,

2x2 − 3
2
x3 − 1x4 = 0

∼

2 0 −1 0 | 0
0 0 3 −2 | 0
0 2 −3/2 −1 | 0




2x1 − 1x3 = 0,

2x2 − 3
2
x3 − 1x4 = 0,

+3x3 − 2x4 = 0

∼

2 0 −1 0 | 0
0 2 −3/2 −1 | 0
0 0 3 −2 | 0




2x1 − 2
3
x4 = 0,

+2x2 − 2x4 = 0,

+3x3 − 2x4 = 0

∼

2 0 0 −2
3
| 0

0 2 0 −2 | 0
0 0 3 −2 | 0


We obtain

1x1 − 1
3
x4 = 0,

+1x2 − 1x4 = 0,

+1x3 − 2
3
x4 = 0

or

1 0 0 −1
3
| 0

0 1 0 −1 | 0
0 0 1 −2

3
| 0

 .
When x4 = 3t ∈ R, we get

x = (x1, x2, x3, x4)

= (t, 3t, 2t, 3t) ∈ R4,

where t ∈ R (infinitely many solutions!). The smallest xj ∈ Z+ are

x = (1, 3, 2, 3),

so that the reaction formula is

C2H5OH + 3 O2 → 2 CO2 + 3 H2O.

(Check!) Geometric interpretation:
The intersection of the original hypersurfaces in R4 is the line{

(t, 3t, 2t, 3t) ∈ R4 : t ∈ R
}
.
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Example. Let us find solutions x = (x1, x2, x3) ∈ R3 to
2x1 + 2x2 + 2x3 = 2

2x1 + 3x2 + 4x3 = 2

3x1 + 6x2 + 9x3 = 3

. (31)

For instance, the Gauss elimination could be2 2 2 | 2
2 3 4 | 2
3 6 9 | 3

 ∼

2 2 2 | 2
0 1 2 | 0
0 3 6 | 0


∼

2 2 2 | 2
0 1 2 | 0
0 0 0 | 0


∼

2 0 −2 | 2
0 1 2 | 0
0 0 0 | 0


∼

1 0 −1 | 1
0 1 2 | 0
0 0 0 | 0

 .
Here, if we put x3 = t ∈ R, then

x = (t+ 1,−2t, t) ∈ R3. (32)

Hence the solutions form a 1-dimensional real line in the 3-dimensional real
vector space R3.

Example. Let us find solutions x = (x1, x2, x3) ∈ C3 to (31) in the previous
example. Nothing changes in the Gauss elimination. If we put x3 = t ∈ C,
then we obtain

x = (t+ 1,−2t, t) ∈ C3. (33)

Hence the solutions form a 1-dimensional “complex line” in the 3-dimensional
complex vector space C3.

Remark: Apparently, solving linear equations is pretty similar in the cases
of real or complex scalars. This is obvious by the previous two examples
above. We may always think that the real case is just a special instance
of the complex case. Indeed, later during this course, when we consider
eigenvalue equations Au = λu for real matrices A ∈ Rn×n, it often turns
out that we actually need to treat also complex scalars λ ∈ C and complex
vectors u ∈ Cn! Likewise, a linear mapping B : Rn → Rm could uniquely be
interpreted as a linear mapping B : Cn → Cm, and sometimes this helps!
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Gauss elimination process in nutshell

What happens in the Gauss elimination? Write linear equation Ax = b as
the matrix [

A | b
]
,

on which we apply row operations (here row = equation):

1. add weighted row to another row;

2. exchange order of two rows;

3. multiply a row by a constant λ 6= 0;

If we get from Ax = b another linear problem Cx = d, we denote[
A | b

]
∼

[
C | d

]
.

Our goal is a matrix [C], where

1. next row should not have less initial zeros than the row above;

2. each column has at most one non-zero entry µ
(and you may still normalize the row with division by µ).

Write solution(s) in form

x = (x1, . . . , xn) = . . .

(or show that there are no solutions!)

Remark! When finding solution candidates x,
it is best to check that really

Ax = b.
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Kn :

u

O

A−→
Km :

Au

AO = O

B−→
Kp :

BAu

BO = O

Figure 21: Composing linear mappings A : Kn → Km and B : Km → Kp

gives a linear mapping BA := B ◦ A : Km → Kp.

5. Matrix product [B][A] = [BA],

matrix inversion [A]−1 = [A−1]

Let A,B be linear such that

Kn A→ Km B→ Kp.

Then Kn BA→ Kp is linear, and we define matrix product

[B] [A] := [BA] ∈ Kp×n.

Now

(BA)ij =
m∑
k=1

Bik Akj, (34)

because

(BAu)i =
m∑
k=1

Bik (Au)k =
m∑
k=1

Bik

n∑
j=1

Akj uj =
n∑
j=1

(
m∑
k=1

Bik Akj

)
uj.

Remark. Let A,B be linear, where{
A : Kn1 → Km1 ,

B : Kn2 → Km2 .

For BA to be defined, we must have

m1 = n2.

Thus [B][A] := [BA] is defined only if the number of columns in [B] is the
number of rows in [A]. Then we have the norm estimate

‖BA‖ ≤ ‖B‖ ‖A‖, (35)

because ‖BAu‖ ≤ ‖B‖ ‖Au‖ ≤ ‖B‖ ‖A‖ ‖u‖.
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Example. Let

[B] =

9 8
7 6
5 4

 and [A] =

[
−1 −2
−3 −4

]
.

Now A : R2 → R2 and B : R2 → R3,
so A+B, AB and BB cannot be defined. Similarly,
we cannot compute [A] + [B] = [A+B],
we cannot compute [A][B] = [AB],
we cannot compute [B][B] = [BB]!
But BA : R2 → R3 and A2 = AA : R2 → R2 can be defined, and

[B][A] =

9(−1) + 8(−3) 9(−2) + 8(−4)
7(−1) + 6(−3) 7(−2) + 6(−4)
5(−1) + 4(−3) 5(−2) + 4(−4)

 =

−33 −50
−25 −38
−17 −26

 ,

[A]2 := [A][A] =

[
−1 −2
−3 −4

] [
−1 −2
−3 −4

]
=

[
(−1)(−1) + (−2)(−3) (−1)(−2) + (−2)(−4)
(−3)(−1) + (−4)(−3) (−3)(−2) + (−4)(−4)

]
=

[
7 10
15 22

]
.
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R :

x y

f−→
S :

f(x)

f(y)

Figure 22: Injective function f : R → S does not destroy information! If
x 6= y for x, y ∈ R and f : R→ S injective then f(x) 6= f(y).

Properties of functions

Informally, function f : R→ S between sets R, S is a rule that on each input
x ∈ R produces an output f(x) ∈ S.

The f -image f(Q) ⊂ S of a subset Q ⊂ R is

f(Q) = {f(x) : x ∈ Q}.

Function f : R→ S is

• injective provided that f(x) = f(y) only if x = y ∈ R;

• surjective if f(R) = S (that is, the f -image covers S completely);

• bijective if it is both injective and surjective. In this case, f : R → S
has the inverse function f−1 : S → R, where

f(x) = u

⇐⇒ x = f−1(u).

What if here R, S are vector spaces and f : R→ S is linear?
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Kn :

x = A−1(u)

y = A−1(v)

O = A−1(O)

A−→

B=A−1

←−

Km :

u = Ax

v = Ay

O = AO

Figure 23: Inverse function B = A−1 of a linear bijection A : Kn → Km is
automatically linear, and then also m = n.

Bijective linear functions

Theorem. Let A : Kn → Km be a linear bijection. Then

A−1 : Km → Kn is linear,

and m = n.

Proof. Let us denote B = A−1, and let u, v ∈ Km, λ ∈ K. Then u = A(x)
and v = A(y) for some x, y ∈ Kn, and linearity of B follows:

B(u+ v) = B(A(x) + A(y))

= B(A(x+ y))

= x+ y

= B(u) +B(v),

B(λu) = B(λA(x))

= B(A(λx))

= λx

= λB(u).

Notice that the origin x = O ∈ Kn is the unique solution to A(x) = O ∈ Km;
the solution could not be unique if m < n (here A(x) = O is a system of m
equations with n unknown variables x1, · · · , xn ∈ K). Hence

m ≥ n.

But symmetrically n ≥ m: here u = O ∈ Km is the unique solution to

A−1(u) = O ∈ Kn.

QED
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Inverse matrix [A]−1 = [A−1]

Let I = (x 7→ x) : Kn → Kn be the identity function. If A,B,C : Kn → Kn

are linear and BA = I = AC then B = C = A−1, because

B = BI = B(AC) = (BA)C = IC = C.

Let A : Kn → Kn be a linear bijection; we know that then A−1 : Kn → Kn

is also a linear bijection. Then the inverse matrix of A is defined to be the
matrix of A−1, that is

[A]−1 := [A−1],

and we say that [A] is invertible: here

‖A‖−1 ≤ ‖A−1‖,

because 1 = ‖I‖ = ‖A−1A‖ ≤ ‖A−1‖ ‖A‖.
Finding X = A−1 means solving a linear equation

AX = I,

which can be done by the Gauss elimination

[A|I] ∼ . . . ∼ [I|X] = [I|A−1].

Example. [I]−1 = [I−1] = [I], that is:

[
1
]−1

=
[
1
]
,

[
1 0
0 1

]−1

=

[
1 0
0 1

]
,

1 0 0
0 1 0
0 0 1

−1

=

1 0 0
0 1 0
0 0 1

 , . . .
Example. 3 0 0

0 −4 0
0 0 5

−1

=

1
3

0 0
0 −1

4
0

0 0 1
5

 .
Example. If A =

[
2 1
5 3

]
and B =

[
3 −1
−5 2

]
then B = A−1:

[
2 1
5 3

] [
3 −1
−5 2

]
=

[
2(3) + 1(−5) 2(−1) + 1(2)
5(3) + 3(−5) 5(−1) + 3(2)

]
=

[
1 0
0 1

]
= I,

[
3 −1
−5 2

] [
2 1
5 3

]
=

[
3(2)− 1(5) 3(1)− 1(3)
−5(2) + 2(5) −5(1) + 2(3)

]
=

[
1 0
0 1

]
= I.
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Example. Let [A] =

[
2 1
5 3

]
. Then

[
A | I

]
=

[
2 1 | 1 0
5 3 | 0 1

]
∼

[
2 1 | 1 0
0 1

2
| −5

2
1

]
∼

[
2 0 | 6 −2
0 1

2
| −5

2
1

]
∼

[
1 0 | 3 −1
0 1 | −5 2

]
=

[
I | X

]
.

Thus [A]−1 = [X] =

[
3 −1
−5 2

]
.

Remark! It is good to check that [X] is the inverse matrix to [A]:

[A][X] = . . . = [I], [X][A] = . . . = [I].

(It is enough to check only [A][X] or [X][A] — why?).

Example. Let us try to find the inverse to [A] =

1 2 3
4 5 6
7 8 9

:

[
A | I

]
=

1 2 3 | 1 0 0
4 5 6 | 0 1 0
7 8 9 | 0 0 1


∼

1 2 3 | 1 0 0
0 −3 −6 | −4 1 0
0 −6 −12 | −7 0 1


∼

1 2 3 | 1 0 0
0 −3 −6 | −4 1 0
0 0 0 | 1 −2 1

 .
The equations in the last row are now

0 = 1, 0 = −2, 0 = 1

which is clearly false! The reason is that here matrix [A] ∈ R3×3 is not
invertible, i.e. linear function A : R3 → R3 is not bijective!
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Exercise. Let A,B,C,D,E ∈ Cn×n. Let I ∈ Cn×n be the identity matrix
(that is, Iv = v for all v ∈ Cn×1).

(a) Assume that AB = I = CA. Show that B = C.
(Of course, this means that B = C = A−1.)

(b) Assume now that I−DE is invertible. Show that then matrix I−ED
has inverse F := I + E(I −DE)−1D.
(Hint: calculate that (I − ED)F = · · · = I, so that by (a) we have...)
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I1

In

O

Q A−→

A1 = A(I1)

An = A(In)
A(Q)

AO = O

Figure 24: Let A : Rn → Rn be linear. Let Q = [0, 1]n ⊂ Rn be the unit
cube. Then |det[A]| ≥ 0 is the volume of the polyhedron A(Q) ⊂ Rn, and
det[A] < 0 would mean flipping the orientation.

6. Determinant

The determinant
det[A] ∈ K

of a matrix [A] ∈ Kn×n describes geometric information about the linear
function A : Kn → Kn. If a subset S ⊂ Kn has n-dimensional volume 1 then:

• A(S) ⊂ Kn has n-dimensional volume |det[A]|.

• When K = R: if det[A] < 0 then A(S) is a “mirror image” of S;
if det[A] > 0 then A(S) and S have the same orientation.

We shall need four laws (L1,L2,L3,L4) to find determinants:

(L1) det[I] = 1 for identity matrix [I] ∈ Kn×n.

(L2) If one column is multiplied by λ ∈ K, then det is multiplied by λ.

(L3) If matrix has two same columns then determinant is 0.

(L4) Let Xj be the jth column of X = [X1 · · · Xn] ∈ Kn×n.
If Ck = Ak +Bk and Cj = Aj = Bj whenever j 6= k
then det[C] = det[A] + det[B].

Example. For [A] =

2 0 0
0 3 0
0 0 5

, laws (L1,L2) yield

det[A] = det

2 0 0
0 3 0
0 0 5

 (L2)
= 2 · 3 · 5 · det

1 0 0
0 1 0
0 0 1

 (L1)
= 2 · 3 · 5 = 30.

(This matrix [A] here stretches the standard basis by the respective factors
2, 3, 5, thus strecthing the 3-dimensional volumes by the factor 2 · 3 · 5 = 30.)
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I1 =

[
1
0

]
[
0
1

]
= I2

[
0
0

]
= O

[
1
1

]
= I1 + I2

Q
A=

a b
c d


−→

A1 = A(I1) =

[
a
c

]
A2 = A(I2) =

[
b
d

]
A(I1 + I2) = A1 + A2 =

[
a+ b
c+ d

]

A(Q)

O = AO

Figure 25: Matrix [A] ∈ R2×2 maps the unit cube (the usual unit square) Q =
[0, 1]2 = {x = (x1, x2) ∈ R2 : x1, x2 ∈ [0, 1]} to the parallelogram A(Q) ⊂ R2,
which has the 2-dimensional volume (or the usual area) |det[A]| ≥ 0.

Law (L5) (Corollary to (L3,L4)). Sign of det changes by interchanging
two columns!

Proof: It is enough to check the 2-dimensional case:

0
(L3)
= det

[
a+ b a+ b
c+ d c+ d

]
(L4)
= det

[
a a+ b
c c+ d

]
+ det

[
b a+ b
d c+ d

]
(L4)
= det

[
a a
c c

]
+ det

[
a b
c d

]
+ det

[
b a
d c

]
+ det

[
b b
d d

]
(L3)
= +det

[
a b
c d

]
+ det

[
b a
d c

]
. QED

Example: The general computation for the 2-dimensional case is

det

[
a b
c d

]
(L4)
= det

[
a b
0 d

]
+ det

[
0 b
c d

]
(L4)
= det

[
a b
0 0

]
+ det

[
a 0
0 d

]
+ det

[
0 b
c 0

]
+ det

[
0 0
c d

]
(L2)
= ab det

[
1 1
0 0

]
+ ad det

[
1 0
0 1

]
+ bc det

[
0 1
1 0

]
+ cd det

[
0 0
1 1

]
(L3,L5)

= (ad− bc) det

[
1 0
0 1

]
(L1)
= ad− bc.
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More generally: ... Similarly for any [A] ∈ Kn×n,

det[A] =
∑

[P ] permutation

aP det[P ], (36)

where the permutation matrices [P ] ∈ Rn×n have elements Pjk ∈ {0, 1} with
exactly one 1 in each row and in each column; aP ∈ K is the product of those
Ajk for which Pjk = 1. For dimension n, there are exactly n! permutation
matrices. For instance, for n = 2 we have n! = 2 permutations, and

det

[
a b
c d

]
= det

[
a 0
0 d

]
+det

[
0 b
c 0

]
= ad det

[
1 0
0 1

]
+bc det

[
0 1
1 0

]
= ad−bc.

Example. For n = 3, there are n! = 6 permutation matrices [P ] ∈ R3×3,
which are1 0 0

0 1 0
0 0 1

 ,
1 0 0

0 0 1
0 1 0

 ,
0 1 0

1 0 0
0 0 1

 ,
0 1 0

0 0 1
1 0 0

 ,
0 0 1

1 0 0
0 1 0

 ,
0 0 1

0 1 0
1 0 0

 .

Find the determinants of these permutation matrices! Notice that det

a b c
d e f
g h i

 =

= det
[
a 0 0
0 e 0
0 0 i

]
+ det

[
a 0 0
0 0 f
0 h 0

]
+ det

[
0 b 0
0 0 f
g 0 0

]
+ det

[
0 b 0
d 0 0
0 0 i

]
+ det

[
0 0 c
d 0 0
0 h 0

]
+ det

[
0 0 c
0 e 0
g 0 0

]
= +aei − afh + bfg − bdi + cdh − ceg.

Remark! By (36), Laws (L1,L2,L3,L4,L5) are ok when the word “column”
is changed to the word “row”. Thus if we obtain [B] ∈ Kn×n from [A] ∈ Kn×n

by the Gauss elimination (not multiplying single rows) then

det[A] = (−1)k det[B],

where k is the number of the row interchanging operations.

Example: det[A] = 2 · 3 · 7 = 42, where

[A] =

2 −1 3
4 1 2
6 3 8

 ∼
2 −1 3

0 3 −4
0 6 −1

 ∼
2 −1 3

0 3 −4
0 0 7

 ∼
2 0 0

0 3 0
0 0 7

 .
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Remark! Clearly, A ∈ Kn×n is invertible if and only if it can be trans-
formed to the identity matrix I ∈ Kn×n by the Gauss row operations:

[A|I]
Gauss∼ [I|A−1].

On the other hand, invertibility is equivalent to det[A] 6= 0, since the deter-
minant can be calculated by the Gauss row operations.

Sub-determinants. For finding determinants, the Gauss row operations
are most useful if we know the exact numerical values of the matrix elements.
For more general determinant formulas, application of (36) might be better.
Related to this, we may go from dimension n to dimension n − 1 by sub-
determinants: for [A] ∈ Kn×n, let

[B(j,k)] = [omit row j and column k from A] ∈ K(n−1)×(n−1),

det[A] =
n∑
j=1

(−1)j+k Ajk det[B(j,k)]

=
n∑
k=1

(−1)j+k Ajk det[B(j,k)].

Here the signs have the pattern
[
(−1)j+k

]n
j,k=1

=


+1 −1 +1 −1 · · ·
−1 +1 −1 +1 · · ·
+1 −1 +1 −1 · · ·
−1 +1 −1 +1 · · ·
...

...
...

...
. . .

.

Example. Let us first develop the sub-determinants with respect to the

first row
[
a b c

]
, and then with respect to the second column

be
h

:

det

a b c
d e f
g h i

 = +a det

[
e f
h i

]
− b det

[
d f
g i

]
+ c det

[
d e
g h

]

= −b det

[
d f
g i

]
+ e det

[
a c
g i

]
− h det

[
a c
d f

]
.
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Row operations as matrix products

Any simple Gauss row operation B 7→ EB on matrix B ∈ Kn×n can be
written as an elementary matrix product EB ∈ Kn×n: for instance,1 0 0

0 0 1
0 1 0

a b c
d e f
g h i

 =

a b c
g h i
d e f


corresponds to interchanging rows (2nd and 3rd),1 0 0

0 λ 0
0 0 1

a b c
d e f
g h i

 =

 a b c
λd λe λf
g h i


corresponds to multiplying a row (2nd) by constant λ ∈ K, and1 0 0

0 1 λ
0 0 1

a b c
d e f
g h i

 =

 a b c
d+ λg e+ λh f + λi
g h i


corresponds to adding a λ-weighted row (3rd) to another row (2nd).

Theorem. Determinant is multiplicative: for all A,B ∈ Kn×n

det[AB] = det[A] det[B]. (37)

Proof. For non-invertible A this is trivial. An invertible A is of the form

A = E1E2 · · ·Ek, (38)

where each Ej ∈ Kn×n corresponds to a Gauss row operation as above. Here

det[EjM ] = det[Ej] det[M ] (39)

for all M ∈ Kn×n. Thereby

det[AB]
(38)
= det[E1E2 · · ·Ek B]

(39)
= det[E1] det[E2 · · · Ek B]

· · · (39)
= det[E1] det[E2] · · · det[Ek] det[B]

· · · (39)
= det[E1E2 · · · Ek] det[B]

(38)
= det[A] det[B]. QED

Corollary: If A ∈ Kn×n is invertible then

det[A−1] = 1/det[A], (40)

because 1 = det[I] = det[AA−1] = det[A] det[A−1].
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O
u

v

Cu
A−→

O = AO

Au = λu

Av = λv

Cu

Figure 26: Eigenvectors u, v ∈ Cn on the same eigenline Cu of A ∈ Cn×n.

7. Eigenvalues and eigenvectors

Linear A : Cn → Cn (and corresponding matrix [A] ∈ Cn×n) has eigenvector
u ∈ Cn (or [u] ∈ Cn×1) and eigenvalue λ ∈ C if

Au = λu,

where eigenvector u 6= O (of course, trivially AO = O = λO, where O ∈ Cn

is the origin). The spectrum σ(A) ⊂ C is the set of all eigenvalues of A.

Remark. Notice that if t ∈ C then here A(tu) = tA(u) = λ(tu): thus it
would be appropriate to talk about the eigenline

Cu = {tu ∈ Cn : t ∈ C},

where tu ∈ Cn is another eigenvector whenever t 6= 0.

How to find all the eigenvalues? Notice that

Au = λu ⇐⇒ (A− λI)u = O
A−λI linear, u6=O⇐⇒ A− λI not invertible,

which means det[A − λI] = 0, so you may find the eigenvalues λ ∈ C by
solving this so-called characteristic equation.

How to find the eigenvectors? Let λ ∈ C be an eigenvalue of a square
matrix A ∈ Cn×n. The corresponding eigenvectors u ∈ Cn satisfy Au = λu
(equivalently (A − λI)u = O), and we find them by the Gauss elimination
on

[A− λI|O].

Just remember that the origin O ∈ Cn is never an eigenvector.
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Eigenvalues as roots of characteristic polynomial

Definition. The characteristic polynomial of [A] ∈ Cn×n is pA : C → C,
where

pA(z) := det[A− zI]. (41)

By the Fundamental Theorem of Algebra [Gauss], polynomials split
uniquely in C into product of first order terms. Thus

pA(z) = (−1)n (z − λ1) · · · (z − λn), (42)

where λ1, · · · , λn ∈ C are the eigenvalues of A. Hence here the spectrum
σ(A) = {λ1, · · · , λn} ⊂ C has at most n different elements λ ∈ C.
The algebraic multiplicity

d = ma(λ)

of an eigenvalue λ ∈ σ(A) is the degree d of the factor (z − λ)d in pA.
For instance, if [A] ∈ R10×10 with pA(z) = (z − 2)3(z + 5)7,
then ma(2) = 3 and ma(−5) = 7.
The geometric multiplicity

mg(λ)

of an eigenvalue λ ∈ σ(A) is the dimension of the vector subspace spanned
by the corresponding eigenvectors of A. For [A] ∈ Cn×n always

1 ≤ mg(λ) ≤ ma(λ) ≤ n, and
∑

λ∈σ(A)

ma(λ) = n. (43)

Notice also that

pA(z) =
n∑
k=0

ck z
k = cn z

n + cn−1 z
n−1 + · · ·+ c1 z + c0,

where cn = (−1)n, c0 = pA(0), and

λ1 · · ·λn
(42)
= c0

(41)
= det[A],

−
n∑
k=1

λk
(42)
= cn−1

(41)
= −tr[A],

where the trace tr[A] ∈ C is the sum of the diagonal elements of [A],

tr[A] :=
n∑
k=1

Akk. (44)

In other words:
the determinant is the product of the eigenvalues, and
the trace is the sum of the eigenvalues
when we take the algebraic multiplicities into account!
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Example. If [A] =

a 0 0
0 b 0
0 0 c

 ∈ C3×3 then

pA(z) = det[A− zI]

= det

a− z 0 0
0 b− z 0
0 0 c− z


= (−1)3 (z − a)(z − b)(z − c),

giving eigenvalues a, b, c ∈ C. Moreover,

pA(z) = (−1)3
(
z3 − (a+ b+ c)z2 + (ab+ ac+ bc)z − abc

)
,

where

tr[A] = a+ b+ c ∈ C,
det[A] = abc ∈ C.

Example. If [A] =

[
a b
c d

]
∈ C2×2 then

pA(z) = det[A− zI]

= det

[
a− z b
c d− z

]
= (a− z)(d− z)− bc
= (−1)2(z2 − (a+ d)z + (ad− bc))
= (−1)2(z − λ1)(z − λ2),

where eigenvalues λ1, λ2 ∈ C can be found easily. Notice that here

tr[A] = a+ d ∈ C,
det[A] = ad− bc ∈ C.
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Example. Let R : R2 → R2, for which R(x) = (x2, x1), that is

[R] =

[
0 1
1 0

]
.

Here det[R] = −1, and R reflects the real plane R2 with respect to the
hyperplane (or line) {x ∈ R2 : x1 = x2}. Now

pR(z) = det[R− zI]

= det

[
0− z 1

1 0− z

]
= z2 − 1

= (z − 1)(z + 1),

giving eigenvalues λ = ±1. Corresponding eigenvectors x? R(x) = λx? We
solve (R− λI)(x) = O by the Gauss elimination:

[R− λI|O] =

[
−λ 1 | 0
1 −λ | 0

]
Gauss∼

[
0 1− λ2 | 0
1 −λ | 0

]
λ=±1

=

[
0 0 | 0
1 −λ | 0

]
.

Eigenvectors for λ = +1: x = (t, t) ∈ C2 for 0 6= t ∈ C.
Eigenvectors for λ = −1: x = (t,−t) ∈ C2 for 0 6= t ∈ C.

Example. Let Q : R2 → R2, for which Q(x) = (x2,−x1), that is

[Q] =

[
0 1
−1 0

]
.

Here det[Q] = +1, and Q rotates the real plane R2 around the origin by π/2
radians in the negative direction (i.e. by 90 degrees clockwise). Now

pQ(z) = det[Q− zI]

= det

[
0− z 1
−1 0− z

]
= z2 + 1

= (z − i)(z + i),

giving eigenvalues λ = ±i. Corresponding eigenvectors x? Q(x) = λx? We
solve (Q− λI)(x) = O by the Gauss elimination:

[Q−λI|O] =

[
−λ 1 | 0
−1 −λ | 0

]
Gauss∼

[
0 1 + λ2 | 0
−1 −λ | 0

]
λ=±i
=

[
0 0 | 0
−1 −λ | 0

]
.

Eigenvectors for λ = +i: x = (t,+it) ∈ C2 for 0 6= t ∈ C.
Eigenvectors for λ = −i: x = (t,−it) ∈ C2 for 0 6= t ∈ C.
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Example. Let us find the eigenvalues and the eigenvectors for

A = SDS−1 =

[
5 2
2 8

]
, where D =

[
9 0
0 4

]
and S =

[
1 −2
2 1

]
. (45)

The reader might want to find the eigenvalues by factorizing the characteristic
polynomial z 7→ det[A−zI], and then finding the corresponding eigenvectors
by the Gauss elimination from [A − λI|O], as in the previous cases. Be my
guest, do that for your personal exercise.

However, we are going to find them easier. Namely, we claim that the
eigenvalues are 9 and 4, obtained from the diagonal elements of the diagonal
matrix D; and that then the corresponding eigenvectors are the non-zero
scalar multiples of the columns of matrix S:

s

[
1
2

]
and t

[
−2
1

]
, (46)

where constants s 6= 0 6= t. Why? What is the “magic” here? Well, let

A = SDS−1, where D =

[
λ 0
0 µ

]
and S =

[
a1 b1

a2 b2

]
.

Then

A

[
a1 b1

a2 b2

]
= AS = SDS−1S = SD =

[
a1 b1

a2 b2

] [
λ 0
0 µ

]
=

[
λa1 µb1

λa2 µb2

]
,

so that

A

[
a1

a2

]
= λ

[
a1

a2

]
and A

[
b1

b2

]
= µ

[
b1

b2

]
,

And similar thinking works for all matrices of the form

A = SDS−1 ∈ Cn×n,

where S ∈ Cn×n is invertible and D ∈ Cn×n is diagonal, meaning that Djk =
0 whenever j 6= k: then the eigenvalues of A are just the diagonal elements
λk := Dkk ∈ C (where k ∈ {1, · · · , n}), and a corresponding eigenvector is
given by the kth column Sk ∈ Cn×1 of matrix S = [S1 · · ·Sn]:

A[S1 · · ·Sn] = AS = SDS−1S = SD = [λ1S1 · · ·λnSn].

This is related to so-called “diagonalization”, which is the topic of the next
Chapter.
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R

iR

‖A‖

λ1 ∈ σ(A)

λ 6∈ σ(A)

Figure 27: |λ1| ≤ ‖A‖ if λ1 ∈ C is an eigenvalue of A ∈ Cn×n.

Eigenvalues/matrix norm. Recall that the norm of matrix A ∈ Cn×n is

‖A‖ := max
u∈Cn:‖u‖≤1

‖Au‖

= max
u,v∈Cn:‖u‖,‖v‖≤1

|〈Au, v〉| .

If λ1 ∈ σ(A) then |λ1| ≤ ‖A‖, because if Au = λ1u then

|λ1| ‖u‖ = ‖λ1u‖ = ‖Au‖ ≤ ‖A‖ ‖u‖.
So, if |λ| > ‖A‖, then λ 6∈ σ(A), and

(λI − A)
n∑
k=0

(A/λ)k

= (λI − A)
(
I + (A/λ)1 + (A/λ)2 + . . .+ (A/λ)n

)
= λII − AI + λI(A/λ)1 − A(A/λ)1 + λI(A/λ)2 − . . .− A(A/λ)n

= λI − λ(A/λ)n+1 n→∞−→ λI,

where the limit exists, because

‖(A/λ)n+1‖ = ‖An+1‖/|λ|n+1 ≤ (‖A‖/|λ|)n+1 n→∞−→ 0,

since here ‖A‖/|λ| < 1. Hence

(λI − A)−1 = λ−1

∞∑
k=0

(A/λ)k.

Moreover, by applying the geometric series, we obtain the norm estimate∥∥(λI − A)−1
∥∥ ≤ |λ|−1

∞∑
k=0

‖A‖k/|λ|k

|λ|>‖A‖
=

1

|λ| − ‖A‖
.
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O I1 = (1, 0, · · · , 0)

In = (0, 0, · · · , 1)

Λ:Cn→Cn

−→ O = ΛO λ1I1

λnIn

Figure 28: Action of a diagonal matrix Λ ∈ Cn×n with Λkk = λk.

8. Diagonalization

Matrix Λ = [Λjk]
n
j,k=1 ∈ Cn×n is diagonal if Λjk = 0 whenever j 6= k. That

is, with λk := Λkk ∈ C we have

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . . 0

0 0 · · · λn

 .
Let I1, I2, · · · , In ∈ Rn×1 be the standard basis vectors. Here obviously
Λ(Ik) = λk Ik, meaning that Ik is an eigenvector corresponding to the eigen-
value λk ∈ C. Diagonal matrices are easy to sum and to multiply, e.g. here

Λ999 =


(λ1)999 0 · · · 0

0 (λ2)999 · · · 0
...

...
. . . 0

0 0 · · · (λn)999

 .
Also, here Λ is invertible if and only if λ1λ2λ3 · · ·λn 6= 0, and then

Λ−1 =


(λ1)−1 0 · · · 0

0 (λ2)−1 · · · 0
...

...
. . . 0

0 0 · · · (λn)−1

 .
All this is to say: diagonal matrices are really easy to handle. It turns out
that many other matrices can be diagonalized, making them easy to treat
when seen from a suitable viewpoint.
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O
S1

Sn

A:Cn→Cn

−→
O = AO

A(S1) = λ1S1
A(Sn) = λnSn

S−1 = [S1 · · · Sn]−1 S = [S1 · · · Sn]

O I1 = S−1(S1)

In = S−1(Sn)

diagonal Λ:Cn→Cn

−→
O = ΛO λ1I1

λnIn

Figure 29: Diagonalization Λ = S−1AS. In other words, A = SΛS−1.

Diagonalization. Matrix A ∈ Cn×n can be diagonalized if there is invert-
ible S ∈ Cn×n for which

Λ = S−1AS ∈ Cn×n

is diagonal, i.e. Λjk = 0 whenever j 6= k: then

A = SΛS−1,

and (writing λk := Λkk ∈ C) we have

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ,
where λ1, λ2, · · · , λn ∈ C are the eigenvalues of A. The kth column Sk
of S = [S1 · · · Sn] is the eigenvector of A corresponding to the eigenvalue
λk ∈ C:

(AS)jk = (SΛS−1S)jk = (SΛ)jk =
n∑
`=1

Sj` Λ`k = λk Sjk.

We may say that a diagonalizable matrix A = SΛS−1 “looks like a diagonal
matrix Λ after changing the coordinate point of view by S”.
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Remark: Such diagonalization A = SΛS−1, if it exists, may not be unique,
as it changes if the choose different eigenvectors, or if we permute the order
of the eigenvalues (and the corresponding order of the eigenvectors). For
instance,[

a b
c d

] [
λ1 0
0 λ2

] [
a b
c d

]−1

=

[
t2b t1a
t2d t1c

] [
λ2 0
0 λ1

] [
t2b t1a
t2d t1c

]−1

whenever ad− bc 6= 0 6= t1t2. Here, eigenvectors

t1

[
a
c

]
, t2

[
b
d

]
respectively correspond to the eigenvalues λ1, λ2 ∈ C. Nevertheless, we have:

Theorem. Matrix A ∈ Cn×n can be diagonalized if and only if
mg(λ) = ma(λ) for all the eigenvalues λ of A.

Remark: For a matrix A ∈ Cn×n, remember that 1 ≤ mg(λ) ≤ ma(λ) ≤ n
always. Matrix A ∈ Cn×n cannot be diagonalized if mg(λ) < ma(λ) for just
one eigenvalue λ of A, as then we cannot find enough eigenvectors to achieve
the invertible eigenvector matrix S eventually! In the last two examples in
the previous Chapter (Eigenvalues and eigenvectors), the eigenvalues of the
diagonalizable matrices R,Q : C2 → C2 have all multiplicities 1.

Example. Let [A] =

[
1 b
0 1

]
, where b 6= 0 (so [A] is not diagonal). Now

pA(z) = det[A− zI]

= det

[
1− z b

0 1− z

]
= (1− z)2,

giving algebraic multiplicity ma(λ) = 2 for eigenvalue λ = 1. As b 6= 0, then

(A− λI)(x) = O

has only solution x = (t, 0) for constants t ∈ C. So the geometric multiplicity

mg(λ) = 1 < ma(λ).

This is an example of a non-diagonalizable matrix! In other words, here
S−1AS is not diagonal no matter which invertible S we choose.
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L =


L11 0 0 · · · 0
L21 L22 0 · · · 0
L31 L32 L33 · · · 0

...
...

...
. . .

...
Ln1 Ln2 Ln3 · · · Lnn

 , U =


U11 U12 U13 · · · U1n

0 U22 U23 · · · U2n

0 0 U33 · · · U3n
...

...
...

. . .
...

0 0 0 · · · Unn

 .

Figure 30: Lower triangular L ∈ Cn×n, upper triangular U ∈ Cn×n.

Example. Let λ ∈ C be the only eigenvalue of diagonalizable A ∈ Cn×n.
Then

A = S(λI)S−1 = λSS−1 = λI.

That is, A = constant times identity.

Definition. Matrix M ∈ Cn×n is triangular if it is
lower triangular (Mjk = 0 whenever j < k) or
upper triangular (Mjk = 0 whenever j > k).

Especially, if M is both upper and lower triangular then it is diagonal.

Example. If triangular A has zero diagonal, then λ = 0 is its only eigen-
value; by the previous example, such A can be diagonalized only if A = O.

Example. AS = SΛ, if

A =

[
a b
0 0

]
, S =

[
1 −b
0 a

]
, Λ =

[
a 0
0 0

]
.

Thus if a 6= 0 then we have A = SΛS−1.
(If a = 0 then S is not invertible.)

Remark. On page 61 we learn that matrix is normal (see page 53) if and
only if it has a unitary diagonalization. In the previous example above,
A = SΛS−1 is a normal matrix if and only if b = 0: thus some non-normal
matrices can be diagonalized (yet not unitarily diagonalized).
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Functions of square matrices

Analytic function f : C→ C can be presented as power series

f(z) =
∞∑
k=0

ck z
k. (47)

E.g. functions exp, cos, sin are analytic. Define f : Cn×n → Cn×n by

f(A) =
∞∑
k=0

ck A
k. (48)

Here f(A)ij 6= f(Aij) often! But with diagonalization A = SΛS−1,

f(A) =
∞∑
k=0

ck (SΛS−1)k = · · · = S

(
∞∑
k=0

ck Λk

)
S−1 = S f(Λ) S−1,

where f(Λ) ∈ Cn×n is diagonal with f(Λ)jj = f(Λjj) ∈ C. Nice!

Example. Let A = SΛS−1, where

Λ =

a 0 0
0 b 0
0 0 c

 .
Then

exp(A) = S exp(Λ)S−1,

|A|1/2 = S|Λ|1/2 S−1,

where

exp(Λ) =

ea 0 0
0 eb 0
0 0 ec

 , |Λ|1/2 =


√
|a| 0 0

0
√
|b| 0

0 0
√
|c|

 .
So, what would be |A| then?

Application to differential equations: Let A ∈ Cn×n. Suppose that
smooth functions x1, · · · , xn : R→ C satisfy

x′(t) = Ax(t)

(where (x′(t))j = (xj)
′(t) = d

dt
xj(t), naturally), then

x(t) = exp(tA)x(0).

If here A = SΛS−1 then exp(tA) = S exp(tΛ)S−1, which is easy to find.
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Kn :

A∗w

u, ‖u‖ = 1
O

A−→
A∗
←−

Km :
w, ‖w‖ = 1

Au

A(O) = O

Figure 31: Adjoint A∗ : Km → Kn is the mirror image of linear A : Kn → Km

in the sense that 〈u,A∗w〉 = 〈Au,w〉 for all u ∈ Kn and w ∈ Km.

9. Adjoint matrices

For a linear mapping A : Kn → Km, the adjoint is the linear mapping
A∗ : Km → Kn defined by the inner product duality

〈Au,w〉 =: 〈u,A∗w〉 (49)

for all u ∈ Kn and w ∈ Km. Why this definition works? Indeed,

〈Au,w〉 =
m∑
j=1

(Au)j wj =
m∑
j=1

n∑
k=1

Ajk uk wj =
n∑
k=1

uk

(
m∑
j=1

Ajkwj

)∗
,

which shows that the adjoint A∗ has the matrix elements

(A∗)kj = Ajk ∈ K.

Clearly (A∗)∗ = A. There is the norm equality ‖A∗‖ = ‖A‖, because

‖A‖ = max
u∈Cn,v∈Cm:‖u‖,‖v‖≤1

|〈Au, v〉|

= max
u∈Cn,v∈Cm:‖u‖,‖v‖≤1

|〈u,A∗v〉| = ‖A∗‖.

Example. The adjoint of A =

[
1 + 2i 3 + 4i 5 + 6i
7 + 8i 9 + 10i 11 + 12i

]
∈ C2×3 is

A∗ =

1− 2i 7− 8i
3− 4i 9− 10i
5− 6i 11− 12i

 ∈ C3×2.
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Important classes of matrices

Definition. Let us introduce the following classes of square matrices:
Matrix P ∈ Cn×n is positive if 〈Px, x〉 ≥ 0 for all x ∈ Cn.
Matrix S ∈ Cn×n is symmetric (or self-adjoint) if S∗ = S.
Matrix N ∈ Cn×n is normal if N∗N = NN∗.
Matrix U ∈ Cn×n is unitary if U∗ = U−1: then

〈Ux, Uy〉 = 〈x, y〉

for all x, y ∈ Cn; such U preserves distances and angles in Cn!

Definition. For A ∈ Rm×n, the adjoint is the transpose AT = A∗. A real
unitary matrix A ∈ Rn×n is called orthogonal: this means ATA = I = AAT,
in other words AT = A−1 here.

Remark. These classes of matrices have some connections:
Above, Positive⇒ Symmetric, and Symmetric⇒ Normal,
but Normal 6⇒ Symmetric, and Symmetric 6⇒ Positive.
Also, Unitary ⇒ Normal, but Normal 6⇒ Unitary.
Term “positive” is often more accurately “positive semi-definite”.

Exercise. Let us study a diagonal matrix Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 ∈ Cn×n.

For which λk ∈ C the following properties hold?
(a) Λ is positive.
(b) Λ is symmetric.
(c) Λ is normal.
(d) Λ is unitary.

Remark. Condition U∗U = I means that the columns Uk ∈ Cn×1 of uni-
tary U = [U1 · · · Un] ∈ Cn×n are mutually orthonormal to each other, as

Ijk = (U∗U)jk = Uj
∗Uk = 〈Uk, Uj〉,

where Ikk = 1 and Ijk = 0 when j 6= k. Moreover, if A ∈ Cn×n is

positive/symmetric/normal/unitary

then also U∗AU has the same property.
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Eigenproperties for symmetric / positive / unitary

Claim: The eigenvalues of a symmetric matrix are real.

Proof. Let λ ∈ C be an eigenvalue of a symmetric matrix S = S∗ ∈ Cn×n

with eigenvector x ∈ Cn×1. Then

λ〈x, x〉 = 〈λx, x〉
Sx=λx

= 〈Sx, x〉 = 〈x, S∗x〉
S∗=S
= 〈x, Sx〉

Sx=λx
= 〈x, λx〉 = λ〈x, x〉.

Thus λ = λ (i.e. λ ∈ R), because 〈x, x〉 = ‖x‖2 6= 0. QED

Claim: Positive P ∈ Cn×n is symmetric, and its eigenvalues are ≥ 0.

Proof. By the Weak Formulation Theorem we have P = P ∗, as

〈Px, x〉 = 〈x, Px〉∗ real= 〈x, Px〉 = 〈P ∗x, x〉

for any x ∈ Cn. Let Pu = λu, where u 6= O eigenvector with eigenvalue
λ ∈ C. Then

0 ≤ 〈Pu, u〉 = 〈λu, u〉 = λ〈u, u〉 = λ‖u‖2,

so that 0 ≤ λ. QED

Remark: If A∗ = A such that Au = λu and Av = µv for λ, µ ∈ R then

λ〈u, v〉 = 〈λu, v〉 = 〈Au, v〉 A
∗=A
= 〈u,Av〉 = 〈u, µv〉 µ∈R= µ〈u, v〉.

Hence if here λ 6= µ, then we must have 〈u, v〉 = 0. Think about this!
(Eigenvectors corresponding to different eigenvalues of a symmetric matrix
are automatically orthogonal.)

Claim: The eigenvalues λ ∈ C of unitary U ∈ Cn×n satisfy |λ| = 1.

Proof. Let Ux = λx, where 〈x, x〉 = ‖x‖2 = 1. Then

|λ|2 = λλ∗〈x, x〉 = 〈λx, λx〉 = 〈Ux, Ux〉 = 〈x, x〉 = 1.

QED
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Example. The Discrete Fourier Transform (DFT) of vector v ∈ Cn is
v̂ ∈ Cn, where

v̂j :=
n∑
k=1

e−i2πjk/n vk. (50)

Let us define U : Cn → Cn by Uv := v̂/
√
n, that is

Ujk =
1√
n

e−i2πjk/n.

Then U is unitary:

(U∗U)jk =
n∑
`=1

(U∗)j` U`k

=
n∑
k=1

U`j U`k

= n−1

n∑
k=1

ei2π(j−k)`/n

=

{
1, if j = k,

0, if j 6= k
,

where in the last step we applied the geometric sum formula

n∑
k=1

qk
q 6=1
= q

1− qn

1− q
.

Remark. Invertibility of matrix S = [S1 · · · Sn] ∈ Cn×n means that the
column vectors S1, · · · , Sn are linearly independent; out of these vectors the
Gram–Schmidt algorithm gives orthonormal vectors U1, · · · , Un, and then
U = [U1 · · · Un] ∈ Cn×n is unitary. Moreover, here

span {S1, · · · , Sk} = span {U1, · · · , Uk}

for each k ∈ {1, · · · , n}. We return to this remark in the next Chapter.
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O

Px
Qx

x = Px+Qx

Z = P (Kn)
Q(Kn) = Z⊥

Figure 32: Orthogonal projection P ∈ Kn×n onto vector subspace Z ⊂ Kn.
Then the linear mapping Q = I − P is the orthogonal projection onto the
orthogonal vector subspace Z⊥ = {u ∈ Kn : 〈u, z〉 = 0 for all z ∈ Z}.

Nice to know: orthogonal projections

For a vector subspace Z ⊂ Kn of dimension d = dim(Z) there are linearly
independent vectors S1, · · · , Sd ∈ Kn such that Z = span{S1, · · · , Sd}. From
the sequence (S1, · · · , Sd, I1, I2, · · · , In), after throwing away the early vectors
that violate the linear independence, the Gram–Schmidt process finds the
orthonormal vectors U1, · · · , Un ∈ Kn such that Z = span{U1, · · · , Ud}. If
we define P : Kn → Kn by

Px :=
d∑

k=1

〈x, Uk〉Uk, (51)

then P is the orthogonal projection onto Z, satisfying P = P ∗ = P 2.

Remark: If P ∈ Kn×n satisfies P = P ∗ = P 2 then P = [P1 · · ·Pn] is the
orthogonal projection onto Z := P (Kn) = span{P1, · · · , Pn}.

The idea: Px ∈ Z is the closest point in Z to x ∈ Kn. In other words, Px
is the “perpendicular shadow of point x on subspace Z”. Now let Q = I−P ,
that is x = Px+Qx (for all x ∈ Kn). Then we have the Pythagorean identity

‖x‖2 = ‖Px‖2 + ‖Qx‖2.

Here, Q is the orthogonal projection onto the orthogonal vector subspace
Z⊥ = {u ∈ Kn : 〈u, z〉 = 0 for all z ∈ Z}. Notice that PQ = O = QP , and

P (Kn) = Z = {z ∈ Kn : Qz = O},
Q(Kn) = Z⊥ = {z ∈ Kn : Pz = O}.
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O
S1

Sn

A:Cn→Cn

−→
O = AO

A(S1) = λ1S1
A(Sn) = λnSn

S−1 = [S1 · · · Sn]−1 S = [S1 · · · Sn]

O I1 = S−1(S1)

In = S−1(Sn)

diagonal Λ:Cn→Cn

−→
O = ΛO λ1I1

λnIn

Figure 33: Diagonalization Λ = S−1AS. In other words, A = SΛS−1.

10. Unitary diagonalization

Remember the following matrix properties:

• M ∈ Cn×n is symmetric (or self-adjoint) if M∗ = M .

• B ∈ Cn×n is normal if B∗B = BB∗.

• U ∈ Cn×n is unitary if U∗ = U−1.

Also, remember what the diagonalization Λ = S−1AS for a matrix A ∈ Cn×n

means: previously we just required S ∈ Cn×n to be invertible. In unitary
diagonalization, we want S unitary: remember that unitary matrices preserve
inner products and norms! In order for this to be possible, something has to
be assumed from A, but fortunately this assumption turns out to be quite
natural: namely, A should be normal!

Example. Let A =

[
0 b
c 0

]
, where b, c ∈ C. Then A∗ =

[
0 c∗

b∗ 0

]
. Thus

here A is symmetric if and only if c = b∗. Moreover,

A∗A =

[
0 c∗

b∗ 0

] [
0 b
c 0

]
=

[
|c|2 0
0 |b|2

]
,

AA∗ =

[
0 b
c 0

] [
0 c∗

b∗ 0

]
=

[
|b|2 0
0 |c|2

]
.

Hence here A is normal if and only if |b| = |c|.
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Gram–Schmidt process reformulated

Let matrix S = [S1 · · · Sn] ∈ Cn×n be invertible, with columns Sk ∈ Cn×1.
The Gram–Schmidt process gives unitary U = [U1 · · · Un] ∈ Cn×n as follows:
Let

U1 := S1/‖S1‖, (52)

and for k ≥ 2 then

Uk :=
Vk
‖Vk‖

, (53)

where

Vk := Sk −
k−1∑
j=1

〈Sk, Uj〉Uj. (54)

It is trivial that 〈Uk, Uk〉 = 1. Suppose we know that U1, · · · , Uk−1 are
orthonormal. Then U1, · · · , Uk are also orthonormal, as

〈Vk, U`〉 = 〈Sk, U`〉 −
k−1∑
j=1

〈Sk, Uj〉〈Uj, U`〉 = 〈Sk, U`〉 − 〈Sk, U`〉 = 0.

Hence U1, · · · , Un are orthonormal, so U∗ = U−1. Also notice that for all
k ∈ {1, · · · , n} here

span{S1, · · · , Sk} = span{U1, · · · , Uk}.

This Gram–Schmidt process is numerically unstable (round-off errors accu-
mulate), but there are ways to stabilize the process.

Example. Let S =

[
4 6
3 2

]
. Then

U1 = S1/‖S1‖ =

[
4
3

]
/
√

42 + 32 =

[
4/5
3/5

]
,

and

V2 = S2 − 〈S1, U1〉U1

=

[
6
2

]
− 〈
[
6
2

]
,

[
4/5
3/5

]
〉
[
4/5
3/5

]
=

[
6
2

]
− 6

[
4/5
3/5

]
=

[
6/5
−8/5

]
,

so U2 = V2
‖V2‖ =

[
3/5
−4/5

]
. We have

U = [U1 U2] =

[
4/5 3/5
3/5 −4/5

]
.

58



S1

S2

U1

U2

V2 = S2 − 〈S2, U1〉U1

〈S2, U1〉U1

Figure 34: Gram–Schmidt: from invertible S = [S1 · · · Sn] ∈ Cn×n to unitary
U = [U1 · · · Un] ∈ Cn×n such that span{S1, · · · , Sk} = span{U1, · · · , Uk}.

Unitary triangulation of square matrices

Unitary triangulation of a matrix A ∈ Cn×n means that

A = UΛU∗ (55)

for a unitary matrix U ∈ Cn×n and an upper triangular matrix Λ ∈ Cn×n.
We prove (55) by induction, by reducing case n > 1 to case n−1 (case n = 1
is trivial). Take an eigenvalue λ ∈ C with a normalized eigenvector v ∈ Cn×1:

Av = λv, ‖v‖ = 1.

By Gram–Schmidt, find unitary V ∈ Cn×n with the first column v. So

A = V

[
λ w

O Ã

]
V ∗ = V

[
λ w

O Ũ Λ̃Ũ∗

]
V ∗

for some Ã ∈ C(n−1)×(n−1) and w ∈ C1×(n−1), where O ∈ R(n−1)×1 is the zero
column vector: due to the case n − 1 of unitary triangulation, Ã = Ũ Λ̃Ũ∗,
where Ũ ∈ C(n−1)×(n−1) is unitary and Λ̃ ∈ C(n−1)×(n−1) is upper triangular.
Define unitary U and upper triangular Λ by

U := V

[
1 O∗

O Ũ

]
, Λ :=

[
λ wŨ

O Λ̃

]
(check that U is unitary and Λ upper triangular). Here (55) holds, because

UΛU∗ = V

[
1 O∗

O Ũ

] [
λ wŨ

O Λ̃

][
1 O∗

O Ũ∗

]
V ∗

= V

[
1 O∗

O Ũ

] [
λ w

O Λ̃Ũ∗

]
V ∗ = V

[
λ w

O Ũ Λ̃Ũ∗

]
V ∗ = A.
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Λ =


Λ11 Λ12 Λ13 · · · Λ1n

0 Λ22 Λ23 · · · Λ2n

0 0 Λ33 · · · Λ3n
...

...
...

. . .
...

0 0 0 · · · Λnn

 Λ∗Λ=ΛΛ∗
=⇒ Λ =


Λ11 0 0 · · · 0
0 Λ22 0 · · · 0
0 0 Λ33 · · · 0
...

...
...

. . .
...

0 0 0 · · · Λnn

 .

Figure 35: Any normal (upper or lower) triangular matrix is diagonal! And
what if the matrix would be symmetric and triangular?

Normal triangular matrix is diagonal!

Let Λ ∈ Cn×n. Then

(Λ∗Λ)kk =
n∑
`=1

(Λ∗)k` Λ`k =
n∑
`=1

Λ`k Λ`k =
n∑
`=1

|Λ`k|2,

(ΛΛ∗)kk =
n∑
`=1

Λk` (Λ∗)`k =
n∑
`=1

Λk`Λk` =
n∑
`=1

|Λk`|2.

Let Λ be normal (Λ∗Λ = ΛΛ∗) and upper triangular (Λij = 0 if i > j). Then

|Λnn|2 =
n∑
`=1

|Λn`|2 = (ΛΛ∗)nn = (Λ∗Λ)nn =
n∑
`=1

|Λ`n|2 = |Λnn|2 +
n−1∑
`=1

|Λ`n|2,

which shows that Λ`n = 0 for ` ∈ {1, · · · , n− 1}. Thus

Λ =

[
Λ̃ O
O∗ Λnn

]
,

where Λ̃ ∈ C(n−1)×(n−1) is a normal upper triangular matrix and O ∈ R(n−1)×1

is the zero vector. By reducing dimensions n > n− 1 > · · · > 1, we get:

Theorem. Normal triangular matrices Λ ∈ Cn×n are diagonal.
(A trivial result: symmetric triangular matrices are diagonal and real!
Think about that!)

Exercise. Now we know that any matrix A ∈ Cn×n is of the form A =
UΛU∗, where U ∈ Cn×n is unitary and Λ ∈ Cn×n is upper triangular. Show
that here A is normal if and only if Λ is normal (in which case Λ must be
diagonal by the Theorem above!).
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O ∈ Cn

U1
Un A:Cn→Cn

−→
O = AO ∈ Cn

A(U1) = λ1U1

A(Un) = λnUn

U∗ = [U1 · · · Un]∗
U = [U1 · · · Un]

O ∈ Cn I1 = U∗(U1) ∈⊂ Cn

In = U∗(Un) ∈ Cn

Λ:Cn→Cn

−→
O = ΛO ∈ Cn λ1I1 ∈ Cn

λnIn ∈ Cn

Figure 36: Idea of unitary diagonalization Λ = U∗AU of normal A ∈ Cn×n.
Equivalently, this means A = UΛU∗. Unitary operations U∗ and U preserve
distances and angles.

Unitary diagonalization of normal matrices

Thus, for any A ∈ Cn×n there is unitary triangulation A = UΛU∗, where
U ∈ Cn×n is unitary and Λ ∈ Cn×n is upper triangular. It is easy to see
that here Λ is normal if and only if A is normal. Because normal triangular
matrices are diagonal (see page 60), we get:

Normal matrices can be diagonalized by unitary matrices!
More precisely:

Theorem. Conditions (1) and (2) are equivalent:
(1) A ∈ Cn×n is normal (that is, A∗A = AA∗).
(2) A = UΛU∗ for unitary U ∈ Cn×n and diagonal Λ ∈ Cn×n.

Remark: In this result on the unitary diagonalization A = UΛU∗, we have
A∗ = A if and only if Λ∗ = Λ (Why? Compute this!). So, a normal matrix
is symmetric if and only if its eigenvalues are real. However, there are non-
normal diagonalizable matrices with real eigenvalues: see the example on
page 50.
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I1

I2
A1 =

[
cos(ϕ)
sin(ϕ)

]
A2 =

[
− sin(ϕ)
cos(ϕ)

]
O

ϕ A = [A1 A2] =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
.

Identity matrix I = [I1 I2] =

[
1 0
0 1

]
.

Figure 37: Rotation A ∈ R2×2 by angle ϕ around the origin.

Eigenvalues in unitary diagonalization

Let A ∈ Cn×n be normal, that is A∗A = AA∗. We saw that this is equivalent
to the existence of unitary diagonalization A = UΛU∗. For normal A ∈ Cn×n

and all its eigenvalues λ ∈ C, the reader can find out the following facts:

(a) A∗ = A−1 (unitary A) if and only if |λ| = 1.

(b) A∗ = A (symmetric A) if and only if λ ∈ R.

(c) 〈Ax, x〉 ≥ 0 for all x ∈ Cn (positive A) if and only if λ ≥ 0.

(d) A∗ = A = A2 (orthogonal projection A) if and only if λ ∈ {0, 1}.
Exercise. Prove these above-mentioned “if and only if” claims (a,b,c,d).

Example. In particular, orthogonal projections are always positive, and
positive operators are always symmetric.
The only unitary positive operator is the identity I ∈ Cn×n.
The only unitary orthogonal projection is the identity I ∈ Cn×n.

Example. Let us find a unitary diagonalization for the rotation matrix

A =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
∈ R2×2.

Then the characteristic polynomial satisfies

det[A− zI] = z2 − 2 cos(ϕ)z + 1 = (z − λ1) (z − λ2),

where λk = cos(ϕ)± i sin(ϕ)
Euler
= e±iϕ. Then A = UΛU∗, where e.g.

Λ =

[
eiϕ 0
0 e−iϕ

]
, U =

1√
2

[
i i
1 −1

]
.

Check this!
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Example. If we already know diagonalization R = SDS−1, this sometimes
helps in finding a unitary diagonalization: the eigenvectors might already be
orthogonal (especially if R is symmetric with distinct eigenvalues), and then
we just need to normalize the eigenvectors! For instance, consider

R = SDS−1 =

[
5 2
2 8

]
, where D =

[
9 0
0 4

]
and S =

[
1 −2
2 1

]
. (56)

Clearly, the columns S1, S2 of matrix S = [S1 S2] are eigenvectors corre-
sponding to the respective eigenvalues are 9 and 4. Since the eigenvalues of
this symmetric matrix are different, this automatically guarantees that the
eigenvectors are orthogonal (but of course you can verify this by computing
the inner product). By scaling the columns of S to unit vectors, we obtain a
unitary matrix

V :=

[
s −2t
2s t

]
∈ C2×2, where |s| = 1/

√
5 = |t|.

Indeed, V is unitary, as

V V ∗ =

[
s −2t
2s t

] [
s∗ 2s∗

−2t∗ t∗

]
=

[
|s|2 + 4|t|2 2|s|2 − 2|t|2
2|s|2 − 2|t|2 4|s|2 + |t|2

]
|s|2=1/5=|t|2

=

[
1 0
0 1

]
= I.

We may check that we got a unitary diagonalization of R:

V DV ∗ =

[
s −2t
2s t

] [
9 0
0 4

] [
s −2t
2s t

]∗
=

[
9s −8t
18s 4t

] [
s∗ 2s∗

−2t∗ t∗

]
=

[
9|s|2 + 16|t|2 18|s|2 − 8|t|2
18|s|2 − 8|t|2 36|s|2 + 4|t|2

]
|s|2=1/5=|t|2

=

[
5 2
2 8

]
= R.

Notice that there are infinitely many different choices for s, t. Notice also
that if we would have changed the order of the eigenvalues, we should have
changed the order of the eigenvectors, accordingly:

R =

[
5 2
2 8

]
=

[
−2t s
t 2s

] [
4 0
0 9

] [
−2t s
t 2s

]∗
.
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O ∈ Cn

V1V2 A:Cn→Cm

−→
O = AO ∈ Cm

A(V1) = σ1U1A(V2) = σ2U2

V ∗ = [V1 · · · Vn]∗
U = [U1 · · · Um]

O ∈ Rn ⊂ Cn I1 = V ∗(V1) ∈ Rn ⊂ Cn

I2 = V ∗(V2) ∈ Rn ⊂ Cn

Σ:Rn→Rm

−→
O = ΣO ∈ Rm σ1I1 ∈ Rm ⊂ Cm

σ2I2 ∈ Rm ⊂ Cm

Figure 38: Idea of SVD, or Singular Value Decomposition A = UΣV ∗: here
matrices V ∗ and U are “rotations” of the vector spaces, and matrix Σ is a
“scaling/projection/embedding”.

11. SVD (Singular Value Decomposition)

Definition. A singular value decomposition (SVD) of a matrix A ∈ Cm×n

is a matrix triple (U,Σ, V ) such that

A = UΣV ∗,

where U = [U1 · · · Um] ∈ Cm×m and V = [V1 · · · Vn] ∈ Cn×n are unitary, and
Σ ∈ Rm×n is the diagonal matrix of singular values Σjj = σj ≥ 0 of A: that
is Σjk = 0 when j 6= k. We also demand that Σjj = σj ≥ σj+1 for all j.

Remark: If A = UΣV ∗ as above, then A(Vj) = σj Uj, and

A∗A = V (Σ∗Σ)V ∗,

AA∗ = U (ΣΣ∗)U∗,

where Σ∗Σ ∈ Rn×n and Σ Σ∗ ∈ Rm×m are positive diagonal matrices, where

σj
2 = (Σ∗Σ)jj = (Σ Σ∗)jj .

This suggests that an SVD could be found by the unitary diagonalization!
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How to find the SVD?

For A ∈ Cm×n, matrix A∗A ∈ Cn×n is normal (A∗A is even positive), so the
unitary diagonalization gives us

A∗A = V ΛV ∗,

where the diagonal matrix Λ ∈ Cn×n has the eigenvalues λk := Λkk of A∗A,
with the unitary matrix V = [V1 · · · Vn] ∈ Cn×n having the corresponding
eigenvectors Vk ∈ Cn×1. Now

〈A(Vj), A(Vk)〉 = 〈A∗A(Vj), Vk〉
= 〈λjVj, Vk〉
= λj〈Vj, Vk〉

V ∗V=I
=

{
λj if j = k,

0 if j 6= k.

So let σj := ‖A(Vj)‖ =
√
λj (conventionally here we have already arranged

the order so that λj ≥ λj+1 when 1 ≤ j < n). Then find a unitary matrix
U = [U1 · · · Um] ∈ Cm×m for which

A(Vj) = σjUj.

More precisely: If σj > 0 then Uj = A(Vj)/σj. If m > j > n or if σj = 0
then we have more freedom of choosing Uj. Finally, define Σ ∈ Rm×n such
that Σjk = 0 whenever j 6= k, and Σjj := σj whenever j ≤ min{m,n}, i.e.

Σ
m<n
=

σ1 0 0 · · · 0

0
. . . 0 · · · 0

0 0 σm · · · 0

 , Σ
m=n
=

σ1 0 0

0
. . . 0

0 0 σn

 , Σ
m>n
=


σ1 0 0

0
. . . 0

0 0 σn
...

...
...

0 0 0

 .

Thus (U,Σ, V ) is an SVD for A ∈ Cm×n, because clearly

AV = UΣ,

A = UΣV ∗.

Moreover, since here
A∗ = V Σ∗U∗,

we notice that (V,Σ∗, U) is an SVD for A∗ ∈ Cn×m.
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A boring example. Unitary A ∈ Cn×n has an SVD (A, I, I), as A = AII∗.
Another SVD for unitary A here is (I, I, A∗), since A = II(A∗)∗.

Example. Let A =

[
a
b

]
∈ C2×1. Then

A∗A =
[
a b

] [a
b

]
=
[
|a|2 + |b|2

]
∈ C1×1,

and clearly A∗A = V ΛV ∗ for

V =
[
V1

]
=
[
1
]
, Λ =

[
λ1

]
=
[
|a|2 + |b|2

]
.

Now

Σ =

[
σ1

0

]
∈ R2×1,

with the singular value σ1 =
√
λ1 =

√
|a|2 + |b|2. As σ1U1 = A(V1) =

[
a
b

]
,

we have U1 =

[
a/σ1

b/σ1

]
. We can choose e.g. U2 =

[
−b/σ1

a/σ1

]
. Thus A = UΣV ∗

reads now [
a
b

]
=

[
a/σ1 −b/σ1

b/σ1 a/σ1

] [
σ1

0

] [
1
]
.

Another example. In the previous example. A∗ = V Σ∗U∗ means[
a b

]
=
[
1
] [
σ1 0

] [ a/σ1 b/σ1

−b/σ1 a/σ1

]
.

Naturally, this (V,Σ∗, U) is an SVD for A∗.

Example. Let A ∈ Cn×n be positive, i.e. 〈Au, u〉 ≥ 0 for all u ∈ Cn. By
unitary diagonalization, A = UΛU∗ for some unitary U ∈ Cn×n and a positive
diagonal matrix Λ ∈ Rn×n. In this case, (U,Λ, U) is an SVD of A, if the
eigenvalues λj = Λjj ≥ 0 are in decreasing order λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λn.

Example. Let A =

[
a 0
0 d

]
, where a, d ∈ C such that |a| ≥ |d| > 0. Then

A = UΣV ∗ =

[
a/|a| 0

0 d/|d|

] [
|a| 0
0 |d|

] [
1 0
0 1

]∗
,

giving an SVD (U,Σ, V ) of A. An SVD is not unique: if 1 = |λ| = |µ|, here

A =

[
λa/|a| 0

0 µd/|d|

] [
|a| 0
0 |d|

] [
λ 0
0 µ

]∗
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Example. Let A =

[
a 0
0 d

]
, where a, d ∈ C such that |d| ≥ |a| > 0. Then

A = UΣV ∗ =

[
0 a/|a|

d/|d| 0

] [
|d| 0
0 |a|

] [
0 1
1 0

]∗
gives an SVD (U,Σ, V ) of A ∈ C2×2.

SVD in nutshell: An SVD (U,Σ, V ) can be found for any A ∈ Cm×n.
Here

A = UΣV ∗.

Σ ∈ Rm×n is unique (when we demand Σjj = σj ≥ σj+1),
but there is some freedom in choosing the unitary matrices U, V .
Here λj = σj

2 are the common eigenvalues of A∗A and AA∗.
Vj ∈ Cn×1 are eigenvectors of symmetric A∗A ∈ Cn×n,
Uj ∈ Cm×1 are eigenvectors of symmetric AA∗ ∈ Cm×m, and

A∗ = V Σ∗U∗

(of course, (V,Σ∗, U) is an SVD for A∗ ∈ Cn×m).
In case of σj = 0, it does not matter
how vectors Uj ∈ Cm×1 and Vj ∈ Cn×1 are chosen.

Remark. Above, A = UΣV ∗ ∈ Cm×n and A∗ = V Σ∗U∗ ∈ Cn×m.
Is there some essential difference in finding these SVDs?
Well, we first diagonalize either A∗A ∈ Cn×n or AA∗ ∈ Cm×m

... which of the dimensions m,n is smaller... ?

Remark. SVD helps us understanding the image

A(Cn) := {A(x) ∈ Cm : x ∈ Cn}

and the zero set (or kernel)

Ker(A) := {x ∈ Cn : A(x) = O ∈ Cm}.

Here

A(Cn) = span {Uj : σj 6= 0} ,
Ker(A) = span {Vj : σj = 0} .
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Example. Let us find a singular value decomposition (U,Σ, V ) for matrix

A =

2 0
1 2
0 2

 = UΣV ∗.

Now A∗A =

[
2 1 0
0 2 2

]2 0
1 2
0 2

 =

[
5 2
2 8

]
, meaning that A∗A = R from (56)

on page 63. There we saw that

R = V ΛV ∗, Λ =

[
9 0
0 4

]
, V =

[
s −2t
2s t

]
, |s| = 1/

√
5 = |t|.

So, the singular values of A are σ1 =
√
λ1 =

√
9 = 3, σ2 =

√
λ2 =

√
4 = 2.

Hence Σ =

3 0
0 2
0 0

. Due to A = UΣV ∗, we have AV = UΣ, and here

AV =

2 0
1 2
0 2

[ s −2t
2s t

]
=

2s −4t
5s 0
4s 2t

 ,
UΣ = [U1 U2 U3] Σ = [σ1U1 σ2U2] = [3U1 2U2].

Therefore U1 =

2s/3
5s/3
4s/3

 and U2 =

−2t
0
t

. For U3 =

ab
c

 we can choose any

unit vector (1 = ‖U3‖2 = |a|2 + |b|2 + |c|2) which is orthogonal to vectors
U1, U2: for instance, (a, b, c) = (1,−2, 2)/3 is fine. Let us check the answer:

UΣV ∗ =

2s/3 −2t a
5s/3 0 b
4s/3 t c

3 0
0 2
0 0

[ s −2t
2s t

]∗

=

2s −4t
5s 0
4s 2t

[ s∗ 2s∗

−2t∗ t∗

]

=

2|s|2 + 8|t|2 4|s|2 − 4|t|2
5|s|2 10|s|2

4|s|2 − 4|t|2 8|s|2 + 2|t|2


|s|2=1/5=|t|2

=

2 0
1 2
0 2

 = A.
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Matrix norm and singular values. The norm of a matrix A ∈ Cm×n is

‖A‖ = max
u∈Cn:‖u‖≤1

‖Au‖ .

Here ‖A‖ = σ1, the largest singular value of A: this follows from

‖Au‖2 = 〈Au,Au〉 = 〈A∗Au, u〉 = 〈u,AA∗u〉,

because by the unitary diagonalization it is clear that

‖A∗A‖ = σ1
2 = ‖AA∗‖.

Example. If

[A] =

[
2 3 4
5 6 7

]
then

[AA∗] =

[
29 56
56 110

]
has the characteristic polynomial

0 = det[AA∗ − zI]

= z2 − 139z + 54

= (z − σ1
2)(z − σ2

2),

where σ1, σ2 > 0 are the singular values of A, and σ1 > σ2 > 0. Especially,

‖A‖ = σ1 =

(
139 +

√
1392 − 4 · 54

2

)1/2

≈ 11.7732961.

Who would have guessed that just by looking at [A]? ;)

Rhetoric question: What is the smallest constant C for which

‖Au‖ ≤ C‖u‖

for all u ∈ Cn, when A : Cn → Cm is linear?
(Answer: C = ‖A‖ = σ1.)
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O ∈ Cn

V1V2 A:Cn→Cm

−→
O = AO ∈ Cm

A(V1) = σ1U1A(V2) = σ2U2

V ∗ = [V1 · · · Vn]∗
U = [U1 · · · Um]

O ∈ Rn I1 = V ∗(V1)

I2 = V ∗(V2)

Σ:Rn→Rm

−→
O = ΣO ∈ Rm σ1I1

σ2I2

Figure 39: Idea of SVD, or Singular Value Decomposition A = UΣV ∗.

12. Applications of SVD

Recall: An SVD (U,Σ, V ) can be found for any matrix A ∈ Cm×n. Here

A = UΣV ∗,

where the positive diagonal matrix Σ ∈ Rm×n is unique,
but there is some freedom in choosing unitary U ∈ Cm×m and V ∈ Cn×n.
λj = σj

2 = Σjj
2 ≥ λj+1 are the common eigenvalues of A∗A and AA∗.

Vj ∈ Cn×1 are eigenvectors of symmetric A∗A ∈ Cn×n,
Uj ∈ Cm×1 are eigenvectors of symmetric AA∗ ∈ Cm×m,
A(Vj) = σj Uj, and

A∗ = V Σ∗U∗

(of course, (V,Σ∗, U) is an SVD for A∗).

Remark. Often in real-life applications, the singular values

σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ 0

of the data matrix A ∈ Rm×n decay rapidly to zero, and this gives tools
for compressing and denoising the data, when we only take into account
the contribution of the largest singular values! Moreover, Gauss’ powerful
method of the least squares solution can be viewed as an application of an
SVD to find the pseudo-inverse A+ ∈ Cn×m of a matrix A ∈ Cm×n.
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Remark! Define Ũ , Σ̃, Ṽ by putting O to the columns k+1, k+2, k+3, · · ·
of the corresponding SVD-matrices U,Σ, V . Then

Ã = ŨΣ̃Ṽ ∗

is the best kth rank approximation to A ∈ Cm×n.

Example. If U = [U1 U2 U3] ∈ C3×3 and V = [V1 V2 V3 V4] ∈ C4×4 are
unitary, then

A = U

7 0 0 0
0 6 0 0
0 0 5 0

V ∗ ∈ C3×4

has the best 1st rank approximation

U

7 0 0 0
0 0 0 0
0 0 0 0

V ∗ = [U1 O O]

7 0 0 0
0 0 0 0
0 0 0 0

 [V1 O O O]∗,

and the best 2nd rank approximation of A would be

U

7 0 0 0
0 6 0 0
0 0 0 0

V ∗ = [U1 U2 O]

7 0 0 0
0 6 0 0
0 0 0 0

 [V1 V2 O O]∗.

Here matrices O ∈ C`×1 are the zero columns in appropriate dimensions `.

Application. A grey-scale m× n-pixel image is a matrix A ∈ Rm×n,
where Ajk ∈ [0, 1] is intensity at (j, k):
for instance, 0 is black, 0.5 is middle grey, 1 is white.
Storing image A takes mn numbers Ajk,
but the kth rank approximation Ã takes only

mk + k + n k = (m+ n+ 1) k

numbers, where often k � m, k � n.
In this fashion, SVD can also be used to remove noise from photographs
(noise typically contributes to smaller singular values).
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Pseudo-inverse

For A ∈ Cm×n, equation A(x) = b may have a unique solution, or infinitely
many solutions, or it may have no solutions at all! However, A(x) = b has
always the “best SVD-solution”

x̃ := A+(b),

where
A+ = V Σ+U∗ ∈ Cn×m

is the pseudo-inverse of A = UΣV ∗; here (U,Σ, V ) is an SVD of A, and
Σ+ ∈ Rn×m is the diagonal matrix, where the non-zero diagonal elements are
1/σj for the positive singular values σj > 0. If Ax = b has no solutions, this
least squares “solution” x̃ ∈ Cn is the best “solution” in sense that

‖A(x̃)− b‖ ≤ ‖A(x)− b‖

for all x ∈ Cn. And if Ax = b has infinitely many solutions, then x̃ ∈ Cn

is the best solution in sense that it has the minimal norm among all the
solutions.

Example. From [
1 0
0 1

] [
3 0
0 0

] [
0 1
1 0

]
=

[
0 3
0 0

]
= A

we see that UΣV ∗ = A has the pseudo-inverse

A+ = V Σ+U∗ =

[
0 0

1/3 0

]
,

where

V =

[
0 1
1 0

]
, Σ+ =

[
1/3 0
0 0

]
, U∗ =

[
1 0
0 1

]
.

Then

A+A =

[
0 0
0 1

]
, AA+ =

[
1 0
0 0

]
.

Notice that A is not surjective:

Ax =

[
0 3
0 0

] [
x1

x2

]
=

[
3x2

0

]
.

For b =

[
b1

b2

]
∈ C2×1, the “least squares solution” to Ax = b is

x̃ = A+(b) =

[
0 0

1/3 0

] [
b1

b2

]
=

[
0

b1/3

]
.
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Polar decomposition

The polar decomposition of z ∈ C is z = eiθ|z|, where θ = arg(z) ∈ R is the
argument and |z| ≥ 0 is the absolute value of z.

Definition. A polar decomposition (E, |A|) of matrix A ∈ Cn×n satisfies

A = E|A|,

where matrices E, |A| ∈ Cn×n are obtained from an SVD:

A = UΣV ∗ = (UV ∗)(V ΣV ∗),

E := UV ∗, |A| := V ΣV ∗. (57)

So E ∈ Cn×n is unitary, and |A| = (A∗A)1/2 ∈ Cn×n is positive:

〈|A|u, u〉 ≥ 0

for all u ∈ Cn. Notice that (A∗A)1/2 6= (AA∗)1/2 when A is not normal!

Example. From [
1 0
0 1

] [
3 0
0 0

] [
0 1
1 0

]
=

[
0 3
0 0

]
we see that UΣV ∗ = A :=

[
0 3
0 0

]
has a polar decomposition (E, |A|), where

A = E|A| = (UV ∗)(V ΣV ∗),

where

E = UV ∗ =

[
1 0
0 1

] [
0 1
1 0

]
=

[
0 1
1 0

]
,

|A| = V ΣV ∗ =

[
0 1
1 0

] [
3 0
0 0

] [
0 1
1 0

]
=

[
0 0
0 3

]
.

Notice that

|A| = (A∗A)1/2 =

([
0 0
3 0

] [
0 3
0 0

])1/2

=

[
0 0
0 9

]1/2

.

Some other applications: SVD is used in the Google search algorithm
(see e.g. Gilbert Strang’s book on linear algebra).
SVD finds regular features in statistics (in tables of numbers;
see PCA, Principal Component Analysis).
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Nice to know: what is a vector space?

Definition. A vector space over the scalar field K is a set V having an
element O ∈ V called the origin, and having the operations

((u, v) 7→ u+ v) : V × V → V,

((λ, u) 7→ u) : K× V → V

such that for all u, v, w ∈ V and λ, µ ∈ K we have

(u+ v) + w = u+ (v + w),

u+ v = v + u,

u+O = u,

u+ (−1)u = O,

1u = u,

λ(µu) = (λµ)u,

λ(u+ v) = λu+ λv,

(λ+ µ)u = λu+ µu.

Write u+ v + w := (u+ v) + w = u+ (v + w) and −u := (−1)u.

Example. During this course, we studied especially the Euclidean vector
spaces V = Kn (of finite dimension n). With a moment of thought, we
understand that the space V = Km×n of matrices can be considered as a
vector space (of finite dimension mn), with operations

([A], [B]) 7→ [A] + [B] = [A+B], (λ, [A]) 7→ λ[A] = [λA].

Example. As a useful example of an infinite-dimensional vector space,
think about the space V = C([a, b]) of continuous functions u : [a, b] → K.
Here [a, b] ⊂ R is a finite closed interval with a < b, and the vector operations
are given by

(u+ v)(x) := u(x) + v(x),

(λu)(x) := λu(x)

whenever a ≤ x ≤ b. For example, vector u ∈ V could be a sound signal,
and then at time x ∈ [a, b] the value u(x) ∈ R is the difference of the air
pressure to the normal constant ambient pressure. In this case, the energy
of the signal u ∈ V during the time interval [a, b] is proportional to

‖u‖2 :=

∫ b

a

|u(x)|2 dx.

More about this topic e.g. in the course on Fourier analysis.
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Nice to know: what is a linear operator?

Definition. Let V,W be vector spaces over the same scalar field K. Func-
tion A : V → W is called linear (or a linear operator, or a linear mapping)
if

A(u+ v) = A(u) + A(v),

A(λu) = λA(u)

for all u, v ∈ V and λ ∈ K. Then we simply write Au := A(u).

Example. During this course, we saw linear operators A : V → W between
the Euclidean vector spaces V = Kn and W = Km, and saw that these
corresponded to matrices [A] ∈ Km×n by

(Au)j =
n∑
k=1

Ajk uk. (58)

Example. Let V = C([a, b]) be the infinite-dimensional vector space of
continuous functions u : [a, b]→ K as above. Let K : [a, b]× [a, b]→ K be a
continuous function of two variables. Then

Au(x) =

∫ b

a

K(x, y)u(y) dy (59)

defines a linear operator A : V → V . Application here: if u ∈ V describes a
noisy input signal, then the output signal Au ∈ V might be less noisy, if we
choose the integral kernel function K nicely.

Remark. Notice the formal resemblance of the equations (58) and (59).
Actually, we may approximate (59) by finite-dimensional matrices in the
following fashion: if u ∈ V = C([a, b]), let n ∈ Z+ and

xj := a+
j

n
(b− a),

i.e. we take equispaced samples x1, · · · , xn ∈ [a, b] of variable x ∈ [a, b]. Then

Au(xj) =

∫ b

a

K(xj, y)u(y) dy

≈ b− a
n

n∑
k=1

K(xj, xk)u(xk).

This is a finite-dimensional matrix approximation to the integral operator A.
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Feedback, please...

Thanks to the assistants of the course for commenting these lecture notes!
All further feedback is welcome: please contact

ville.turunen@aalto.fi
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